Skip to main content
Erschienen in: Endocrine 1/2015

01.05.2015 | Original Article

Recombinant murine fibroblast growth factor 21 ameliorates obesity-related inflammation in monosodium glutamate-induced obesity rats

verfasst von: Wen-Fei Wang, Si-Ming Li, Gui-Ping Ren, Wei Zheng, Yu-Jia Lu, Yin-Hang Yu, Wen-Juan Xu, Tian-He Li, Li-Hong Zhou, Yan Liu, De-Shan Li

Erschienen in: Endocrine | Ausgabe 1/2015

Einloggen, um Zugang zu erhalten

Abstract

The aim of this study is to investigate the role of FGF21 in obesity-related inflammation in livers of monosodium glutamate (MSG)-induced obesity rats. The MSG rats were injected with recombinant murine fibroblast growth factor 21(FGF21) or equal volumes of vehicle. Metabolic parameters including body weight, Lee’s index, food intake, visceral fat and liver weight, intraperitoneal glucose tolerance, glucose, and lipid levels were dynamically measured at specific time points. Liver function and routine blood test were also analyzed. Further, systemic inflammatory cytokines such as glucose transporter 1 (GLUT-1), leptin, TNF-α, and IL-6 mRNAs were determined by real-time PCR. FGF21 independently decreased body weight and whole-body fat mass without reducing food intake in the MSG rats. FGF21 reduced blood glucose level, Lee’s index, visceral fat, and liver weight, and improved glucose tolerance, lipid metabolic spectrum, and hepatic steatosis in the MSG-obesity rats. Liver function parameters including AST, ALT, ALP, TP, T.Bili, and D.Bili levels significantly reduced in the FGF21-treated obesity rats compared to the controls. Further, FGF21 ameliorated the total and differential white blood cell (WBC) count, serum C-reactive protein (CRP), IL-6, and TNF-α levels in adipose tissues of the obesity rats, suggesting inflammation amelioration in the in the obesity rats by FGF21. FGF21 improves multiple metabolic disorders and ameliorates obesity-related inflammation in the MSG-induced obesity rats.
Literatur
1.
Zurück zum Zitat N. Itoh, D.M. Ornitz, Evolution of the Fgf and Fgfr gene families. Trends. Genet. 20, 563–569 (2004)CrossRefPubMed N. Itoh, D.M. Ornitz, Evolution of the Fgf and Fgfr gene families. Trends. Genet. 20, 563–569 (2004)CrossRefPubMed
2.
Zurück zum Zitat T. Nishimura, Y. Nakatake, M. Konishi, N. Itoh, Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim. Biophys. Acta 1492, 203–206 (2000)CrossRefPubMed T. Nishimura, Y. Nakatake, M. Konishi, N. Itoh, Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim. Biophys. Acta 1492, 203–206 (2000)CrossRefPubMed
3.
Zurück zum Zitat A. Kharitonenkov, T.L. Shiyanova, A. Koester, A.M. Ford, R. Micanovic, E.J. Galbreath et al., FGF-21 as a novel metabolic regulator. J Clin Invest. 115, 1627–1635 (2005)CrossRefPubMedCentralPubMed A. Kharitonenkov, T.L. Shiyanova, A. Koester, A.M. Ford, R. Micanovic, E.J. Galbreath et al., FGF-21 as a novel metabolic regulator. J Clin Invest. 115, 1627–1635 (2005)CrossRefPubMedCentralPubMed
4.
