Skip to main content
Erschienen in: Endocrine 2/2014

01.03.2014 | Review

Zinc and insulin in pancreatic beta-cells

verfasst von: Yang V. Li

Erschienen in: Endocrine | Ausgabe 2/2014

Einloggen, um Zugang zu erhalten

Abstract

Zinc (Zn2+) is an essential element crucial for growth and development, and also plays a role in cell signaling for cellular processes like cell division and apoptosis. In the mammalian pancreas, Zn2+ is essential for the correct processing, storage, secretion, and action of insulin in beta (β)-cells. Insulin is stored inside secretory vesicles or granules, where two Zn2+ ions coordinate six insulin monomers to form the hexameric-structure on which maturated insulin crystals are based. The total Zn2+ content of the mammalian pancreas is among the highest in the body, and Zn2+ concentration reach millimolar levels in the interior of the dense-core granule. Changes in Zn2+ levels in the pancreas have been found to be associated with diabetes. Hence, the relationship between co-stored Zn2+ and insulin undoubtedly is critical to normal β-cell function. The advances in the field of Zn2+ biology over the last decade have facilitated our understanding of Zn2+ trafficking, its intracellular distribution and its storage. When exocytosis of insulin occurs, insulin granules fuse with the β-cell plasma membrane and release their contents, i.e., insulin as well as substantial amount of free Zn2+, into the extracellular space and the local circulation. Studies increasingly indicate that secreted Zn2+ has autocrine or paracrine signaling in β-cells or the neighboring cells. This review discusses the Zn2+ homeostasis in β-cells with emphasis on the potential signaling role of Zn2+ to islet biology.
Literatur
1.
Zurück zum Zitat F.G. Banting, C.H. Best, The internal secretion of the pancreas. 1922. Indian J. Med. Res. 125(3), 251–266 (2007)PubMed F.G. Banting, C.H. Best, The internal secretion of the pancreas. 1922. Indian J. Med. Res. 125(3), 251–266 (2007)PubMed
2.
Zurück zum Zitat M. Bliss, Banting’s, Best’s, and Collip’s accounts of the discovery of insulin. Bull. Hist. Med. 56(4), 554–568 (1982)PubMed M. Bliss, Banting’s, Best’s, and Collip’s accounts of the discovery of insulin. Bull. Hist. Med. 56(4), 554–568 (1982)PubMed
3.
Zurück zum Zitat M. Bliss, The discovery of insulin: the inside story. Publ. Am. Inst. Hist. Pharm. 16, 93–99 (1997)PubMed M. Bliss, The discovery of insulin: the inside story. Publ. Am. Inst. Hist. Pharm. 16, 93–99 (1997)PubMed
4.
Zurück zum Zitat D.A. Scott, A.M. Fisher, The insulin and the zinc content of normal and diabetic pancreas. J. Clin. Invest. 17(6), 725–728 (1938)PubMedCentralPubMed D.A. Scott, A.M. Fisher, The insulin and the zinc content of normal and diabetic pancreas. J. Clin. Invest. 17(6), 725–728 (1938)PubMedCentralPubMed
5.
Zurück zum Zitat G.D. Smith et al., Structural stability in the 4-zinc human insulin hexamer. Proc. Natl. Acad. Sci. USA 81(22), 7093–7097 (1984)PubMed G.D. Smith et al., Structural stability in the 4-zinc human insulin hexamer. Proc. Natl. Acad. Sci. USA 81(22), 7093–7097 (1984)PubMed
6.
Zurück zum Zitat M.F. Dunn et al., Comparison of the zinc binding domains in the 7S nerve growth factor and the zinc-insulin hexamer. Biochemistry 19(4), 718–725 (1980)PubMed M.F. Dunn et al., Comparison of the zinc binding domains in the 7S nerve growth factor and the zinc-insulin hexamer. Biochemistry 19(4), 718–725 (1980)PubMed
7.
Zurück zum Zitat J. Goldman, F.H. Carpenter, Zinc binding, circular dichroism, and equilibrium sedimentation studies on insulin (bovine) and several of its derivatives. Biochemistry 13(22), 4566–4574 (1974)PubMed J. Goldman, F.H. Carpenter, Zinc binding, circular dichroism, and equilibrium sedimentation studies on insulin (bovine) and several of its derivatives. Biochemistry 13(22), 4566–4574 (1974)PubMed
8.
Zurück zum Zitat D.P. Figlewicz et al., Kinetics of 65zinc uptake and distribution in fractions from cultured rat islets of langerhans. Diabetes 29(10), 767–773 (1980)PubMed D.P. Figlewicz et al., Kinetics of 65zinc uptake and distribution in fractions from cultured rat islets of langerhans. Diabetes 29(10), 767–773 (1980)PubMed
9.
Zurück zum Zitat S.O. Emdin et al., Role of zinc in insulin biosynthesis. Some possible zinc-insulin interactions in the pancreatic B-cell. Diabetologia 19(3), 174–182 (1980)PubMed S.O. Emdin et al., Role of zinc in insulin biosynthesis. Some possible zinc-insulin interactions in the pancreatic B-cell. Diabetologia 19(3), 174–182 (1980)PubMed
10.
Zurück zum Zitat S.J. Chan, P. Keim, D.F. Steiner, Cell-free synthesis of rat preproinsulins: characterization and partial amino acid sequence determination. Proc. Natl. Acad. Sci. USA 73(6), 1964–1968 (1976)PubMed S.J. Chan, P. Keim, D.F. Steiner, Cell-free synthesis of rat preproinsulins: characterization and partial amino acid sequence determination. Proc. Natl. Acad. Sci. USA 73(6), 1964–1968 (1976)PubMed
11.
Zurück zum Zitat D.F. Steiner, Editorial: Errors in insulin biosynthesis. N. Engl. J. Med. 294(17), 952–953 (1976)PubMed D.F. Steiner, Editorial: Errors in insulin biosynthesis. N. Engl. J. Med. 294(17), 952–953 (1976)PubMed
12.
Zurück zum Zitat D.F. Steiner et al., Chemical and biological aspects of insulin and proinsulin. Acta Med. Scand. Suppl. 601, 55–107 (1976)PubMed D.F. Steiner et al., Chemical and biological aspects of insulin and proinsulin. Acta Med. Scand. Suppl. 601, 55–107 (1976)PubMed
13.
Zurück zum Zitat T.L. Blundell et al., Three-dimensional atomic structure of insulin and its relationship to activity. Diabetes 21(2 Suppl), 492–505 (1972)PubMed T.L. Blundell et al., Three-dimensional atomic structure of insulin and its relationship to activity. Diabetes 21(2 Suppl), 492–505 (1972)PubMed
14.
Zurück zum Zitat D.F. Steiner, Adventures with insulin in the islets of Langerhans. J. Biol. Chem. 286(20), 17399–17421 (2011)PubMed D.F. Steiner, Adventures with insulin in the islets of Langerhans. J. Biol. Chem. 286(20), 17399–17421 (2011)PubMed
15.
Zurück zum Zitat B.K. Milthorpe, L.W. Nichol, P.D. Jeffrey, The polymerization pattern of zinc(II)-insulin at pH 7.0. Biochim. Biophys. Acta 495(2), 195–202 (1977)PubMed B.K. Milthorpe, L.W. Nichol, P.D. Jeffrey, The polymerization pattern of zinc(II)-insulin at pH 7.0. Biochim. Biophys. Acta 495(2), 195–202 (1977)PubMed
16.
Zurück zum Zitat C.P. Hill et al., X-ray structure of an unusual Ca2+ site and the roles of Zn2+ and Ca2+ in the assembly, stability, and storage of the insulin hexamer. Biochemistry 30(4), 917–924 (1991)PubMed C.P. Hill et al., X-ray structure of an unusual Ca2+ site and the roles of Zn2+ and Ca2+ in the assembly, stability, and storage of the insulin hexamer. Biochemistry 30(4), 917–924 (1991)PubMed
17.
Zurück zum Zitat M.F. Dunn, Zinc-ligand interactions modulate assembly and stability of the insulin hexamer—a review. Biometals 18(4), 295–303 (2005)PubMed M.F. Dunn, Zinc-ligand interactions modulate assembly and stability of the insulin hexamer—a review. Biometals 18(4), 295–303 (2005)PubMed
18.
Zurück zum Zitat D.F. Steiner et al., A brief perspective on insulin production. Diabetes Obes. Metab. 11(Suppl 4), 189–196 (2009)PubMed D.F. Steiner et al., A brief perspective on insulin production. Diabetes Obes. Metab. 11(Suppl 4), 189–196 (2009)PubMed
