Skip to main content
Erschienen in: Neurocritical Care 1/2014

01.02.2014 | Review Article

Model-based Indices Describing Cerebrovascular Dynamics

verfasst von: Georgios V. Varsos, Magdalena Kasprowicz, Peter Smielewski, Marek Czosnyka

Erschienen in: Neurocritical Care | Ausgabe 1/2014

Einloggen, um Zugang zu erhalten

Abstract

Understanding the dynamic relationship between cerebral blood flow (CBF) and the circulation of cerebrospinal fluid (CSF) can facilitate management of cerebral pathologies. For this reason, various hydrodynamic models have been introduced in order to simulate the phenomena governing the interaction between CBF and CSF. The identification of hydrodynamic models requires an array of signals as input, with the most common of them being arterial blood pressure, intracranial pressure, and cerebral blood flow velocity; monitoring all of them is considered as a standard practice in neurointensive care. Based on these signals, physiological parameters like cerebrovascular resistance, compliances of cerebrovascular bed, and CSF space could then be estimated. Various secondary model-based indices describing cerebrovascular dynamics have been introduced, like the cerebral arterial time constant or critical closing pressure. This review presents model-derived indices that describe cerebrovascular phenomena, the nature of which is both physiological (carbon dioxide reactivity and arterial hypotension) and pathological (cerebral artery stenosis, intracranial hypertension, and cerebral vasospasm). In a neurointensive environment, real-time monitoring of a patient with these indices may be able to provide a detection of the onset of a cerebrovascular phenomenon, which could have otherwise been missed. This potentially “early warning” indicator may then prove to be important for the therapeutic management of the patient.
Literatur
1.
Zurück zum Zitat Krammer SP. On the function of the circle of Willis. J Exp Med. 1912;15:348–54.CrossRef Krammer SP. On the function of the circle of Willis. J Exp Med. 1912;15:348–54.CrossRef
2.
Zurück zum Zitat Rogers L. A dynamic model of the circle of Willis. J Biomech. 1947;4:141–7. Rogers L. A dynamic model of the circle of Willis. J Biomech. 1947;4:141–7.
3.
Zurück zum Zitat Avman N, Bering EA. A plastic model for the study of pressure changes in the circle of Willis and major cerebral arteries following arterial occlusion. J Neurosurg. 1961;21:361–5.CrossRef Avman N, Bering EA. A plastic model for the study of pressure changes in the circle of Willis and major cerebral arteries following arterial occlusion. J Neurosurg. 1961;21:361–5.CrossRef
4.
Zurück zum Zitat Himwich WA, Knapp FM, Wenglarz RA, et al. The circle of Willis as simulated by an engineering model. Arch Neurol. 1965;13:164–72.PubMedCrossRef Himwich WA, Knapp FM, Wenglarz RA, et al. The circle of Willis as simulated by an engineering model. Arch Neurol. 1965;13:164–72.PubMedCrossRef
5.
Zurück zum Zitat Agarwal G, Berman B, Stark L. A lumped parameter model of the cerebrospinal system. IEEE Trans Biomed Eng BME. 1969;16:45–53.CrossRef Agarwal G, Berman B, Stark L. A lumped parameter model of the cerebrospinal system. IEEE Trans Biomed Eng BME. 1969;16:45–53.CrossRef
6.
Zurück zum Zitat Murray KD. Dimensions of the circle of Willis and dynamic studies using electrical analogy. J Neurosurg. 1964;21:26–34.PubMedCrossRef Murray KD. Dimensions of the circle of Willis and dynamic studies using electrical analogy. J Neurosurg. 1964;21:26–34.PubMedCrossRef
7.
Zurück zum Zitat Sorek S, Bear J, Karni Z. Resistances and compliances of a compartmental model of the cerebrovascular system. Ann Biomed Eng. 1989;17:1–12.PubMedCrossRef Sorek S, Bear J, Karni Z. Resistances and compliances of a compartmental model of the cerebrovascular system. Ann Biomed Eng. 1989;17:1–12.PubMedCrossRef
8.
Zurück zum Zitat Takemae T, Kosugi Y, Ikebe J, et al. A simulation study of intracranial-pressure increment using an electrical circuit model of cerebral-circulation. IEEE Trans Biomed Eng. 1987;34:958–62.PubMedCrossRef Takemae T, Kosugi Y, Ikebe J, et al. A simulation study of intracranial-pressure increment using an electrical circuit model of cerebral-circulation. IEEE Trans Biomed Eng. 1987;34:958–62.PubMedCrossRef
9.
Zurück zum Zitat Bekker A, Wolk S, Turndorf H, et al. Computer simulation of cerebrovascular circulation: assessment of intracranial hemodynamics during induction of anesthesia. J Clin Monit. 1996;12:433–44.PubMedCrossRef Bekker A, Wolk S, Turndorf H, et al. Computer simulation of cerebrovascular circulation: assessment of intracranial hemodynamics during induction of anesthesia. J Clin Monit. 1996;12:433–44.PubMedCrossRef
10.