Zurück zum Zitat J. Xu, D.J. Lloyd, C. Hale, S. Stanislaus, M. Chen, G. Sivits et al., FGF21 reverses hepatic steatosis, increases energy expenditure and improves insulin sensitivity in diet-induced obese mice. Diabetes 58, 250–259 (2008)CrossRefPubMed J. Xu, D.J. Lloyd, C. Hale, S. Stanislaus, M. Chen, G. Sivits et al., FGF21 reverses hepatic steatosis, increases energy expenditure and improves insulin sensitivity in diet-induced obese mice. Diabetes 58, 250–259 (2008)CrossRefPubMed
5.
Zurück zum Zitat T. Coskun, H.A. Bina, M.A. Schneider, J.D. Dunbar, C.C. Hu, Y. Chen et al., FGF21 corrects obesity in mice. Endocrinology 149, 6018–6127 (2008)CrossRefPubMed T. Coskun, H.A. Bina, M.A. Schneider, J.D. Dunbar, C.C. Hu, Y. Chen et al., FGF21 corrects obesity in mice. Endocrinology 149, 6018–6127 (2008)CrossRefPubMed
6.
Zurück zum Zitat A. Kharitonenkov, V.J. Wroblewski, A. Koester, Y.F. Chen, C.K. Clutinger, X.T. Tigno et al., The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 148, 774–781 (2007)CrossRefPubMed A. Kharitonenkov, V.J. Wroblewski, A. Koester, Y.F. Chen, C.K. Clutinger, X.T. Tigno et al., The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 148, 774–781 (2007)CrossRefPubMed
7.
Zurück zum Zitat A.H. Goris, K.R. Westerterp, Physical activity, fat intake and body fat. Physiol. Behav. 94, 164–168 (2008)CrossRefPubMed A.H. Goris, K.R. Westerterp, Physical activity, fat intake and body fat. Physiol. Behav. 94, 164–168 (2008)CrossRefPubMed
8.
9.
Zurück zum Zitat M. Nagata, W. Suzuki, S. Iizuka, M. Tabuchi, H. Maruyama et al., Type 2 diabetes mellitus in obese mouse model induced by monosodium glutamate. Exp. Anim. 55, 109–115 (2006)CrossRefPubMed M. Nagata, W. Suzuki, S. Iizuka, M. Tabuchi, H. Maruyama et al., Type 2 diabetes mellitus in obese mouse model induced by monosodium glutamate. Exp. Anim. 55, 109–115 (2006)CrossRefPubMed
10.
Zurück zum Zitat Y. Nakanishi, K. Tsuneyama, M. Fujimoto, T.L. Salunga, K. Nomoto, J.L. An et al., Monosodium glutamate (MSG): a villain and promoter of liver inflammation and dysplasia. J. Autoimmun. 30, 42–50 (2008)CrossRefPubMed Y. Nakanishi, K. Tsuneyama, M. Fujimoto, T.L. Salunga, K. Nomoto, J.L. An et al., Monosodium glutamate (MSG): a villain and promoter of liver inflammation and dysplasia. J. Autoimmun. 30, 42–50 (2008)CrossRefPubMed
11.
Zurück zum Zitat N. Aoi, M. Soma, T. Nakayama, D. Rahmutula, K. Kosuge, Y. Izumi et al., Variable number of tandem repeat of the 5’-flanking region of type-C human natriuretic peptide receptor gene influences blood pressure levels in obesity-associated hypertension. Hypertens. Res. 27, 711–716 (2004)CrossRefPubMed N. Aoi, M. Soma, T. Nakayama, D. Rahmutula, K. Kosuge, Y. Izumi et al., Variable number of tandem repeat of the 5’-flanking region of type-C human natriuretic peptide receptor gene influences blood pressure levels in obesity-associated hypertension. Hypertens. Res. 27, 711–716 (2004)CrossRefPubMed
12.
Zurück zum Zitat K. Kosuge, M. Soma, T. Nakayama, N. Aoi, M. Sato, A. Haketa et al., Human uncoupling protein 2 and 3 genes are associated with obesity in Japanese. Endocrine 34, 87–95 (2008)CrossRefPubMed K. Kosuge, M. Soma, T. Nakayama, N. Aoi, M. Sato, A. Haketa et al., Human uncoupling protein 2 and 3 genes are associated with obesity in Japanese. Endocrine 34, 87–95 (2008)CrossRefPubMed