19.
Zurück zum Zitat S.L. Howell, D.A. Young, P.E. Lacy, Isolation and properties of secretory granules from rat islets of Langerhans. 3. Studies of the stability of the isolated beta granules. J. Cell Biol. 41(1), 167–176 (1969)PubMed S.L. Howell, D.A. Young, P.E. Lacy, Isolation and properties of secretory granules from rat islets of Langerhans. 3. Studies of the stability of the isolated beta granules. J. Cell Biol. 41(1), 167–176 (1969)PubMed
20.
Zurück zum Zitat G. Gold, G.M. Grodsky, Kinetic aspects of compartmental storage and secretion of insulin and zinc. Experientia 40(10), 1105–1114 (1984)PubMed G. Gold, G.M. Grodsky, Kinetic aspects of compartmental storage and secretion of insulin and zinc. Experientia 40(10), 1105–1114 (1984)PubMed
21.
Zurück zum Zitat B. Formby, F. Schmid-Formby, G.M. Grodsky, Relationship between insulin release and 65zinc efflux from rat pancreatic islets maintained in tissue culture. Diabetes 33(3), 229–234 (1984)PubMed B. Formby, F. Schmid-Formby, G.M. Grodsky, Relationship between insulin release and 65zinc efflux from rat pancreatic islets maintained in tissue culture. Diabetes 33(3), 229–234 (1984)PubMed
22.
Zurück zum Zitat C.E. Outten, T.V. O’Halloran, Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292(5526), 2488–2492 (2001)PubMed C.E. Outten, T.V. O’Halloran, Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292(5526), 2488–2492 (2001)PubMed
23.
Zurück zum Zitat B.L. Vallee, K.H. Falchuk, The biochemical basis of zinc physiology. Physiol. Rev. 73(1), 79–118 (1993)PubMed B.L. Vallee, K.H. Falchuk, The biochemical basis of zinc physiology. Physiol. Rev. 73(1), 79–118 (1993)PubMed
24.
Zurück zum Zitat R.J. Cousins, J.P. Liuzzi, L.A. Lichten, Mammalian zinc transport, trafficking, and signals. J. Biol. Chem. 281(34), 24085–24089 (2006)PubMed R.J. Cousins, J.P. Liuzzi, L.A. Lichten, Mammalian zinc transport, trafficking, and signals. J. Biol. Chem. 281(34), 24085–24089 (2006)PubMed
25.
Zurück zum Zitat D.J. Eide, Zinc transporters and the cellular trafficking of zinc. Biochim. Biophys. Acta 1763(7), 711–722 (2006)PubMed D.J. Eide, Zinc transporters and the cellular trafficking of zinc. Biochim. Biophys. Acta 1763(7), 711–722 (2006)PubMed
26.
Zurück zum Zitat P.D. Zalewski et al., Video image analysis of labile zinc in viable pancreatic islet cells using a specific fluorescent probe for zinc. J. Histochem. Cytochem. 42(7), 877–884 (1994)PubMed P.D. Zalewski et al., Video image analysis of labile zinc in viable pancreatic islet cells using a specific fluorescent probe for zinc. J. Histochem. Cytochem. 42(7), 877–884 (1994)PubMed
27.
Zurück zum Zitat M.C. Foster et al., Elemental composition of secretory granules in pancreatic islets of Langerhans. Biophys. J. 64(2), 525–532 (1993)PubMedCentralPubMed M.C. Foster et al., Elemental composition of secretory granules in pancreatic islets of Langerhans. Biophys. J. 64(2), 525–532 (1993)PubMedCentralPubMed
28.
Zurück zum Zitat A. Krezel, W. Maret, Zinc-buffering capacity of a eukaryotic cell at physiological pZn. J. Biol. Inorg. Chem. 11(8), 1049–1062 (2006)PubMed A. Krezel, W. Maret, Zinc-buffering capacity of a eukaryotic cell at physiological pZn. J. Biol. Inorg. Chem. 11(8), 1049–1062 (2006)PubMed
29.
Zurück zum Zitat Y. Li, W. Maret, Transient fluctuations of intracellular zinc ions in cell proliferation. Exp. Cell Res. 315(14), 2463–2470 (2009)PubMed Y. Li, W. Maret, Transient fluctuations of intracellular zinc ions in cell proliferation. Exp. Cell Res. 315(14), 2463–2470 (2009)PubMed
30.
Zurück zum Zitat E.A. Bellomo, G. Meur, G.A. Rutter, Glucose regulates free cytosolic Zn2+ concentration, Slc39 (ZiP), and metallothionein gene expression in primary pancreatic islet {beta}-cells. J. Biol. Chem. 286(29), 25778–25789 (2011)PubMed E.A. Bellomo, G. Meur, G.A. Rutter, Glucose regulates free cytosolic Zn2+ concentration, Slc39 (ZiP), and metallothionein gene expression in primary pancreatic islet {beta}-cells. J. Biol. Chem. 286(29), 25778–25789 (2011)PubMed
31.
Zurück zum Zitat M. Foster, S. Samman, Zinc and redox signaling: perturbations associated with cardiovascular disease and diabetes mellitus. Antioxid. Redox Signal 13(10), 1549–1573 (2010)PubMed M. Foster, S. Samman, Zinc and redox signaling: perturbations associated with cardiovascular disease and diabetes mellitus. Antioxid. Redox Signal 13(10), 1549–1573 (2010)PubMed
32.
Zurück zum Zitat M. Hershfinkel, W.F. Silverman, I. Sekler, The zinc sensing receptor, a link between zinc and cell signaling. Mol. Med. 13(7–8), 331–336 (2007)PubMedCentralPubMed M. Hershfinkel, W.F. Silverman, I. Sekler, The zinc sensing receptor, a link between zinc and cell signaling. Mol. Med. 13(7–8), 331–336 (2007)PubMedCentralPubMed
33.
Zurück zum Zitat H. Haase, L. Rink, Functional significance of zinc-related signaling pathways in immune cells. Annu. Rev. Nutr. 29, 133–152 (2009)PubMed H. Haase, L. Rink, Functional significance of zinc-related signaling pathways in immune cells. Annu. Rev. Nutr. 29, 133–152 (2009)PubMed
34.
Zurück zum Zitat S.L. Sensi et al., Zinc in the physiology and pathology of the CNS. Nat. Rev. Neurosci. 10(11), 780–791 (2009)PubMed S.L. Sensi et al., Zinc in the physiology and pathology of the CNS. Nat. Rev. Neurosci. 10(11), 780–791 (2009)PubMed
35.
Zurück zum Zitat K.G. Slepchenko, Y.V. Li, Rising intracellular zinc by membrane depolarization and glucose in insulin-secreting clonal HIT-T15 beta cells. Exp. Diabetes Res. 2012, 190309 (2012)PubMedCentralPubMed K.G. Slepchenko, Y.V. Li, Rising intracellular zinc by membrane depolarization and glucose in insulin-secreting clonal HIT-T15 beta cells. Exp. Diabetes Res. 2012, 190309 (2012)PubMedCentralPubMed
36.
Zurück zum Zitat L.A. Gaither, D.J. Eide, Eukaryotic zinc transporters and their regulation. Biometals 14(3–4), 251–270 (2001)PubMed L.A. Gaither, D.J. Eide, Eukaryotic zinc transporters and their regulation. Biometals 14(3–4), 251–270 (2001)PubMed
37.
Zurück zum Zitat C.J. Frederickson, J.Y. Koh, A.I. Bush, The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 6(6), 449–462 (2005)PubMed C.J. Frederickson, J.Y. Koh, A.I. Bush, The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 6(6), 449–462 (2005)PubMed
38.
Zurück zum Zitat Y.V. Li, Zinc overload in stroke, in Metal Ion in Stroke, ed. by Y.V. Li, J.H. Zhang (Springer Science + Business Media, New York, 2012), pp. 167–189 Y.V. Li, Zinc overload in stroke, in Metal Ion in Stroke, ed. by Y.V. Li, J.H. Zhang (Springer Science + Business Media, New York, 2012), pp. 167–189
39.
Zurück zum Zitat G. Csordas, G. Hajnoczky, Plasticity of mitochondrial calcium signaling. J. Biol. Chem. 278(43), 42273–42282 (2003)PubMed G. Csordas, G. Hajnoczky, Plasticity of mitochondrial calcium signaling. J. Biol. Chem. 278(43), 42273–42282 (2003)PubMed
40.
Zurück zum Zitat I.G. Gazaryan et al., Zinc irreversibly damages major enzymes of energy production and antioxidant defense prior to mitochondrial permeability transition. J. Biol. Chem. 282(33), 24373–24380 (2007)PubMed I.G. Gazaryan et al., Zinc irreversibly damages major enzymes of energy production and antioxidant defense prior to mitochondrial permeability transition. J. Biol. Chem. 282(33), 24373–24380 (2007)PubMed