Zurück zum Zitat Czosnyka M, Harris NG, Pickard JD, et al. CO2 cerebrovascular reactivity as a function of perfusion pressure—a modeling study. Acta Neurochir Wien. 1993;121:159–65.PubMedCrossRef Czosnyka M, Harris NG, Pickard JD, et al. CO2 cerebrovascular reactivity as a function of perfusion pressure—a modeling study. Acta Neurochir Wien. 1993;121:159–65.PubMedCrossRef
11.
Zurück zum Zitat Czosnyka M, Pickard J, Whitehouse H, et al. The hyperemic response to a transient reduction in cerebral perfusion-pressure—a modelling study. Acta Neurochir Wien. 1992;115:90–7.PubMedCrossRef Czosnyka M, Pickard J, Whitehouse H, et al. The hyperemic response to a transient reduction in cerebral perfusion-pressure—a modelling study. Acta Neurochir Wien. 1992;115:90–7.PubMedCrossRef
12.
Zurück zum Zitat Hoffmann O. Biomathematics of intracranial CSF and haemodynamics. Simulation and analysis with the aid of a mathematical model. Acta Neurochir Suppl Wien. 1987;40:117–30.PubMed Hoffmann O. Biomathematics of intracranial CSF and haemodynamics. Simulation and analysis with the aid of a mathematical model. Acta Neurochir Suppl Wien. 1987;40:117–30.PubMed
13.
Zurück zum Zitat Piechnik S, Czosnyka M, Richards H, et al. Effects of decreasing cerebral perfusion pressure on pulsatility of cerebral blood flow velocity—a modelling study. In: Nagai H, Kamiya K, Ishii S, editors. Intracranial pressure IX. Berlin: Springer; 1994. p. 496–7. Piechnik S, Czosnyka M, Richards H, et al. Effects of decreasing cerebral perfusion pressure on pulsatility of cerebral blood flow velocity—a modelling study. In: Nagai H, Kamiya K, Ishii S, editors. Intracranial pressure IX. Berlin: Springer; 1994. p. 496–7.
14.
Zurück zum Zitat Ursino M. A mathematical study of human intracranial hydrodynamics. Part 1—the cerebrospinal fluid pulse pressure. Ann Biomed Eng. 1988;16:379–401.PubMedCrossRef Ursino M. A mathematical study of human intracranial hydrodynamics. Part 1—the cerebrospinal fluid pulse pressure. Ann Biomed Eng. 1988;16:379–401.PubMedCrossRef
15.
Zurück zum Zitat Ursino M. Computer analysis of the main parameters extrapolated from the human intracranial basal artery blood flow. Comput Biomed Res. 1990;23:542–59.PubMedCrossRef Ursino M. Computer analysis of the main parameters extrapolated from the human intracranial basal artery blood flow. Comput Biomed Res. 1990;23:542–59.PubMedCrossRef
16.
Zurück zum Zitat Ursino M. A mathematical model of overall cerebral blood flow regulation in the rat. IEEE Trans Biomed Eng. 1991;38:795–807.PubMedCrossRef Ursino M. A mathematical model of overall cerebral blood flow regulation in the rat. IEEE Trans Biomed Eng. 1991;38:795–807.PubMedCrossRef
17.
Zurück zum Zitat Ursino M, Cristalli C. Mathematical modeling of noninvasive blood pressure estimation techniques—part I: pressure transmission across the arm tissue. J Biomech Eng. 1995;117:107–16.PubMedCrossRef Ursino M, Cristalli C. Mathematical modeling of noninvasive blood pressure estimation techniques—part I: pressure transmission across the arm tissue. J Biomech Eng. 1995;117:107–16.PubMedCrossRef
18.
Zurück zum Zitat Ursino M, Di Giammarco P. A mathematical model of the relationship between cerebral blood volume and intracranial pressure changes: the generation of plateau waves. Ann Biomed Eng. 1991;19:15–42.PubMedCrossRef Ursino M, Di Giammarco P. A mathematical model of the relationship between cerebral blood volume and intracranial pressure changes: the generation of plateau waves. Ann Biomed Eng. 1991;19:15–42.PubMedCrossRef
19.
Zurück zum Zitat Ursino M, Lodi CA. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics. J Appl Physiol. 1997;82:1256–69.PubMed Ursino M, Lodi CA. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics. J Appl Physiol. 1997;82:1256–69.PubMed
20.
Zurück zum Zitat Ursino M, Lodi CA, Rossi S, et al. Intracranial pressure dynamics in patients with acute brain damage. J Appl Physiol. 1997;82:1270–82.PubMed Ursino M, Lodi CA, Rossi S, et al. Intracranial pressure dynamics in patients with acute brain damage. J Appl Physiol. 1997;82:1270–82.PubMed
21.