13.
Zurück zum Zitat K. Strohacker, B.K. McFarlin, Influence of obesity, physical inactivity, and weight cycling on chronic inflammation. Front Biosci (Elite Ed). 2, 98–104 (2010)CrossRefPubMed K. Strohacker, B.K. McFarlin, Influence of obesity, physical inactivity, and weight cycling on chronic inflammation. Front Biosci (Elite Ed). 2, 98–104 (2010)CrossRefPubMed
14.
Zurück zum Zitat I. Majumdar, L.D. Mastrandrea, Serum sphingolipids and inflammatory mediators in adolescents at risk for metabolic syndrome. Endocrine 41, 442–449 (2012)CrossRefPubMed I. Majumdar, L.D. Mastrandrea, Serum sphingolipids and inflammatory mediators in adolescents at risk for metabolic syndrome. Endocrine 41, 442–449 (2012)CrossRefPubMed
15.
Zurück zum Zitat P. Marzullo, A. Minocci, P. Giarda, C. Marconi, A. Tagliaferri, G.E. Walker, M. Scacchi, G. Aimaretti, A. Liuzzi, Lymphocytes and immunoglobulin patterns across the threshold of severe obesity. Endocrine 45, 392–400 (2014)CrossRefPubMed P. Marzullo, A. Minocci, P. Giarda, C. Marconi, A. Tagliaferri, G.E. Walker, M. Scacchi, G. Aimaretti, A. Liuzzi, Lymphocytes and immunoglobulin patterns across the threshold of severe obesity. Endocrine 45, 392–400 (2014)CrossRefPubMed
16.
Zurück zum Zitat M. Rondanelli, A. Opizzi, S. Perna, M. Faliva, S.B. Solerte, M. Fioravanti, C. Klersy, E. Cava, M. Paolini, L. Scavone, P. Ceccarelli, E. Castellaneta, C. Savina, L.M. Donini, Improvement in insulin resistance and favourable changes in plasma inflammatory adipokines after weight loss associated with two months’ consumption of a combination of bioactive food ingredients in overweight subjects. Endocrine 44, 391–401 (2013)CrossRefPubMedCentralPubMed M. Rondanelli, A. Opizzi, S. Perna, M. Faliva, S.B. Solerte, M. Fioravanti, C. Klersy, E. Cava, M. Paolini, L. Scavone, P. Ceccarelli, E. Castellaneta, C. Savina, L.M. Donini, Improvement in insulin resistance and favourable changes in plasma inflammatory adipokines after weight loss associated with two months’ consumption of a combination of bioactive food ingredients in overweight subjects. Endocrine 44, 391–401 (2013)CrossRefPubMedCentralPubMed
17.
Zurück zum Zitat T. Inagaki, P. Dutchak, G. Zhao, X. Ding, L. Gautron, V. Parameswara et al., Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 5, 415–425 (2007)CrossRefPubMed T. Inagaki, P. Dutchak, G. Zhao, X. Ding, L. Gautron, V. Parameswara et al., Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 5, 415–425 (2007)CrossRefPubMed
18.
Zurück zum Zitat A. Kharitonenkov, A.B. Shanafelt, Fibroblast growth factor-21 as a therapeutic agent for metabolic diseases. BioDrugs. 22, 37–44 (2008)CrossRefPubMed A. Kharitonenkov, A.B. Shanafelt, Fibroblast growth factor-21 as a therapeutic agent for metabolic diseases. BioDrugs. 22, 37–44 (2008)CrossRefPubMed
19.
Zurück zum Zitat T. Nakagawa, K. Ukai, T. Ohyama, Y. Gomita, H. Okamura, Effects of chronic administration of sibutramine on body weight, food intake and motor activity in neonatally monosodium glutamate-treated obese female rats: relationship of antiobesity effect with monoamines. Exp. Anim. 49, 239–249 (2000)CrossRefPubMed T. Nakagawa, K. Ukai, T. Ohyama, Y. Gomita, H. Okamura, Effects of chronic administration of sibutramine on body weight, food intake and motor activity in neonatally monosodium glutamate-treated obese female rats: relationship of antiobesity effect with monoamines. Exp. Anim. 49, 239–249 (2000)CrossRefPubMed