41.
Zurück zum Zitat D. Jiang et al., Zn(2+) induces permeability transition pore opening and release of pro-apoptotic peptides from neuronal mitochondria. J. Biol. Chem. 276(50), 47524–47529 (2001)PubMed D. Jiang et al., Zn(2+) induces permeability transition pore opening and release of pro-apoptotic peptides from neuronal mitochondria. J. Biol. Chem. 276(50), 47524–47529 (2001)PubMed
42.
Zurück zum Zitat C.J. Stork, Y.V. Li, Zinc release from thapsigargin/IP3-sensitive stores in cultured cortical neurons. J. Mol. Signal 5, 5 (2010)PubMedCentralPubMed C.J. Stork, Y.V. Li, Zinc release from thapsigargin/IP3-sensitive stores in cultured cortical neurons. J. Mol. Signal 5, 5 (2010)PubMedCentralPubMed
43.
Zurück zum Zitat T.J. Ostwald, D.H. MacLennan, Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J. Biol. Chem. 249(3), 974–979 (1974)PubMed T.J. Ostwald, D.H. MacLennan, Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J. Biol. Chem. 249(3), 974–979 (1974)PubMed
44.
Zurück zum Zitat E.F. Corbett et al., The conformation of calreticulin is influenced by the endoplasmic reticulum luminal environment. J. Biol. Chem. 275(35), 27177–27185 (2000)PubMed E.F. Corbett et al., The conformation of calreticulin is influenced by the endoplasmic reticulum luminal environment. J. Biol. Chem. 275(35), 27177–27185 (2000)PubMed
45.
Zurück zum Zitat N.C. Khanna, M. Tokuda, D.M. Waisman, Conformational changes induced by binding of divalent cations to calregulin. J. Biol. Chem. 261(19), 8883–8887 (1986)PubMed N.C. Khanna, M. Tokuda, D.M. Waisman, Conformational changes induced by binding of divalent cations to calregulin. J. Biol. Chem. 261(19), 8883–8887 (1986)PubMed
46.
Zurück zum Zitat S. Baksh et al., Identification of the Zn2+ binding region in calreticulin. FEBS Lett. 376(1–2), 53–57 (1995)PubMed S. Baksh et al., Identification of the Zn2+ binding region in calreticulin. FEBS Lett. 376(1–2), 53–57 (1995)PubMed
47.
Zurück zum Zitat Y. Tan et al., The calcium- and zinc-responsive regions of calreticulin reside strictly in the N-/C-domain. Biochim. Biophys. Acta 1760(5), 745–753 (2006)PubMed Y. Tan et al., The calcium- and zinc-responsive regions of calreticulin reside strictly in the N-/C-domain. Biochim. Biophys. Acta 1760(5), 745–753 (2006)PubMed
48.
Zurück zum Zitat L. Guo et al., Identification of an N-domain histidine essential for chaperone function in calreticulin. J. Biol. Chem. 278(50), 50645–50653 (2003)PubMed L. Guo et al., Identification of an N-domain histidine essential for chaperone function in calreticulin. J. Biol. Chem. 278(50), 50645–50653 (2003)PubMed
49.
Zurück zum Zitat W. Qiao et al., Zinc status and vacuolar zinc transporters control alkaline phosphatase accumulation and activity in Saccharomyces cerevisiae. Mol. Microbiol. 72(2), 320–334 (2009)PubMedCentralPubMed W. Qiao et al., Zinc status and vacuolar zinc transporters control alkaline phosphatase accumulation and activity in Saccharomyces cerevisiae. Mol. Microbiol. 72(2), 320–334 (2009)PubMedCentralPubMed
50.
Zurück zum Zitat K. Ishihara et al., Zinc transport complexes contribute to the homeostatic maintenance of secretory pathway function in vertebrate cells. J. Biol. Chem. 281(26), 17743–17750 (2006)PubMed K. Ishihara et al., Zinc transport complexes contribute to the homeostatic maintenance of secretory pathway function in vertebrate cells. J. Biol. Chem. 281(26), 17743–17750 (2006)PubMed
51.
Zurück zum Zitat T. Suzuki et al., Two different zinc transport complexes of cation diffusion facilitator proteins localized in the secretory pathway operate to activate alkaline phosphatases in vertebrate cells. J. Biol. Chem. 280(35), 30956–30962 (2005)PubMed T. Suzuki et al., Two different zinc transport complexes of cation diffusion facilitator proteins localized in the secretory pathway operate to activate alkaline phosphatases in vertebrate cells. J. Biol. Chem. 280(35), 30956–30962 (2005)PubMed
52.
Zurück zum Zitat C.D. Ellis, C.W. Macdiarmid, D.J. Eide, Heteromeric protein complexes mediate zinc transport into the secretory pathway of eukaryotic cells. J. Biol. Chem. 280(31), 28811–28818 (2005)PubMed C.D. Ellis, C.W. Macdiarmid, D.J. Eide, Heteromeric protein complexes mediate zinc transport into the secretory pathway of eukaryotic cells. J. Biol. Chem. 280(31), 28811–28818 (2005)PubMed
53.
Zurück zum Zitat C.D. Ellis et al., Zinc and the Msc2 zinc transporter protein are required for endoplasmic reticulum function. J. Cell Biol. 166(3), 325–335 (2004)PubMed C.D. Ellis et al., Zinc and the Msc2 zinc transporter protein are required for endoplasmic reticulum function. J. Cell Biol. 166(3), 325–335 (2004)PubMed
54.
Zurück zum Zitat T. Suzuki et al., Zinc transporters, ZnT5 and ZnT7, are required for the activation of alkaline phosphatases, zinc-requiring enzymes that are glycosylphosphatidylinositol-anchored to the cytoplasmic membrane. J. Biol. Chem. 280(1), 637–643 (2005)PubMed T. Suzuki et al., Zinc transporters, ZnT5 and ZnT7, are required for the activation of alkaline phosphatases, zinc-requiring enzymes that are glycosylphosphatidylinositol-anchored to the cytoplasmic membrane. J. Biol. Chem. 280(1), 637–643 (2005)PubMed
55.
Zurück zum Zitat W. Maret, Metallothionein redox biology in the cytoprotective and cytotoxic functions of zinc. Exp. Gerontol. 43(5), 363–369 (2008)PubMed W. Maret, Metallothionein redox biology in the cytoprotective and cytotoxic functions of zinc. Exp. Gerontol. 43(5), 363–369 (2008)PubMed
56.
Zurück zum Zitat D.K. Lee et al., Pancreatic metallothionein-I may play a role in zinc homeostasis during maternal dietary zinc deficiency in mice. J. Nutr. 133(1), 45–50 (2003)PubMed D.K. Lee et al., Pancreatic metallothionein-I may play a role in zinc homeostasis during maternal dietary zinc deficiency in mice. J. Nutr. 133(1), 45–50 (2003)PubMed
57.
Zurück zum Zitat G.K. Andrews et al., Metal ions induce expression of metallothionein in pancreatic exocrine and endocrine cells. Pancreas 5(5), 548–554 (1990)PubMed G.K. Andrews et al., Metal ions induce expression of metallothionein in pancreatic exocrine and endocrine cells. Pancreas 5(5), 548–554 (1990)PubMed
58.
Zurück zum Zitat T. Tomita, Metallothionein in pancreatic endocrine neoplasms. Mod. Pathol. 13(4), 389–395 (2000)PubMed T. Tomita, Metallothionein in pancreatic endocrine neoplasms. Mod. Pathol. 13(4), 389–395 (2000)PubMed
59.
Zurück zum Zitat L. Cai, Metallothionein as an adaptive protein prevents diabetes and its toxicity. Nonlinearity Biol. Toxicol. Med. 2(2), 89–103 (2004)PubMedCentralPubMed L. Cai, Metallothionein as an adaptive protein prevents diabetes and its toxicity. Nonlinearity Biol. Toxicol. Med. 2(2), 89–103 (2004)PubMedCentralPubMed
60.
Zurück zum Zitat S.G. Laychock, J. Duzen, C.O. Simpkins, Metallothionein induction in islets of Langerhans and insulinoma cells. Mol. Cell. Endocrinol. 165(1–2), 179–187 (2000)PubMed S.G. Laychock, J. Duzen, C.O. Simpkins, Metallothionein induction in islets of Langerhans and insulinoma cells. Mol. Cell. Endocrinol. 165(1–2), 179–187 (2000)PubMed
61.