Zurück zum Zitat Tym R, Lichtenstein S, Leutheusser J. The Munro-Kellie doctrine and the intracranial venous space at the ‘limit’ of raised intracranial pressure—an hydrodynamic experimental approach. In: Brock M, Dietz H, editors. Intracranial pressure—experimental and clinical aspects. Berlin: Springer; 1972. p. 139–43. Tym R, Lichtenstein S, Leutheusser J. The Munro-Kellie doctrine and the intracranial venous space at the ‘limit’ of raised intracranial pressure—an hydrodynamic experimental approach. In: Brock M, Dietz H, editors. Intracranial pressure—experimental and clinical aspects. Berlin: Springer; 1972. p. 139–43.
22.
Zurück zum Zitat Hoffmann O, Zierski JT. Analysis of the ICP pulse-pressure relationship as a function of arterial blood pressure. Clinical validation of a mathematical model. Acta Neurochir Wien. 1982;66:1–21.PubMedCrossRef Hoffmann O, Zierski JT. Analysis of the ICP pulse-pressure relationship as a function of arterial blood pressure. Clinical validation of a mathematical model. Acta Neurochir Wien. 1982;66:1–21.PubMedCrossRef
23.
Zurück zum Zitat Nishimura H, Yasui N. A simulation study of wave transformation using a nonlinear model of artery and a physical model of intracranial vascular bed. Berlin: Springer; 1993. p. 390–393. Nishimura H, Yasui N. A simulation study of wave transformation using a nonlinear model of artery and a physical model of intracranial vascular bed. Berlin: Springer; 1993. p. 390–393.
24.
Zurück zum Zitat Chopp M, Portnoy HD, Branch C. Hydraulic model of the cerebrovascular bed: an aid to understanding the volume–pressure test. J Neurosurg. 1983;13:5–11.CrossRef Chopp M, Portnoy HD, Branch C. Hydraulic model of the cerebrovascular bed: an aid to understanding the volume–pressure test. J Neurosurg. 1983;13:5–11.CrossRef
25.
Zurück zum Zitat Giulioni M, Ursino M. Impact of cerebral perfusion pressure and autoregulation on intracranial dynamics: a modeling study. J Neurosurg. 1996;39:1005–14. Giulioni M, Ursino M. Impact of cerebral perfusion pressure and autoregulation on intracranial dynamics: a modeling study. J Neurosurg. 1996;39:1005–14.
26.
Zurück zum Zitat Ursino M, Di Giammarco P, Belardinelli E. A mathematical model of cerebral blood flow chemical regulation—part II: reactivity of cerebral vascular bed. IEEE Trans Biomed Eng. 1989;36:192–201.PubMedCrossRef Ursino M, Di Giammarco P, Belardinelli E. A mathematical model of cerebral blood flow chemical regulation—part II: reactivity of cerebral vascular bed. IEEE Trans Biomed Eng. 1989;36:192–201.PubMedCrossRef
27.
Zurück zum Zitat Czosnyka M, Piechnik S, Richards HK, et al. Contribution of mathematical modelling to the interpretation of bedside tests of cerebrovascular autoregulation. J Neurol Neurosurg Psychiatry. 1997;63:721–31.PubMedCrossRef Czosnyka M, Piechnik S, Richards HK, et al. Contribution of mathematical modelling to the interpretation of bedside tests of cerebrovascular autoregulation. J Neurol Neurosurg Psychiatry. 1997;63:721–31.PubMedCrossRef
28.
Zurück zum Zitat Czosnyka M, Smielewski P, Timofeev I, et al. Intracranial pressure: more than a number. Neurosurg Focus. 2007;22(5):E10.PubMedCrossRef Czosnyka M, Smielewski P, Timofeev I, et al. Intracranial pressure: more than a number. Neurosurg Focus. 2007;22(5):E10.PubMedCrossRef
29.
Zurück zum Zitat Sorrentino E, Budohoski KP, Kasprowicz M, et al. Critical thresholds for Transcranial Doppler indices of cerebral autoregulation in traumatic brain injury. Neurocrit Care. 2010;14(2):188–93.CrossRef Sorrentino E, Budohoski KP, Kasprowicz M, et al. Critical thresholds for Transcranial Doppler indices of cerebral autoregulation in traumatic brain injury. Neurocrit Care. 2010;14(2):188–93.CrossRef
30.
Zurück zum Zitat Zweifel C, Lavinio A, Steiner LA, et al. Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurg Focus. 2008;25(4):E2.PubMedCrossRef Zweifel C, Lavinio A, Steiner LA, et al. Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurg Focus. 2008;25(4):E2.PubMedCrossRef
31.
Zurück zum Zitat Balestreri M, Czosnyka M, Hutchinson P, et al. Impact of intracranial pressure and cerebral perfusion pressure on severe disability and mortality after head injury. Neurocrit Care. 2006;04:8–13.CrossRef Balestreri M, Czosnyka M, Hutchinson P, et al. Impact of intracranial pressure and cerebral perfusion pressure on severe disability and mortality after head injury. Neurocrit Care. 2006;04:8–13.CrossRef
32.