20.
Zurück zum Zitat M. Nagata, W. Suzuki, S. Iizuka, M. Tabuchi, H. Maruyama, S. Takeda et al., Type 2 diabetes mellitus in obese mouse model induced by monosodium glutamate. Exp. Anim. 55, 109–115 (2006)CrossRefPubMed M. Nagata, W. Suzuki, S. Iizuka, M. Tabuchi, H. Maruyama, S. Takeda et al., Type 2 diabetes mellitus in obese mouse model induced by monosodium glutamate. Exp. Anim. 55, 109–115 (2006)CrossRefPubMed
21.
Zurück zum Zitat S.M. Kang, J.W. Yoon, H.Y. Ahn, S.Y. Kim, K.H. Lee, H. Shin et al., Android fat depot is more closely associated with metabolic syndrome than abdominal visceral fat in elderly people. PLoS ONE 6, e27694 (2011)CrossRefPubMedCentralPubMed S.M. Kang, J.W. Yoon, H.Y. Ahn, S.Y. Kim, K.H. Lee, H. Shin et al., Android fat depot is more closely associated with metabolic syndrome than abdominal visceral fat in elderly people. PLoS ONE 6, e27694 (2011)CrossRefPubMedCentralPubMed
22.
Zurück zum Zitat J. Liu, F. Zhang, C. Li, M. Lin, M.R. Briggs, Synergistic activation of human LDL receptor expression by SCAP ligand and cytokine oncostatin M. Arterioscler. Thromb. Vasc. Biol. 23, 90–96 (2003)CrossRefPubMed J. Liu, F. Zhang, C. Li, M. Lin, M.R. Briggs, Synergistic activation of human LDL receptor expression by SCAP ligand and cytokine oncostatin M. Arterioscler. Thromb. Vasc. Biol. 23, 90–96 (2003)CrossRefPubMed
23.
Zurück zum Zitat S.M. Grundy, Statin trials and goals of cholesterol-lowering therapy. Circulation 97, 1436–1439 (1998)CrossRefPubMed S.M. Grundy, Statin trials and goals of cholesterol-lowering therapy. Circulation 97, 1436–1439 (1998)CrossRefPubMed
24.
Zurück zum Zitat E.D. Berglund, C.Y. Li, H.A. Bina, S.E. Lynes, M.D. Michael, A.B. Shanafelt et al., Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity. Endocrinology 150, 4084–4093 (2009)CrossRefPubMedCentralPubMed E.D. Berglund, C.Y. Li, H.A. Bina, S.E. Lynes, M.D. Michael, A.B. Shanafelt et al., Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity. Endocrinology 150, 4084–4093 (2009)CrossRefPubMedCentralPubMed
25.
Zurück zum Zitat F.M. Fisher, P.C. Chui, P.J. Antonellis, H.A. Bina, A. Kharitonenkov, J.S. Flier et al., Obesity is an FGF21 resistant state. Diabetes 59, 2781–2789 (2010)CrossRefPubMedCentralPubMed F.M. Fisher, P.C. Chui, P.J. Antonellis, H.A. Bina, A. Kharitonenkov, J.S. Flier et al., Obesity is an FGF21 resistant state. Diabetes 59, 2781–2789 (2010)CrossRefPubMedCentralPubMed
26.
Zurück zum Zitat T. Lundåsen, M.C. Hunt, L.M. Nilsson, S. Sanyal, B. Angelin, S.E. Alexson et al., PPARalpha is a key regulator of hepatic FGF21. Biochem Biophys Res Commun. 360, 437–440 (2007)CrossRefPubMed T. Lundåsen, M.C. Hunt, L.M. Nilsson, S. Sanyal, B. Angelin, S.E. Alexson et al., PPARalpha is a key regulator of hepatic FGF21. Biochem Biophys Res Commun. 360, 437–440 (2007)CrossRefPubMed
27.