Zurück zum Zitat J. Yang, M.G. Cherian, Protective effects of metallothionein on streptozotocin-induced diabetes in rats. Life Sci. 55(1), 43–51 (1994)PubMed J. Yang, M.G. Cherian, Protective effects of metallothionein on streptozotocin-induced diabetes in rats. Life Sci. 55(1), 43–51 (1994)PubMed
62.
Zurück zum Zitat Z.H. Wang et al., Increased pancreatic metallothionein and glutathione levels: protecting against cerulein- and taurocholate-induced acute pancreatitis in rats. Pancreas 13(2), 173–183 (1996)PubMed Z.H. Wang et al., Increased pancreatic metallothionein and glutathione levels: protecting against cerulein- and taurocholate-induced acute pancreatitis in rats. Pancreas 13(2), 173–183 (1996)PubMed
63.
Zurück zum Zitat C.J. Frederickson et al., Concentrations of extracellular free zinc (pZn)e in the central nervous system during simple anesthetization, ischemia and reperfusion. Exp. Neurol. 198(2), 285–293 (2006)PubMed C.J. Frederickson et al., Concentrations of extracellular free zinc (pZn)e in the central nervous system during simple anesthetization, ischemia and reperfusion. Exp. Neurol. 198(2), 285–293 (2006)PubMed
64.
Zurück zum Zitat R.A. Bozym et al., Free zinc ions outside a narrow concentration range are toxic to a variety of cells in vitro. Exp. Biol. Med. (Maywood) 235(6), 741–750 (2010) R.A. Bozym et al., Free zinc ions outside a narrow concentration range are toxic to a variety of cells in vitro. Exp. Biol. Med. (Maywood) 235(6), 741–750 (2010)
65.
Zurück zum Zitat L. Cai et al., Essentiality, toxicology and chelation therapy of zinc and copper. Curr. Med. Chem. 12(23), 2753–2763 (2005)PubMed L. Cai et al., Essentiality, toxicology and chelation therapy of zinc and copper. Curr. Med. Chem. 12(23), 2753–2763 (2005)PubMed
66.
Zurück zum Zitat V. Frazzini et al., Oxidative stress and brain aging: is zinc the link? Biogerontology 7(5–6), 307–314 (2006)PubMed V. Frazzini et al., Oxidative stress and brain aging: is zinc the link? Biogerontology 7(5–6), 307–314 (2006)PubMed
67.
Zurück zum Zitat C.J. Frederickson et al., Importance of zinc in the central nervous system: the zinc-containing neuron. J. Nutr. 130(5S Suppl), 1471S–1483S (2000)PubMed C.J. Frederickson et al., Importance of zinc in the central nervous system: the zinc-containing neuron. J. Nutr. 130(5S Suppl), 1471S–1483S (2000)PubMed
68.
Zurück zum Zitat A.S. Prasad, Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp. Gerontol. 43(5), 370–377 (2008)PubMed A.S. Prasad, Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp. Gerontol. 43(5), 370–377 (2008)PubMed
69.
Zurück zum Zitat A.Q. Truong-Tran et al., The role of zinc in caspase activation and apoptotic cell death. Biometals 14(3–4), 315–330 (2001)PubMed A.Q. Truong-Tran et al., The role of zinc in caspase activation and apoptotic cell death. Biometals 14(3–4), 315–330 (2001)PubMed
70.
Zurück zum Zitat C.T. Walsh et al., Zinc: health effects and research priorities for the 1990s. Environ. Health Perspect. 102(Suppl 2), 5–46 (1994)PubMedCentralPubMed C.T. Walsh et al., Zinc: health effects and research priorities for the 1990s. Environ. Health Perspect. 102(Suppl 2), 5–46 (1994)PubMedCentralPubMed
71.
Zurück zum Zitat S.R. Hubbard et al., Identification and characterization of zinc binding sites in protein kinase C. Science 254(5039), 1776–1779 (1991)PubMed S.R. Hubbard et al., Identification and characterization of zinc binding sites in protein kinase C. Science 254(5039), 1776–1779 (1991)PubMed
72.
Zurück zum Zitat A.F. Quest et al., The regulatory domain of protein kinase C coordinates four atoms of zinc. J. Biol. Chem. 267(14), 10193–10197 (1992)PubMed A.F. Quest et al., The regulatory domain of protein kinase C coordinates four atoms of zinc. J. Biol. Chem. 267(14), 10193–10197 (1992)PubMed
73.
Zurück zum Zitat K.I. Jeon, J.Y. Jeong, D.M. Jue, Thiol-reactive metal compounds inhibit NF-kappa B activation by blocking I kappa B kinase. J. Immunol. 164(11), 5981–5989 (2000)PubMed K.I. Jeon, J.Y. Jeong, D.M. Jue, Thiol-reactive metal compounds inhibit NF-kappa B activation by blocking I kappa B kinase. J. Immunol. 164(11), 5981–5989 (2000)PubMed
74.
Zurück zum Zitat G.J. Brewer et al., Zinc inhibition of calmodulin: a proposed molecular mechanism of zinc action on cellular functions. Am. J. Hematol. 7(1), 53–60 (1979)PubMed G.J. Brewer et al., Zinc inhibition of calmodulin: a proposed molecular mechanism of zinc action on cellular functions. Am. J. Hematol. 7(1), 53–60 (1979)PubMed
75.
Zurück zum Zitat I. Lengyel et al., Modulation of the phosphorylation and activity of calcium/calmodulin-dependent protein kinase II by zinc. J. Neurochem. 75(2), 594–605 (2000)PubMed I. Lengyel et al., Modulation of the phosphorylation and activity of calcium/calmodulin-dependent protein kinase II by zinc. J. Neurochem. 75(2), 594–605 (2000)PubMed
76.
Zurück zum Zitat R.P. Weinberger, J.A. Rostas, Effect of zinc on calmodulin-stimulated protein kinase II and protein phosphorylation in rat cerebral cortex. J. Neurochem. 57(2), 605–614 (1991)PubMed R.P. Weinberger, J.A. Rostas, Effect of zinc on calmodulin-stimulated protein kinase II and protein phosphorylation in rat cerebral cortex. J. Neurochem. 57(2), 605–614 (1991)PubMed
77.
Zurück zum Zitat J.A. Park, J.Y. Koh, Induction of an immediate early gene egr-1 by zinc through extracellular signal-regulated kinase activation in cortical culture: its role in zinc-induced neuronal death. J. Neurochem. 73(2), 450–456 (1999)PubMed J.A. Park, J.Y. Koh, Induction of an immediate early gene egr-1 by zinc through extracellular signal-regulated kinase activation in cortical culture: its role in zinc-induced neuronal death. J. Neurochem. 73(2), 450–456 (1999)PubMed
78.
Zurück zum Zitat S. Kim et al., NF-kappa B prevents beta cell death and autoimmune diabetes in NOD mice. Proc. Natl. Acad. Sci. USA 104(6), 1913–1918 (2007)PubMed S. Kim et al., NF-kappa B prevents beta cell death and autoimmune diabetes in NOD mice. Proc. Natl. Acad. Sci. USA 104(6), 1913–1918 (2007)PubMed
79.
Zurück zum Zitat T. Kambe et al., Overview of mammalian zinc transporters. Cell. Mol. Life Sci. 61(1), 49–68 (2004)PubMed T. Kambe et al., Overview of mammalian zinc transporters. Cell. Mol. Life Sci. 61(1), 49–68 (2004)PubMed
80.
Zurück zum Zitat K.A. Jackson et al., Mechanisms of mammalian zinc-regulated gene expression. Biochem. Soc. Trans. 36(Pt 6), 1262–1266 (2008)PubMed K.A. Jackson et al., Mechanisms of mammalian zinc-regulated gene expression. Biochem. Soc. Trans. 36(Pt 6), 1262–1266 (2008)PubMed
81.
Zurück zum Zitat R.J. Cousins et al., Regulation of zinc metabolism and genomic outcomes. J. Nutr. 133(5 Suppl 1), 1521S–1526S (2003)PubMed R.J. Cousins et al., Regulation of zinc metabolism and genomic outcomes. J. Nutr. 133(5 Suppl 1), 1521S–1526S (2003)PubMed
82.
Zurück zum Zitat L.A. Lichten, R.J. Cousins, Mammalian zinc transporters: nutritional and physiologic regulation. Annu. Rev. Nutr. 29, 153–176 (2009)PubMed L.A. Lichten, R.J. Cousins, Mammalian zinc transporters: nutritional and physiologic regulation. Annu. Rev. Nutr. 29, 153–176 (2009)PubMed
83.