Zurück zum Zitat Gopinath SP, Robertson CS, Narayan RG, et al. Evaluation of a microsensor intracranial pressure transducer. In: Nagai H, Kamiya K, Ishii S, editors. Intracranial pressure IX. Berlin: Springer; 1994. p. 2–5. Gopinath SP, Robertson CS, Narayan RG, et al. Evaluation of a microsensor intracranial pressure transducer. In: Nagai H, Kamiya K, Ishii S, editors. Intracranial pressure IX. Berlin: Springer; 1994. p. 2–5.
33.
Zurück zum Zitat Czosnyka M, Czosnyka Z, Pickard JD. Laboratory testing of three intracranial pressure microtransducers: technical report. J Neurosurg. 1996;38(1):219–24.CrossRef Czosnyka M, Czosnyka Z, Pickard JD. Laboratory testing of three intracranial pressure microtransducers: technical report. J Neurosurg. 1996;38(1):219–24.CrossRef
34.
Zurück zum Zitat Kirkpatrick PJ, Czosnyka M, Pickard JD. Multimodal monitoring in neurointensive care. J Neurol Neurosurg Psychiatry. 1996;60:131–9.PubMedCrossRef Kirkpatrick PJ, Czosnyka M, Pickard JD. Multimodal monitoring in neurointensive care. J Neurol Neurosurg Psychiatry. 1996;60:131–9.PubMedCrossRef
35.
Zurück zum Zitat Carrera E, Kim DJ, Castellani G, et al. Effect of hyper- and hypocapnia on cerebral arterial compliance in normal subjects. J Neuroimaging. 2009;21(2):121–5.CrossRef Carrera E, Kim DJ, Castellani G, et al. Effect of hyper- and hypocapnia on cerebral arterial compliance in normal subjects. J Neuroimaging. 2009;21(2):121–5.CrossRef
36.
Zurück zum Zitat Sloan MA, Alexandrov AV, Tegeler CH, et al. Transcranial Doppler ultrasonography in 2004: a comprehensive evidence-based update. Report of the American Academy of Neurology Therapeutics and Technology Assessment Subcommittee: Transcranial Doppler. J Neurol. 1990;40:680–1.CrossRef Sloan MA, Alexandrov AV, Tegeler CH, et al. Transcranial Doppler ultrasonography in 2004: a comprehensive evidence-based update. Report of the American Academy of Neurology Therapeutics and Technology Assessment Subcommittee: Transcranial Doppler. J Neurol. 1990;40:680–1.CrossRef
37.
Zurück zum Zitat Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57:769–74 Class II–III.PubMedCrossRef Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57:769–74 Class II–III.PubMedCrossRef
38.
Zurück zum Zitat Matta B, Czosnyka M. Transcranial Doppler ultrasonography in anesthesia and neurosurgery. Cottrell and Young’s Neuroanesthesia, Chapter 8. Philadelphia: Elsevier; 2010. Matta B, Czosnyka M. Transcranial Doppler ultrasonography in anesthesia and neurosurgery. Cottrell and Young’s Neuroanesthesia, Chapter 8. Philadelphia: Elsevier; 2010.
39.
Zurück zum Zitat Aaslid R. Transcranial Doppler examination techniques. In: Aaslid R, editor. Transcranial Doppler sonography. New York: Springer; 1986. p. 39.CrossRef Aaslid R. Transcranial Doppler examination techniques. In: Aaslid R, editor. Transcranial Doppler sonography. New York: Springer; 1986. p. 39.CrossRef
40.
Zurück zum Zitat Nelson RJ, Czosnyka M, Pickard JD, et al. Experimental aspects of cerebrospinal haemodynamics: the relationship between blood flow velocity waveform and cerebral autoregulation. J Neurosurg. 1992;31:705–10.CrossRef Nelson RJ, Czosnyka M, Pickard JD, et al. Experimental aspects of cerebrospinal haemodynamics: the relationship between blood flow velocity waveform and cerebral autoregulation. J Neurosurg. 1992;31:705–10.CrossRef
41.
Zurück zum Zitat Czosnyka M, Richards HK, Reinhard M, et al. Cerebrovascular time constant: dependence on cerebral perfusion pressure and end-tidal carbon dioxide concentration. Neurol Res. 2012;34(1):17–24.PubMedCrossRef Czosnyka M, Richards HK, Reinhard M, et al. Cerebrovascular time constant: dependence on cerebral perfusion pressure and end-tidal carbon dioxide concentration. Neurol Res. 2012;34(1):17–24.PubMedCrossRef
42.
Zurück zum Zitat Kasprowicz M, Diedler J, Reinhard M, et al. Time constant of the cerebral arterial bed. Acta Neurochir Suppl. 2012;114:17–21.PubMedCrossRef Kasprowicz M, Diedler J, Reinhard M, et al. Time constant of the cerebral arterial bed. Acta Neurochir Suppl. 2012;114:17–21.PubMedCrossRef
43.