Zurück zum Zitat Y.L. Zhang, A. Hernandez-Ono, P. Siri, S. Weisberg, D. Conlon, M.J. Graham et al., Aberrant hepatic expression of PPARgamma2 stimulates hepatic lipogenesis in a mouse model of obesity, insulin resistance, dyslipidemia, and hepatic steatosis. J. Biol. Chem. 281, 37603–37615 (2006)CrossRefPubMed Y.L. Zhang, A. Hernandez-Ono, P. Siri, S. Weisberg, D. Conlon, M.J. Graham et al., Aberrant hepatic expression of PPARgamma2 stimulates hepatic lipogenesis in a mouse model of obesity, insulin resistance, dyslipidemia, and hepatic steatosis. J. Biol. Chem. 281, 37603–37615 (2006)CrossRefPubMed
28.
Zurück zum Zitat J.S. Moyers, T.L. Shiyanova, F. Mehrbod, J.D. Dunbar, T.W. Noblitt, K.A. Otto et al., Molecular determinants of FGF-21 activity - synergy and cross-talk with PPARγ signaling. J. Cell. Physiol. 210, 1–6 (2007)CrossRefPubMed J.S. Moyers, T.L. Shiyanova, F. Mehrbod, J.D. Dunbar, T.W. Noblitt, K.A. Otto et al., Molecular determinants of FGF-21 activity - synergy and cross-talk with PPARγ signaling. J. Cell. Physiol. 210, 1–6 (2007)CrossRefPubMed
29.
Zurück zum Zitat H. Wang, L. Qiang, S.R. Farmer, Identification of a domain within peroxisome proliferator-activated receptor gamma regulating expression of a group of genes containing fibroblast growth factor 21 that are selectively repressed by SIRT1 in adipocytes. Mol. Cell. Biol. 28, 188–200 (2008)CrossRefPubMedCentralPubMed H. Wang, L. Qiang, S.R. Farmer, Identification of a domain within peroxisome proliferator-activated receptor gamma regulating expression of a group of genes containing fibroblast growth factor 21 that are selectively repressed by SIRT1 in adipocytes. Mol. Cell. Biol. 28, 188–200 (2008)CrossRefPubMedCentralPubMed
31.
Zurück zum Zitat Tamer Coskn, Holly au Bina, Michael a Schneider, James D Dunbar, Charlie C Hu, Yanyun Chen, David E Moller, and Alexei Kharitonenkov. “Fibroblast Growth Factor 21 Corrects Obesity in Mice”. Endocrinology 149, 6018–6027 (2008)CrossRef Tamer Coskn, Holly au Bina, Michael a Schneider, James D Dunbar, Charlie C Hu, Yanyun Chen, David E Moller, and Alexei Kharitonenkov. “Fibroblast Growth Factor 21 Corrects Obesity in Mice”. Endocrinology 149, 6018–6027 (2008)CrossRef
32.
Zurück zum Zitat M.J. Potthoff, T. Inagaki, S. Satapati, X. Ding, T. He, R. Goetz et al., FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci U S A. 106, 10853–10858 (2009)CrossRefPubMedCentralPubMed M.J. Potthoff, T. Inagaki, S. Satapati, X. Ding, T. He, R. Goetz et al., FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci U S A. 106, 10853–10858 (2009)CrossRefPubMedCentralPubMed
Metadaten
Titel
Recombinant murine fibroblast growth factor 21 ameliorates obesity-related inflammation in monosodium glutamate-induced obesity rats
verfasst von
Wen-Fei Wang
Si-Ming Li
Gui-Ping Ren
Wei Zheng
Yu-Jia Lu
Yin-Hang Yu
Wen-Juan Xu
Tian-He Li
Li-Hong Zhou
Yan Liu
De-Shan Li
Publikationsdatum
01.05.2015
Verlag
Springer US
Erschienen in
Endocrine / Ausgabe 1/2015
Print ISSN: 1355-008X
Elektronische ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-014-0433-5

Weitere Artikel der Ausgabe 1/2015

Endocrine 1/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.