Zurück zum Zitat Y. Chao, D. Fu, Kinetic study of the antiport mechanism of an Escherichia coli zinc transporter. ZitB. J. Biol. Chem. 279(13), 12043–12050 (2004) Y. Chao, D. Fu, Kinetic study of the antiport mechanism of an Escherichia coli zinc transporter. ZitB. J. Biol. Chem. 279(13), 12043–12050 (2004)
84.
Zurück zum Zitat A.A. Guffanti et al., An antiport mechanism for a member of the cation diffusion facilitator family: divalent cations efflux in exchange for K+ and H+. Mol. Microbiol. 45(1), 145–153 (2002)PubMed A.A. Guffanti et al., An antiport mechanism for a member of the cation diffusion facilitator family: divalent cations efflux in exchange for K+ and H+. Mol. Microbiol. 45(1), 145–153 (2002)PubMed
85.
Zurück zum Zitat T. Bloss, S. Clemens, D.H. Nies, Characterization of the ZAT1p zinc transporter from Arabidopsis thaliana in microbial model organisms and reconstituted proteoliposomes. Planta 214(5), 783–791 (2002)PubMed T. Bloss, S. Clemens, D.H. Nies, Characterization of the ZAT1p zinc transporter from Arabidopsis thaliana in microbial model organisms and reconstituted proteoliposomes. Planta 214(5), 783–791 (2002)PubMed
86.
Zurück zum Zitat R.D. Palmiter et al., ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc. Natl. Acad. Sci. USA 93(25), 14934–14939 (1996)PubMed R.D. Palmiter et al., ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc. Natl. Acad. Sci. USA 93(25), 14934–14939 (1996)PubMed
87.
Zurück zum Zitat L. Huang et al., The ZIP7 gene (Slc39a7) encodes a zinc transporter involved in zinc homeostasis of the Golgi apparatus. J. Biol. Chem. 280(15), 15456–15463 (2005)PubMed L. Huang et al., The ZIP7 gene (Slc39a7) encodes a zinc transporter involved in zinc homeostasis of the Golgi apparatus. J. Biol. Chem. 280(15), 15456–15463 (2005)PubMed
88.
Zurück zum Zitat W. Chowanadisai, B. Lonnerdal, S.L. Kelleher, Zip6 (LIV-1) regulates zinc uptake in neuroblastoma cells under resting but not depolarizing conditions. Brain Res. 1199, 10–19 (2008)PubMed W. Chowanadisai, B. Lonnerdal, S.L. Kelleher, Zip6 (LIV-1) regulates zinc uptake in neuroblastoma cells under resting but not depolarizing conditions. Brain Res. 1199, 10–19 (2008)PubMed
89.
Zurück zum Zitat L. Belloni-Olivi et al., Localization of zip1 and zip4 mRNA in the adult rat brain. J. Neurosci. Res. 87(14), 3221–3230 (2009)PubMedCentralPubMed L. Belloni-Olivi et al., Localization of zip1 and zip4 mRNA in the adult rat brain. J. Neurosci. Res. 87(14), 3221–3230 (2009)PubMedCentralPubMed
90.
Zurück zum Zitat J. Dufner-Beattie et al., Mouse ZIP1 and ZIP3 genes together are essential for adaptation to dietary zinc deficiency during pregnancy. Genesis 44(5), 239–251 (2006)PubMed J. Dufner-Beattie et al., Mouse ZIP1 and ZIP3 genes together are essential for adaptation to dietary zinc deficiency during pregnancy. Genesis 44(5), 239–251 (2006)PubMed
91.
Zurück zum Zitat L. Huang, M. Yan, C.P. Kirschke, Over-expression of ZnT7 increases insulin synthesis and secretion in pancreatic beta-cells by promoting insulin gene transcription. Exp. Cell Res. 316(16), 2630–2643 (2011) L. Huang, M. Yan, C.P. Kirschke, Over-expression of ZnT7 increases insulin synthesis and secretion in pancreatic beta-cells by promoting insulin gene transcription. Exp. Cell Res. 316(16), 2630–2643 (2011)
92.
Zurück zum Zitat K. Smidt et al., SLC30A3 responds to glucose- and zinc variations in beta-cells and is critical for insulin production and in vivo glucose-metabolism during beta-cell stress. PLoS One 4(5), e5684 (2009)PubMedCentralPubMed K. Smidt et al., SLC30A3 responds to glucose- and zinc variations in beta-cells and is critical for insulin production and in vivo glucose-metabolism during beta-cell stress. PLoS One 4(5), e5684 (2009)PubMedCentralPubMed
93.
Zurück zum Zitat A.V. Gyulkhandanyan et al., Investigation of transport mechanisms and regulation of intracellular Zn2+ in pancreatic alpha-cells. J. Biol. Chem. 283(15), 10184–10197 (2008)PubMed A.V. Gyulkhandanyan et al., Investigation of transport mechanisms and regulation of intracellular Zn2+ in pancreatic alpha-cells. J. Biol. Chem. 283(15), 10184–10197 (2008)PubMed
94.
Zurück zum Zitat T. Kambe et al., Cloning and characterization of a novel mammalian zinc transporter, zinc transporter 5, abundantly expressed in pancreatic beta cells. J. Biol. Chem. 277(21), 19049–19055 (2002)PubMed T. Kambe et al., Cloning and characterization of a novel mammalian zinc transporter, zinc transporter 5, abundantly expressed in pancreatic beta cells. J. Biol. Chem. 277(21), 19049–19055 (2002)PubMed
95.
Zurück zum Zitat R.A. Colvin et al., Zn2+ transporters and Zn2+ homeostasis in neurons. Eur. J. Pharmacol. 479(1–3), 171–185 (2003)PubMed R.A. Colvin et al., Zn2+ transporters and Zn2+ homeostasis in neurons. Eur. J. Pharmacol. 479(1–3), 171–185 (2003)PubMed
96.
Zurück zum Zitat C.W. Shuttleworth, J.H. Weiss, Zinc: new clues to diverse roles in brain ischemia. Trends Pharmacol. Sci. 32(8), 480–486 (2011)PubMedCentralPubMed C.W. Shuttleworth, J.H. Weiss, Zinc: new clues to diverse roles in brain ischemia. Trends Pharmacol. Sci. 32(8), 480–486 (2011)PubMedCentralPubMed
97.
Zurück zum Zitat E. Ohana et al., A sodium zinc exchange mechanism is mediating extrusion of zinc in mammalian cells. J. Biol. Chem. 279(6), 4278–4284 (2004)PubMed E. Ohana et al., A sodium zinc exchange mechanism is mediating extrusion of zinc in mammalian cells. J. Biol. Chem. 279(6), 4278–4284 (2004)PubMed
98.
Zurück zum Zitat Y. Qin et al., Mechanisms of Zn2+ efflux in cultured cortical neurons. J. Neurochem. 107(5), 1304–1313 (2008)PubMed Y. Qin et al., Mechanisms of Zn2+ efflux in cultured cortical neurons. J. Neurochem. 107(5), 1304–1313 (2008)PubMed
99.
Zurück zum Zitat R.A. Colvin et al., Evidence for a zinc/proton antiporter in rat brain. Neurochem. Int. 36(6), 539–547 (2000)PubMed R.A. Colvin et al., Evidence for a zinc/proton antiporter in rat brain. Neurochem. Int. 36(6), 539–547 (2000)PubMed
100.
Zurück zum Zitat K. Inoue, D. Branigan, Z.G. Xiong, Zinc-induced neurotoxicity mediated by transient receptor potential melastatin 7 channels. J. Biol. Chem. 285(10), 7430–7439 (2010)PubMed K. Inoue, D. Branigan, Z.G. Xiong, Zinc-induced neurotoxicity mediated by transient receptor potential melastatin 7 channels. J. Biol. Chem. 285(10), 7430–7439 (2010)PubMed
101.
Zurück zum Zitat T.F. Wagner et al., TRPM3 channels provide a regulated influx pathway for zinc in pancreatic beta cells. Pflugers Arch. 460(4), 755–765 (2010)PubMed T.F. Wagner et al., TRPM3 channels provide a regulated influx pathway for zinc in pancreatic beta cells. Pflugers Arch. 460(4), 755–765 (2010)PubMed
102.
Zurück zum Zitat A.V. Gyulkhandanyan et al., The Zn2+-transporting pathways in pancreatic beta-cells: a role for the L-type voltage-gated Ca2+ channel. J. Biol. Chem. 281(14), 9361–9372 (2006)PubMed A.V. Gyulkhandanyan et al., The Zn2+-transporting pathways in pancreatic beta-cells: a role for the L-type voltage-gated Ca2+ channel. J. Biol. Chem. 281(14), 9361–9372 (2006)PubMed
103.
Zurück zum Zitat F. Chimienti et al., Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53(9), 2330–2337 (2004)PubMed F. Chimienti et al., Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53(9), 2330–2337 (2004)PubMed
104.