Zurück zum Zitat Czosnyka M, Richards H, Pickard JD, Harris N, Iyer V. Frequency-dependent properties of cerebral blood transport-an experimental study in anaesthetized rabbits. Ultrasound Med Biol. 1994;20:391–9.PubMedCrossRef Czosnyka M, Richards H, Pickard JD, Harris N, Iyer V. Frequency-dependent properties of cerebral blood transport-an experimental study in anaesthetized rabbits. Ultrasound Med Biol. 1994;20:391–9.PubMedCrossRef
44.
Zurück zum Zitat Kim DJ, Kasprowicz M, Carrera E, et al. The monitoring of relative changes in compartmental compliances of brain. Physiol Meas. 2009;30(7):647–59.PubMedCrossRef Kim DJ, Kasprowicz M, Carrera E, et al. The monitoring of relative changes in compartmental compliances of brain. Physiol Meas. 2009;30(7):647–59.PubMedCrossRef
45.
Zurück zum Zitat Kasprowicz M, Diedler J, Reinhard M, et al. Time constant of the cerebral arterial bed in normal subjects. Ultrasound Med Biol. 2012;38(7):1129–37.PubMedCrossRef Kasprowicz M, Diedler J, Reinhard M, et al. Time constant of the cerebral arterial bed in normal subjects. Ultrasound Med Biol. 2012;38(7):1129–37.PubMedCrossRef
46.
Zurück zum Zitat Kasprowicz M, Czosnyka M, Soehle M, et al. Vasospasm shortens cerebral arterial time constant. Neurocrit Care. 2011;16(2):213–8.CrossRef Kasprowicz M, Czosnyka M, Soehle M, et al. Vasospasm shortens cerebral arterial time constant. Neurocrit Care. 2011;16(2):213–8.CrossRef
47.
Zurück zum Zitat Czosnyka M, Smielewski P, Piechnik S, et al. Hemodynamic characterization of intracranial pressure plateau waves in head-injury patients. J Neurosurg. 1999;91(1):11–9.PubMedCrossRef Czosnyka M, Smielewski P, Piechnik S, et al. Hemodynamic characterization of intracranial pressure plateau waves in head-injury patients. J Neurosurg. 1999;91(1):11–9.PubMedCrossRef
48.
Zurück zum Zitat Avezaat CJJ, van Eijndhoven JHM. Cerebrospinal fluid pulse pressure and craniospinal dynamics. A theoretical clinical and experimental study. Thesis. The Hague: A Jongbloed, 1984 Avezaat CJJ, van Eijndhoven JHM. Cerebrospinal fluid pulse pressure and craniospinal dynamics. A theoretical clinical and experimental study. Thesis. The Hague: A Jongbloed, 1984
49.
Zurück zum Zitat Toth M, Nadasy GL, Nyar I, Kerenyi T, Monos E. Are there systemic changes in the arterial biomechanics of intracranial aneurysm patients? Pflugers Arch. 2000;439:573–8.PubMedCrossRef Toth M, Nadasy GL, Nyar I, Kerenyi T, Monos E. Are there systemic changes in the arterial biomechanics of intracranial aneurysm patients? Pflugers Arch. 2000;439:573–8.PubMedCrossRef
50.
Zurück zum Zitat Alperin N, Lee SH, Sivaramakrishnan A, Hushek SG. Quantifying the effect of posture on intracranial physiology in humans by MRI flow studies. J Magn Reson Imaging. 2005;22:591–6.PubMedCrossRef Alperin N, Lee SH, Sivaramakrishnan A, Hushek SG. Quantifying the effect of posture on intracranial physiology in humans by MRI flow studies. J Magn Reson Imaging. 2005;22:591–6.PubMedCrossRef
51.
Zurück zum Zitat Carrera E, Kim DJ, Castellani G, et al. What shapes pulse amplitude of intracranial pressure? J Neurotrauma. 2010;27:317–24.PubMedCrossRef Carrera E, Kim DJ, Castellani G, et al. What shapes pulse amplitude of intracranial pressure? J Neurotrauma. 2010;27:317–24.PubMedCrossRef
52.
Zurück zum Zitat Eide PK, Sorteberg A, Bentsen G, Marthinsen PB, Stubhaug A, Sorteberg W. Pressure-derived versus pressure wave amplitude-derived indices of cerebrovascular pressure reactivity in relation to early clinical state and 12-month outcome following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2012;116(5):961–71.PubMedCrossRef Eide PK, Sorteberg A, Bentsen G, Marthinsen PB, Stubhaug A, Sorteberg W. Pressure-derived versus pressure wave amplitude-derived indices of cerebrovascular pressure reactivity in relation to early clinical state and 12-month outcome following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2012;116(5):961–71.PubMedCrossRef
53.