Zurück zum Zitat F. Chimienti et al., In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J. Cell Sci. 119(Pt 20), 4199–4206 (2006)PubMed F. Chimienti et al., In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J. Cell Sci. 119(Pt 20), 4199–4206 (2006)PubMed
105.
Zurück zum Zitat N. Wijesekara, F. Chimienti, M.B. Wheeler, Zinc, a regulator of islet function and glucose homeostasis. Diabetes Obes. Metab. 11(Suppl 4), 202–214 (2009)PubMed N. Wijesekara, F. Chimienti, M.B. Wheeler, Zinc, a regulator of islet function and glucose homeostasis. Diabetes Obes. Metab. 11(Suppl 4), 202–214 (2009)PubMed
106.
Zurück zum Zitat G.A. Rutter, Think zinc: New roles for zinc in the control of insulin secretion. Islets 2(1), 49–50 (2011) G.A. Rutter, Think zinc: New roles for zinc in the control of insulin secretion. Islets 2(1), 49–50 (2011)
107.
Zurück zum Zitat N. Wijesekara et al., Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia 53(8), 1656–1668 (2010)PubMed N. Wijesekara et al., Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia 53(8), 1656–1668 (2010)PubMed
108.
Zurück zum Zitat K. Lemaire et al., Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proc. Natl. Acad. Sci. USA 106(35), 14872–14877 (2009)PubMed K. Lemaire et al., Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proc. Natl. Acad. Sci. USA 106(35), 14872–14877 (2009)PubMed
109.
Zurück zum Zitat T.J. Nicolson et al., Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 58(9), 2070–2083 (2009)PubMed T.J. Nicolson et al., Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 58(9), 2070–2083 (2009)PubMed
110.
Zurück zum Zitat L. Egefjord et al., Zinc transporter gene expression is regulated by pro-inflammatory cytokines: a potential role for zinc transporters in beta-cell apoptosis? BMC Endocr. Disord. 9, 7 (2009)PubMedCentralPubMed L. Egefjord et al., Zinc transporter gene expression is regulated by pro-inflammatory cytokines: a potential role for zinc transporters in beta-cell apoptosis? BMC Endocr. Disord. 9, 7 (2009)PubMedCentralPubMed
111.
Zurück zum Zitat M. El Muayed et al., Acute cytokine-mediated downregulation of the zinc transporter ZnT8 alters pancreatic beta-cell function. J. Endocrinol. 206(2), 159–169 (2010)PubMedCentralPubMed M. El Muayed et al., Acute cytokine-mediated downregulation of the zinc transporter ZnT8 alters pancreatic beta-cell function. J. Endocrinol. 206(2), 159–169 (2010)PubMedCentralPubMed
112.
Zurück zum Zitat C.B. Newgard, J.D. McGarry, Metabolic coupling factors in pancreatic beta-cell signal transduction. Annu. Rev. Biochem. 64, 689–719 (1995)PubMed C.B. Newgard, J.D. McGarry, Metabolic coupling factors in pancreatic beta-cell signal transduction. Annu. Rev. Biochem. 64, 689–719 (1995)PubMed
113.
Zurück zum Zitat A. Tarasov, J. Dusonchet, F. Ashcroft, Metabolic regulation of the pancreatic beta-cell ATP-sensitive K+ channel: a pas de deux. Diabetes 53(Suppl 3), S113–S122 (2004)PubMed A. Tarasov, J. Dusonchet, F. Ashcroft, Metabolic regulation of the pancreatic beta-cell ATP-sensitive K+ channel: a pas de deux. Diabetes 53(Suppl 3), S113–S122 (2004)PubMed
114.
Zurück zum Zitat L. Aguilar-Bryan, J. Bryan, Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr. Rev. 20(2), 101–135 (1999)PubMed L. Aguilar-Bryan, J. Bryan, Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr. Rev. 20(2), 101–135 (1999)PubMed
115.
Zurück zum Zitat F.M. Ashcroft, P. Rorsman, G. Trube, Single calcium channel activity in mouse pancreatic beta-cells. Ann. N Y Acad. Sci. 560, 410–412 (1989)PubMed F.M. Ashcroft, P. Rorsman, G. Trube, Single calcium channel activity in mouse pancreatic beta-cells. Ann. N Y Acad. Sci. 560, 410–412 (1989)PubMed
116.
Zurück zum Zitat I. Findlay et al., Calcium currents in insulin-secreting beta-cells. Ann. N Y Acad. Sci. 560, 403–409 (1989)PubMed I. Findlay et al., Calcium currents in insulin-secreting beta-cells. Ann. N Y Acad. Sci. 560, 403–409 (1989)PubMed
117.
Zurück zum Zitat K. Aoyagi, M. Ohara-Imaizumi, S. Nagamatsu, Regulation of resident and newcomer insulin granules by calcium and SNARE proteins. Front Biosci. 16, 1197–1210 (2011) K. Aoyagi, M. Ohara-Imaizumi, S. Nagamatsu, Regulation of resident and newcomer insulin granules by calcium and SNARE proteins. Front Biosci. 16, 1197–1210 (2011)
118.
Zurück zum Zitat T.L. Blundell et al., The crystal structure of rhombohedral 2 zinc insulin. Cold Spring Harb. Symp. Quant. Biol. 36, 233–241 (1972)PubMed T.L. Blundell et al., The crystal structure of rhombohedral 2 zinc insulin. Cold Spring Harb. Symp. Quant. Biol. 36, 233–241 (1972)PubMed
119.
Zurück zum Zitat D.J. Michael et al., Pancreatic beta-cells secrete insulin in fast- and slow-release forms. Diabetes 55(3), 600–607 (2006)PubMed D.J. Michael et al., Pancreatic beta-cells secrete insulin in fast- and slow-release forms. Diabetes 55(3), 600–607 (2006)PubMed
120.
Zurück zum Zitat R.P. Robertson, H. Zhou, M. Slucca, A role for zinc in pancreatic islet beta-cell cross-talk with the alpha-cell during hypoglycaemia. Diabetes Obes. Metab. 13(Suppl 1), 106–111 (2011)PubMed R.P. Robertson, H. Zhou, M. Slucca, A role for zinc in pancreatic islet beta-cell cross-talk with the alpha-cell during hypoglycaemia. Diabetes Obes. Metab. 13(Suppl 1), 106–111 (2011)PubMed
121.
Zurück zum Zitat Li, Y., et al., Translocation of synaptically released zinc involves voltage dependent calcium channels (vdccs) in rat hippocampal ca3 pyramidal neurons. Society for Neuroscience, 2002 (Program No. 437.12.) Li, Y., et al., Translocation of synaptically released zinc involves voltage dependent calcium channels (vdccs) in rat hippocampal ca3 pyramidal neurons. Society for Neuroscience, 2002 (Program No. 437.12.)
122.
Zurück zum Zitat Y. Li et al., Rapid translocation of zn(2+) from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation. J. Neurophysiol. 86(5), 2597–2604 (2001)PubMed Y. Li et al., Rapid translocation of zn(2+) from presynaptic terminals into postsynaptic hippocampal neurons after physiological stimulation. J. Neurophysiol. 86(5), 2597–2604 (2001)PubMed
123.
Zurück zum Zitat Y.V. Li, C.J. Hough, J.M. Sarvey, Do we need zinc to think? Sci STKE 2003(182), pe19 (2003)PubMed Y.V. Li, C.J. Hough, J.M. Sarvey, Do we need zinc to think? Sci STKE 2003(182), pe19 (2003)PubMed
124.
Zurück zum Zitat H. Zhou et al., Zinc, not insulin, regulates the rat alpha-cell response to hypoglycemia in vivo. Diabetes 56(4), 1107–1112 (2007)PubMed H. Zhou et al., Zinc, not insulin, regulates the rat alpha-cell response to hypoglycemia in vivo. Diabetes 56(4), 1107–1112 (2007)PubMed
125.
Zurück zum Zitat F. Atouf, P. Czernichow, R. Scharfmann, Expression of neuronal traits in pancreatic beta cells. Implication of neuron-restrictive silencing factor/repressor element silencing transcription factor, a neuron-restrictive silencer. J. Biol. Chem. 272(3), 1929–1934 (1997)PubMed F. Atouf, P. Czernichow, R. Scharfmann, Expression of neuronal traits in pancreatic beta cells. Implication of neuron-restrictive silencing factor/repressor element silencing transcription factor, a neuron-restrictive silencer. J. Biol. Chem. 272(3), 1929–1934 (1997)PubMed
126.
Zurück zum Zitat N. Inagaki et al., Expression and role of ionotropic glutamate receptors in pancreatic islet cells. FASEB J 9(8), 686–691 (1995)PubMed N. Inagaki et al., Expression and role of ionotropic glutamate receptors in pancreatic islet cells. FASEB J 9(8), 686–691 (1995)PubMed
127.
Zurück zum Zitat Z.Y. Wu et al., AMPA receptors regulate exocytosis and insulin release in pancreatic beta cells. Traffic 13(8), 1124–1139 (2012)PubMed Z.Y. Wu et al., AMPA receptors regulate exocytosis and insulin release in pancreatic beta cells. Traffic 13(8), 1124–1139 (2012)PubMed
128.
Zurück zum Zitat C. Ludvigsen, M. McDaniel, P.E. Lacy, The mechanism of zinc uptake in isolated islets of Langerhans. Diabetes 28(6), 570–575 (1979)PubMed C. Ludvigsen, M. McDaniel, P.E. Lacy, The mechanism of zinc uptake in isolated islets of Langerhans. Diabetes 28(6), 570–575 (1979)PubMed
129.
Zurück zum Zitat P.D. Borge et al., Insulin receptor signaling and sarco/endoplasmic reticulum calcium ATPase in beta-cells. Diabetes 51(Suppl 3), S427–S433 (2002)PubMed P.D. Borge et al., Insulin receptor signaling and sarco/endoplasmic reticulum calcium ATPase in beta-cells. Diabetes 51(Suppl 3), S427–S433 (2002)PubMed
130.
Zurück zum Zitat M. Braun, R. Ramracheya, P. Rorsman, Autocrine regulation of insulin secretion. Diabetes Obes. Metab. 14(Suppl 3), 143–151 (2012)PubMed M. Braun, R. Ramracheya, P. Rorsman, Autocrine regulation of insulin secretion. Diabetes Obes. Metab. 14(Suppl 3), 143–151 (2012)PubMed
131.
Zurück zum Zitat Y. Lin, Z. Sun, Current views on type 2 diabetes. J. Endocrinol. 204(1), 1–11 (2012) Y. Lin, Z. Sun, Current views on type 2 diabetes. J. Endocrinol. 204(1), 1–11 (2012)
132.
Zurück zum Zitat S. Jitrapakdee et al., Regulation of insulin secretion: role of mitochondrial signalling. Diabetologia 53(6), 1019–1032 (2010)PubMedCentralPubMed S. Jitrapakdee et al., Regulation of insulin secretion: role of mitochondrial signalling. Diabetologia 53(6), 1019–1032 (2010)PubMedCentralPubMed
133.
Zurück zum Zitat E. Zini et al., Hyperglycaemia but not hyperlipidaemia causes beta cell dysfunction and beta cell loss in the domestic cat. Diabetologia 52(2), 336–346 (2009)PubMed E. Zini et al., Hyperglycaemia but not hyperlipidaemia causes beta cell dysfunction and beta cell loss in the domestic cat. Diabetologia 52(2), 336–346 (2009)PubMed
134.
Zurück zum Zitat P. Proks, J.D. Lippiat, Membrane ion channels and diabetes. Curr. Pharm. Des. 12(4), 485–501 (2006)PubMed P. Proks, J.D. Lippiat, Membrane ion channels and diabetes. Curr. Pharm. Des. 12(4), 485–501 (2006)PubMed
135.
Zurück zum Zitat M.D. Bosco et al., Zinc and zinc transporter regulation in pancreatic islets and the potential role of zinc in islet transplantation. Rev. Diabet. Stud. 7(4), 263–274 (2010)PubMedCentralPubMed M.D. Bosco et al., Zinc and zinc transporter regulation in pancreatic islets and the potential role of zinc in islet transplantation. Rev. Diabet. Stud. 7(4), 263–274 (2010)PubMedCentralPubMed
136.
Zurück zum Zitat A. Mathie et al., Zinc and copper: pharmacological probes and endogenous modulators of neuronal excitability. Pharmacol. Ther. 111(3), 567–583 (2006)PubMed A. Mathie et al., Zinc and copper: pharmacological probes and endogenous modulators of neuronal excitability. Pharmacol. Ther. 111(3), 567–583 (2006)PubMed
137.
Zurück zum Zitat D.W. Barnett, D.M. Pressel, S. Misler, Voltage-dependent Na + and Ca2+ currents in human pancreatic islet beta-cells: evidence for roles in the generation of action potentials and insulin secretion. Pflugers Arch. 431(2), 272–282 (1995)PubMed D.W. Barnett, D.M. Pressel, S. Misler, Voltage-dependent Na + and Ca2+ currents in human pancreatic islet beta-cells: evidence for roles in the generation of action potentials and insulin secretion. Pflugers Arch. 431(2), 272–282 (1995)PubMed
138.
Zurück zum Zitat A. Bloc et al., Zinc-induced changes in ionic currents of clonal rat pancreatic-cells: activation of ATP-sensitive K+ channels. J. Physiol. 529(Pt 3), 723–734 (2000)PubMed A. Bloc et al., Zinc-induced changes in ionic currents of clonal rat pancreatic-cells: activation of ATP-sensitive K+ channels. J. Physiol. 529(Pt 3), 723–734 (2000)PubMed
139.
Zurück zum Zitat R. Ferrer et al., Effects of Zn2+ on glucose-induced electrical activity and insulin release from mouse pancreatic islets. Am. J. Physiol. 246(5 Pt 1), C520–C527 (1984)PubMed R. Ferrer et al., Effects of Zn2+ on glucose-induced electrical activity and insulin release from mouse pancreatic islets. Am. J. Physiol. 246(5 Pt 1), C520–C527 (1984)PubMed
140.
Zurück zum Zitat T. Ghafghazi, M.L. McDaniel, P.E. Lacy, Zinc-induced inhibition of insulin secretion from isolated rat islets of Langerhans. Diabetes 30(4), 341–345 (1981)PubMed T. Ghafghazi, M.L. McDaniel, P.E. Lacy, Zinc-induced inhibition of insulin secretion from isolated rat islets of Langerhans. Diabetes 30(4), 341–345 (1981)PubMed
141.
Zurück zum Zitat V. Bancila et al., Zinc inhibits glutamate release via activation of pre-synaptic K channels and reduces ischaemic damage in rat hippocampus. J. Neurochem. 90(5), 1243–1250 (2004)PubMed V. Bancila et al., Zinc inhibits glutamate release via activation of pre-synaptic K channels and reduces ischaemic damage in rat hippocampus. J. Neurochem. 90(5), 1243–1250 (2004)PubMed
142.
Zurück zum Zitat B. Holst et al., G protein-coupled receptor 39 deficiency is associated with pancreatic islet dysfunction. Endocrinology 150(6), 2577–2585 (2009)PubMed B. Holst et al., G protein-coupled receptor 39 deficiency is associated with pancreatic islet dysfunction. Endocrinology 150(6), 2577–2585 (2009)PubMed
143.
Zurück zum Zitat P. Popovics, A.J. Stewart, GPR39: a Zn(2+)-activated G protein-coupled receptor that regulates pancreatic, gastrointestinal and neuronal functions. Cell. Mol. Life Sci. 68(1), 85–95 (2011)PubMed P. Popovics, A.J. Stewart, GPR39: a Zn(2+)-activated G protein-coupled receptor that regulates pancreatic, gastrointestinal and neuronal functions. Cell. Mol. Life Sci. 68(1), 85–95 (2011)PubMed
144.
Zurück zum Zitat M. Hutton, The effects of environmental lead exposure and in vitro zinc on tissue delta-aminolevulinic acid dehydratase in urban pigeons. Comp. Biochem. Physiol. C 74(2), 441–446 (1983)PubMed M. Hutton, The effects of environmental lead exposure and in vitro zinc on tissue delta-aminolevulinic acid dehydratase in urban pigeons. Comp. Biochem. Physiol. C 74(2), 441–446 (1983)PubMed
145.
Zurück zum Zitat G.M. Grodsky, F. Schmid-Formby, Kinetic and quantitative relationships between insulin release and 65Zn efflux from perifused islets. Endocrinology 117(2), 704–710 (1985)PubMed G.M. Grodsky, F. Schmid-Formby, Kinetic and quantitative relationships between insulin release and 65Zn efflux from perifused islets. Endocrinology 117(2), 704–710 (1985)PubMed
146.
Zurück zum Zitat B. Turan, Zinc-induced changes in ionic currents of cardiomyocytes. Biol. Trace Elem. Res. 94(1), 49–60 (2003)PubMed B. Turan, Zinc-induced changes in ionic currents of cardiomyocytes. Biol. Trace Elem. Res. 94(1), 49–60 (2003)PubMed
147.
Zurück zum Zitat X.P. Chu et al., Subunit-dependent high-affinity zinc inhibition of acid-sensing ion channels. J. Neurosci. 24(40), 8678–8689 (2004)PubMedCentralPubMed X.P. Chu et al., Subunit-dependent high-affinity zinc inhibition of acid-sensing ion channels. J. Neurosci. 24(40), 8678–8689 (2004)PubMedCentralPubMed