Zurück zum Zitat Eide PK. Assessment of childhood intracranial pressure recordings using a new method of processing intracranial pressure signals. Pediatr Neurosurg. 2005;41(3):122–30.PubMedCrossRef Eide PK. Assessment of childhood intracranial pressure recordings using a new method of processing intracranial pressure signals. Pediatr Neurosurg. 2005;41(3):122–30.PubMedCrossRef
54.
Zurück zum Zitat Radolovich DK, Aries MJ, Castellani G, et al. Pulsatile intracranial pressure and cerebral autoregulation after traumatic brain injury. Neurocrit Care. 2011;15(3):379–86.PubMedCrossRef Radolovich DK, Aries MJ, Castellani G, et al. Pulsatile intracranial pressure and cerebral autoregulation after traumatic brain injury. Neurocrit Care. 2011;15(3):379–86.PubMedCrossRef
55.
Zurück zum Zitat Czosnyka M, Richards HK, Whitehouse HE, Pickard JD. Relationship between transcranial Doppler-determined pulsatility index and cerebrovascular resistance: an experimental study. J Neurosurg. 1996;84(1):79–84.PubMedCrossRef Czosnyka M, Richards HK, Whitehouse HE, Pickard JD. Relationship between transcranial Doppler-determined pulsatility index and cerebrovascular resistance: an experimental study. J Neurosurg. 1996;84(1):79–84.PubMedCrossRef
56.
57.
Zurück zum Zitat Michel E, Zernikow B. Goslig’s Doppler pulsatility index revisited. Ultrasound Med Biol. 1998;24(4):597–9.PubMedCrossRef Michel E, Zernikow B. Goslig’s Doppler pulsatility index revisited. Ultrasound Med Biol. 1998;24(4):597–9.PubMedCrossRef
58.
Zurück zum Zitat de Riva N, Budohoski KP, Smielewski P, et al. Transcranial Doppler pulsatility index: what it is and what it isn’t. Neurocrit Care. 2012;17(1):58–66.PubMedCrossRef de Riva N, Budohoski KP, Smielewski P, et al. Transcranial Doppler pulsatility index: what it is and what it isn’t. Neurocrit Care. 2012;17(1):58–66.PubMedCrossRef
59.
Zurück zum Zitat O’Rourke MF, Taylor MG. Input impedance of the systemic circulation. Circ Res. 1967;20(4):365–80.PubMedCrossRef O’Rourke MF, Taylor MG. Input impedance of the systemic circulation. Circ Res. 1967;20(4):365–80.PubMedCrossRef
60.
Zurück zum Zitat Giller CA, Hodges K, Batjer HH. Transcranial Doppler pulsatility in vasodilation and stenosis. J Neurosurg. 1990;72(6):901–6.PubMedCrossRef Giller CA, Hodges K, Batjer HH. Transcranial Doppler pulsatility in vasodilation and stenosis. J Neurosurg. 1990;72(6):901–6.PubMedCrossRef
61.
Zurück zum Zitat Behrens A, Lenfeldt N, Ambarki K, Malm J, Eklund A, Koskinen LO. Transcranial Doppler pulsatility index: not an accurate method to assess intracranial pressure. J Neurosurg. 2010;66(6):1050–7.CrossRef Behrens A, Lenfeldt N, Ambarki K, Malm J, Eklund A, Koskinen LO. Transcranial Doppler pulsatility index: not an accurate method to assess intracranial pressure. J Neurosurg. 2010;66(6):1050–7.CrossRef
62.
Zurück zum Zitat Bellner J, Romner B, Reinstrup P, Kristiansson KA, Ryding E, Brandt L. Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol. 2004;62(1):45–51.PubMedCrossRef Bellner J, Romner B, Reinstrup P, Kristiansson KA, Ryding E, Brandt L. Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol. 2004;62(1):45–51.PubMedCrossRef
63.
Zurück zum Zitat Burton AC. Fundamental instability of the small blood vessels and critical closing pressure in vascular beds. Am J Physiol. 1951;164:330–1.PubMed Burton AC. Fundamental instability of the small blood vessels and critical closing pressure in vascular beds. Am J Physiol. 1951;164:330–1.PubMed
64.
Zurück zum Zitat Brunner MJ, Greene AS, Sagawa K, Shoukas AA. Determinants of systemic zero-flow arterial pressure. Am J Physiol. 1983;245:H453–9.PubMed Brunner MJ, Greene AS, Sagawa K, Shoukas AA. Determinants of systemic zero-flow arterial pressure. Am J Physiol. 1983;245:H453–9.PubMed
65.
Zurück zum Zitat Czosnyka M, Smielewski P, Piechnik S, et al. Critical closing pressure in cerebrovascular circulation. J Neurol Neurosurg Psychiatry. 1999;66:606–11.PubMedCrossRef Czosnyka M, Smielewski P, Piechnik S, et al. Critical closing pressure in cerebrovascular circulation. J Neurol Neurosurg Psychiatry. 1999;66:606–11.PubMedCrossRef
66.
Zurück zum Zitat Panerai RB. The critical closing pressure of the cerebral circulation. Med Eng Phys. 2003;25:621–32.PubMedCrossRef Panerai RB. The critical closing pressure of the cerebral circulation. Med Eng Phys. 2003;25:621–32.PubMedCrossRef
67.
Zurück zum Zitat Dewey RC, Pierer HP, Hunt WE. Experimental cerebral hemodynamics. Vasomotor tone, critical closing pressure, and vascular bed resistance. J Neurosurg. 1974;41:597–606.PubMedCrossRef Dewey RC, Pierer HP, Hunt WE. Experimental cerebral hemodynamics. Vasomotor tone, critical closing pressure, and vascular bed resistance. J Neurosurg. 1974;41:597–606.PubMedCrossRef
68.
Zurück zum Zitat Panerai RB, Moody M, Eames PJ, Potter JF. Cerebral blood flow velocity during mental activation: interpretation with different models of the passive pressure–velocity relationship. J Appl Physiol. 2005;99:2352–62.PubMedCrossRef Panerai RB, Moody M, Eames PJ, Potter JF. Cerebral blood flow velocity during mental activation: interpretation with different models of the passive pressure–velocity relationship. J Appl Physiol. 2005;99:2352–62.PubMedCrossRef
69.
Zurück zum Zitat Aaslid R, Lash SR, Bardy GH, Gild WH, Newell DW. Dynamic pressure-flow velocity relationships in the human cerebral circulation. Stroke. 2003;34(7):1645–9.PubMedCrossRef Aaslid R, Lash SR, Bardy GH, Gild WH, Newell DW. Dynamic pressure-flow velocity relationships in the human cerebral circulation. Stroke. 2003;34(7):1645–9.PubMedCrossRef
70.
Zurück zum Zitat Newell DW, Aaslid R. Transcranial Doppler: clinical and experimental uses. Cerebrovasc Brain Metab Rev. 1992;4(2):122–43.PubMed Newell DW, Aaslid R. Transcranial Doppler: clinical and experimental uses. Cerebrovasc Brain Metab Rev. 1992;4(2):122–43.PubMed
71.
Zurück zum Zitat López-Magaña JA, Richards HK, Radolovich DK, et al. Critical closing pressure: comparison of three methods. J Cereb Blood Flow Metab. 2009;29:987–93.PubMedCrossRef López-Magaña JA, Richards HK, Radolovich DK, et al. Critical closing pressure: comparison of three methods. J Cereb Blood Flow Metab. 2009;29:987–93.PubMedCrossRef
72.
Zurück zum Zitat Panerai RB, et al. Influence of calculation method on estimates of cerebral critical closing pressure. Physiol Meas. 2011;32:1–16.CrossRef Panerai RB, et al. Influence of calculation method on estimates of cerebral critical closing pressure. Physiol Meas. 2011;32:1–16.CrossRef
73.
Zurück zum Zitat Michel E, Hillebrand S, von Twickel J, et al. Frequency dependence of cerebrovascular impedance in preterm neonates: a different view on critical closing pressure. J Cereb Blood Flow Metab. 1997;17:1127–31.PubMedCrossRef Michel E, Hillebrand S, von Twickel J, et al. Frequency dependence of cerebrovascular impedance in preterm neonates: a different view on critical closing pressure. J Cereb Blood Flow Metab. 1997;17:1127–31.PubMedCrossRef
74.
Zurück zum Zitat Puppo C, Camacho J, Yelicich B, Moraes L, Biestro A, Gomez H. Bedside study of cerebral critical closing pressure in patients with severe traumatic brain injury: a Transcranial Doppler study. Acta Neurosurg Suppl. 2012;114:283–8.CrossRef Puppo C, Camacho J, Yelicich B, Moraes L, Biestro A, Gomez H. Bedside study of cerebral critical closing pressure in patients with severe traumatic brain injury: a Transcranial Doppler study. Acta Neurosurg Suppl. 2012;114:283–8.CrossRef
75.
Zurück zum Zitat Soehle M, Czosnyka M, Pickard JD, Kirkpatrick PJ. Critical closing pressure in subarachnoid hemorrhage: effect of cerebral vasospasm and limitations of a transcranial Doppler-derived estimation. Stroke. 2004;35(6):1393–8.PubMedCrossRef Soehle M, Czosnyka M, Pickard JD, Kirkpatrick PJ. Critical closing pressure in subarachnoid hemorrhage: effect of cerebral vasospasm and limitations of a transcranial Doppler-derived estimation. Stroke. 2004;35(6):1393–8.PubMedCrossRef
76.
Zurück zum Zitat Varsos GV, Richards H, Kasprowicz M, et al. Critical closing pressure determined with a model of cerebrovascular impedance. J Cereb Blood Flow Metab. 2012;33(2):235–43.PubMedCrossRef Varsos GV, Richards H, Kasprowicz M, et al. Critical closing pressure determined with a model of cerebrovascular impedance. J Cereb Blood Flow Metab. 2012;33(2):235–43.PubMedCrossRef
77.