148.
Zurück zum Zitat K.G. Slepchenko, C.B. James, Y.V. Li, Inhibitory effect of zinc on glucose-stimulated zinc/insulin secretion in an insulin-secreting beta-cell line. Exp. Physiol. 98(8), 1301–1311 (2013)PubMed K.G. Slepchenko, C.B. James, Y.V. Li, Inhibitory effect of zinc on glucose-stimulated zinc/insulin secretion in an insulin-secreting beta-cell line. Exp. Physiol. 98(8), 1301–1311 (2013)PubMed
149.
Zurück zum Zitat D. Baetens et al., Endocrine pancreas: three-dimensional reconstruction shows two types of islets of langerhans. Science 206(4424), 1323–1325 (1979)PubMed D. Baetens et al., Endocrine pancreas: three-dimensional reconstruction shows two types of islets of langerhans. Science 206(4424), 1323–1325 (1979)PubMed
150.
Zurück zum Zitat O. Cabrera et al., The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl. Acad. Sci. USA 103(7), 2334–2339 (2006)PubMed O. Cabrera et al., The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl. Acad. Sci. USA 103(7), 2334–2339 (2006)PubMed
151.
Zurück zum Zitat M.A. Ravier, G.A. Rutter, Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreatic alpha-cells. Diabetes 54(6), 1789–1797 (2005)PubMed M.A. Ravier, G.A. Rutter, Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreatic alpha-cells. Diabetes 54(6), 1789–1797 (2005)PubMed
152.
Zurück zum Zitat R. Ramracheya et al., Membrane potential-dependent inactivation of voltage-gated ion channels in alpha-cells inhibits glucagon secretion from human islets. Diabetes 59(9), 2198–2208 (2010)PubMed R. Ramracheya et al., Membrane potential-dependent inactivation of voltage-gated ion channels in alpha-cells inhibits glucagon secretion from human islets. Diabetes 59(9), 2198–2208 (2010)PubMed
153.
Zurück zum Zitat B.A. Cooperberg, P.E. Cryer, Insulin reciprocally regulates glucagon secretion in humans. Diabetes 59(11), 2936–2940 (2010)PubMed B.A. Cooperberg, P.E. Cryer, Insulin reciprocally regulates glucagon secretion in humans. Diabetes 59(11), 2936–2940 (2010)PubMed
154.
Zurück zum Zitat M. Slucca et al., ATP-sensitive K+ channel mediates the zinc switch-off signal for glucagon response during glucose deprivation. Diabetes 59(1), 128–134 (2010)PubMed M. Slucca et al., ATP-sensitive K+ channel mediates the zinc switch-off signal for glucagon response during glucose deprivation. Diabetes 59(1), 128–134 (2010)PubMed
155.
Zurück zum Zitat I. Franklin et al., Beta-cell secretory products activate alpha-cell ATP-dependent potassium channels to inhibit glucagon release. Diabetes 54(6), 1808–1815 (2005)PubMed I. Franklin et al., Beta-cell secretory products activate alpha-cell ATP-dependent potassium channels to inhibit glucagon release. Diabetes 54(6), 1808–1815 (2005)PubMed
156.
Zurück zum Zitat A.L. Prost et al., Zinc is both an intracellular and extracellular regulator of KATP channel function. J. Physiol. 559(Pt 1), 157–167 (2004)PubMed A.L. Prost et al., Zinc is both an intracellular and extracellular regulator of KATP channel function. J. Physiol. 559(Pt 1), 157–167 (2004)PubMed
157.
Zurück zum Zitat K.M. Hope et al., Regulation of alpha-cell function by the beta-cell in isolated human and rat islets deprived of glucose: the “switch-off” hypothesis. Diabetes 53(6), 1488–1495 (2004)PubMed K.M. Hope et al., Regulation of alpha-cell function by the beta-cell in isolated human and rat islets deprived of glucose: the “switch-off” hypothesis. Diabetes 53(6), 1488–1495 (2004)PubMed
158.
Zurück zum Zitat J.C. Hutton, E.J. Penn, M. Peshavaria, Low-molecular-weight constituents of isolated insulin-secretory granules. Bivalent cations, adenine nucleotides and inorganic phosphate. Biochem. J. 210(2), 297–305 (1983)PubMed J.C. Hutton, E.J. Penn, M. Peshavaria, Low-molecular-weight constituents of isolated insulin-secretory granules. Bivalent cations, adenine nucleotides and inorganic phosphate. Biochem. J. 210(2), 297–305 (1983)PubMed
159.
Zurück zum Zitat J. Brandao-Neto et al., Renal handling of zinc in insulin-dependent diabetes mellitus patients. Biometals 14(1), 75–80 (2001)PubMed J. Brandao-Neto et al., Renal handling of zinc in insulin-dependent diabetes mellitus patients. Biometals 14(1), 75–80 (2001)PubMed
160.
Zurück zum Zitat J.J. Cunningham et al., Hyperzincuria in individuals with insulin-dependent diabetes mellitus: concurrent zinc status and the effect of high-dose zinc supplementation. Metabolism 43(12), 1558–1562 (1994)PubMed J.J. Cunningham et al., Hyperzincuria in individuals with insulin-dependent diabetes mellitus: concurrent zinc status and the effect of high-dose zinc supplementation. Metabolism 43(12), 1558–1562 (1994)PubMed
161.
Zurück zum Zitat W.B. Kinlaw et al., Abnormal zinc metabolism in type II diabetes mellitus. Am. J. Med. 75(2), 273–277 (1983)PubMed W.B. Kinlaw et al., Abnormal zinc metabolism in type II diabetes mellitus. Am. J. Med. 75(2), 273–277 (1983)PubMed
162.
Zurück zum Zitat E. Ho, C. Courtemanche, B.N. Ames, Zinc deficiency induces oxidative DNA damage and increases p53 expression in human lung fibroblasts. J. Nutr. 133(8), 2543–2548 (2003)PubMed E. Ho, C. Courtemanche, B.N. Ames, Zinc deficiency induces oxidative DNA damage and increases p53 expression in human lung fibroblasts. J. Nutr. 133(8), 2543–2548 (2003)PubMed
163.
Zurück zum Zitat E. Ho et al., Dietary zinc supplementation inhibits NFkappaB activation and protects against chemically induced diabetes in CD1 mice. Exp. Biol. Med. (Maywood) 226(2), 103–111 (2001) E. Ho et al., Dietary zinc supplementation inhibits NFkappaB activation and protects against chemically induced diabetes in CD1 mice. Exp. Biol. Med. (Maywood) 226(2), 103–111 (2001)
164.
Zurück zum Zitat A.B. Chausmer, Zinc, insulin and diabetes. J. Am. Coll. Nutr. 17(2), 109–115 (1998)PubMed A.B. Chausmer, Zinc, insulin and diabetes. J. Am. Coll. Nutr. 17(2), 109–115 (1998)PubMed
Metadaten
Titel
Zinc and insulin in pancreatic beta-cells
verfasst von
Yang V. Li
Publikationsdatum
01.03.2014
Verlag
Springer US
Erschienen in
Endocrine / Ausgabe 2/2014
Print ISSN: 1355-008X
Elektronische ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-013-0032-x

Weitere Artikel der Ausgabe 2/2014

Endocrine 2/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhöhte Mortalität bei postpartalem Brustkrebs

07.05.2024 Mammakarzinom Nachrichten

Auch für Trägerinnen von BRCA-Varianten gilt: Erkranken sie fünf bis zehn Jahre nach der letzten Schwangerschaft an Brustkrebs, ist das Sterberisiko besonders hoch.

Hypertherme Chemotherapie bietet Chance auf Blasenerhalt

07.05.2024 Harnblasenkarzinom Nachrichten

Eine hypertherme intravesikale Chemotherapie mit Mitomycin kann für Patienten mit hochriskantem nicht muskelinvasivem Blasenkrebs eine Alternative zur radikalen Zystektomie darstellen. Kölner Urologen berichten über ihre Erfahrungen.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Vorhofflimmern bei Jüngeren gefährlicher als gedacht

06.05.2024 Vorhofflimmern Nachrichten

Immer mehr jüngere Menschen leiden unter Vorhofflimmern. Betroffene unter 65 Jahren haben viele Risikofaktoren und ein signifikant erhöhtes Sterberisiko verglichen mit Gleichaltrigen ohne die Erkrankung.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.