Zurück zum Zitat Richards HK, Czosnyka M, Pickard JD. Assessment of critical closing pressure in the cerebral circulation as a measure of cerebrovascular tone. Acta Neurochir Wien. 1999;141(11):1221–7.PubMedCrossRef Richards HK, Czosnyka M, Pickard JD. Assessment of critical closing pressure in the cerebral circulation as a measure of cerebrovascular tone. Acta Neurochir Wien. 1999;141(11):1221–7.PubMedCrossRef
78.
Zurück zum Zitat Kontos HA, Wei EP, Navari RM, Levasseur JE, Rosenblum WI, Patterson JL Jr. Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol. 1978;234(4):H371–83.PubMed Kontos HA, Wei EP, Navari RM, Levasseur JE, Rosenblum WI, Patterson JL Jr. Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol. 1978;234(4):H371–83.PubMed
79.
Zurück zum Zitat Serrador JM, Picot PA, Rutt BK, Shoemaker JK, Bondar RL. MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis. Stroke. 2000;31(7):1672–8.PubMedCrossRef Serrador JM, Picot PA, Rutt BK, Shoemaker JK, Bondar RL. MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis. Stroke. 2000;31(7):1672–8.PubMedCrossRef
80.
Zurück zum Zitat Giller CA, Bowman G, Dyer H, Mootz L, Krippner W. Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy. J Neurosurg. 1993;32(5):737–42.CrossRef Giller CA, Bowman G, Dyer H, Mootz L, Krippner W. Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy. J Neurosurg. 1993;32(5):737–42.CrossRef
81.
Zurück zum Zitat Newell DW, Aaslid R, Lam A, Mayberg TS, Winn HR. Comparison of flow and velocity during dynamic autoregulation testing in humans. Stroke. 1994;25(4):793–7.PubMedCrossRef Newell DW, Aaslid R, Lam A, Mayberg TS, Winn HR. Comparison of flow and velocity during dynamic autoregulation testing in humans. Stroke. 1994;25(4):793–7.PubMedCrossRef
82.
Zurück zum Zitat Müller HR, Brunhölzl C, Radü EW, Buser M. Sex and side differences of cerebral arterial caliber. Neuroradiology. 1991;33(3):212–6.PubMedCrossRef Müller HR, Brunhölzl C, Radü EW, Buser M. Sex and side differences of cerebral arterial caliber. Neuroradiology. 1991;33(3):212–6.PubMedCrossRef
83.
Zurück zum Zitat Caekebeke JF, Ferrari MD, Zwetsloot CP, Jansen J, Saxena PR. Antimigraine drug sumatriptan increases blood flow velocity in large cerebral arteries during migraine attacks. J Neurology. 1992;42(8):1522–6.CrossRef Caekebeke JF, Ferrari MD, Zwetsloot CP, Jansen J, Saxena PR. Antimigraine drug sumatriptan increases blood flow velocity in large cerebral arteries during migraine attacks. J Neurology. 1992;42(8):1522–6.CrossRef
84.
Zurück zum Zitat Giller CA, Giller AM, Cooper CR, Hatab MR. Evaluation of the cerebral hemodynamic response to rhythmic handgrip. J Appl Physiol. 2000;88(6):2205–13.PubMed Giller CA, Giller AM, Cooper CR, Hatab MR. Evaluation of the cerebral hemodynamic response to rhythmic handgrip. J Appl Physiol. 2000;88(6):2205–13.PubMed
85.
Zurück zum Zitat Giller CA, Mueller M. Linearity and non-linearity in cerebral hemodynamics. Med Eng Phys. 2003;25(8):633–46.PubMedCrossRef Giller CA, Mueller M. Linearity and non-linearity in cerebral hemodynamics. Med Eng Phys. 2003;25(8):633–46.PubMedCrossRef
86.
Zurück zum Zitat Mitsis GD, Zhang R, Levine BD, Marmarelis VZ. Cerebral hemodynamics during orthostatic stress assessed by nonlinear modeling. J Appl Physiol. 2006;101(1):354–66.PubMedCrossRef Mitsis GD, Zhang R, Levine BD, Marmarelis VZ. Cerebral hemodynamics during orthostatic stress assessed by nonlinear modeling. J Appl Physiol. 2006;101(1):354–66.PubMedCrossRef
Metadaten
Titel
Model-based Indices Describing Cerebrovascular Dynamics
verfasst von
Georgios V. Varsos
Magdalena Kasprowicz
Peter Smielewski
Marek Czosnyka
Publikationsdatum
01.02.2014
Verlag
Springer US
Erschienen in
Neurocritical Care / Ausgabe 1/2014
Print ISSN: 1541-6933
Elektronische ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-013-9868-4

Weitere Artikel der Ausgabe 1/2014

Neurocritical Care 1/2014 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.