Skip to main content
Erschienen in: The Cerebellum 3/2009

01.09.2009

Friedreich’s Ataxia: From the (GAA) n Repeat Mediated Silencing to New Promising Molecules for Therapy

verfasst von: Daniele Marmolino, Fabio Acquaviva

Erschienen in: The Cerebellum | Ausgabe 3/2009

Einloggen, um Zugang zu erhalten

Abstract

Friedreich’s ataxia (FRDA) is a neurodegenerative disease due to a pathological expansion of a GAA triplet repeat in the first intron of the FXN gene encoding for the mitochondrial protein frataxin. The expansion is responsible for most cases of FRDA through the formation of a nonusual B-DNA structure and heterochromatin conformation that determine a direct transcriptional silencing and the subsequent reduction in frataxin expression. Among other functions, frataxin is an iron chaperone central for the assembly of iron–sulfur clusters in mitochondria; its reduction is associated with iron accumulation in mitochondria, increased cellular sensitivity to oxidative stress and cell damage. There is, nowadays, no effective therapy for FRDA and current therapeutic strategies mainly act to slow down the consequences of frataxin deficiency. Therefore, drugs that are able to increase the amount of frataxin are excellent candidates for a rational approach to FRDA therapy. Recently, several drugs have been assessed for their ability to increase the amount of cellular frataxin, including human recombinant erythropoietin, histone deacetylase inhibitors, and the PPAR-γ agonists.
Literatur
1.
Zurück zum Zitat Delatycki M, Williamson R, Forrest S (2000) Friedreich ataxia: an overview. J Med Genet 37(1):1–8PubMed Delatycki M, Williamson R, Forrest S (2000) Friedreich ataxia: an overview. J Med Genet 37(1):1–8PubMed
2.
Zurück zum Zitat Finocchiaro G, Baio G, Micossi P, Pozza G, di Donato S (1988) Glucose metabolism alterations in Friedreich’s ataxia. Neurology 38(8):1292–1296PubMed Finocchiaro G, Baio G, Micossi P, Pozza G, di Donato S (1988) Glucose metabolism alterations in Friedreich’s ataxia. Neurology 38(8):1292–1296PubMed
3.
Zurück zum Zitat Filla A, De Michele G, Coppola G, Federico A, Vita G, Toscano A et al (2000) Accuracy of clinical diagnostic criteria for Friedreich’s ataxia. Mov Disord 15(6):1255–1258PubMed Filla A, De Michele G, Coppola G, Federico A, Vita G, Toscano A et al (2000) Accuracy of clinical diagnostic criteria for Friedreich’s ataxia. Mov Disord 15(6):1255–1258PubMed
4.
Zurück zum Zitat Pandolfo M (2003) Friedreich ataxia. Semin Pediatr Neurol 10(3):163–172PubMed Pandolfo M (2003) Friedreich ataxia. Semin Pediatr Neurol 10(3):163–172PubMed
5.
Zurück zum Zitat Filla A, DeMichele G, Caruso G, Marconi R, Campanella G (1990) Genetic data and natural history of Friedreich’s disease: a study of 80 Italian patients. J Neurol 237(6):345–351PubMed Filla A, DeMichele G, Caruso G, Marconi R, Campanella G (1990) Genetic data and natural history of Friedreich’s disease: a study of 80 Italian patients. J Neurol 237(6):345–351PubMed
6.
Zurück zum Zitat Shapcott D, Melancon S, Butterworth R, Khoury K, Collu R, Breton G et al (1976) Glucose and insulin metabolism in Friedreich’s ataxia. Can J Neurol Sci 3(4):361–364PubMed Shapcott D, Melancon S, Butterworth R, Khoury K, Collu R, Breton G et al (1976) Glucose and insulin metabolism in Friedreich’s ataxia. Can J Neurol Sci 3(4):361–364PubMed
7.
Zurück zum Zitat Campuzano V, Montermini L, Moltò M, Pianese L, Cossée M, Cavalcanti F et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271(5254):1423–1427PubMed Campuzano V, Montermini L, Moltò M, Pianese L, Cossée M, Cavalcanti F et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271(5254):1423–1427PubMed
8.
Zurück zum Zitat Campuzano V, Montermini L, Lutz Y, Cova L, Hindelang C, Jiralerspong S et al (1997) Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum Mol Genet 6(11):1771–1780PubMed Campuzano V, Montermini L, Lutz Y, Cova L, Hindelang C, Jiralerspong S et al (1997) Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum Mol Genet 6(11):1771–1780PubMed
9.
Zurück zum Zitat Kostrzewa M, Klockgether T, Damian M, Müller U (1997) Locus heterogeneity in Friedreich ataxia. Neurogenetics 1(1):43–47PubMed Kostrzewa M, Klockgether T, Damian M, Müller U (1997) Locus heterogeneity in Friedreich ataxia. Neurogenetics 1(1):43–47PubMed
10.
Zurück zum Zitat Koutnikova H, Campuzano V, Foury F, Dollé P, Cazzalini O, Koenig M (1997) Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin. Nat Genet 16(4):345–351PubMed Koutnikova H, Campuzano V, Foury F, Dollé P, Cazzalini O, Koenig M (1997) Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin. Nat Genet 16(4):345–351PubMed
11.
Zurück zum Zitat Bidichandani S, Ashizawa T, Patel P (1997) Atypical Friedreich ataxia caused by compound heterozygosity for a novel missense mutation and the GAA triplet-repeat expansion. Am J Hum Genet 60(5):1251–1256PubMed Bidichandani S, Ashizawa T, Patel P (1997) Atypical Friedreich ataxia caused by compound heterozygosity for a novel missense mutation and the GAA triplet-repeat expansion. Am J Hum Genet 60(5):1251–1256PubMed
12.
Zurück zum Zitat Orr H, Zoghbi H (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621PubMed Orr H, Zoghbi H (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621PubMed
13.
Zurück zum Zitat Pianese L, Turano M, Lo Casale M, De Biase I, Giacchetti M, Monticelli A et al (2004) Real time PCR quantification of frataxin mRNA in the peripheral blood leucocytes of Friedreich ataxia patients and carriers. J Neurol Neurosurg Psychiatry 75(7):1061–1063PubMed Pianese L, Turano M, Lo Casale M, De Biase I, Giacchetti M, Monticelli A et al (2004) Real time PCR quantification of frataxin mRNA in the peripheral blood leucocytes of Friedreich ataxia patients and carriers. J Neurol Neurosurg Psychiatry 75(7):1061–1063PubMed
14.
Zurück zum Zitat Lodi R, Cooper JM, Bradley JL, Manners D, Styles P, Taylor DJ, Schapira AH (1999) Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. Proc Natl Acad Sci U S A 96:11492–11495PubMed Lodi R, Cooper JM, Bradley JL, Manners D, Styles P, Taylor DJ, Schapira AH (1999) Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. Proc Natl Acad Sci U S A 96:11492–11495PubMed
15.
Zurück zum Zitat Askwith C, Eide D, Van Ho A, Bernard PS, Li L, Davis-Kaplan S, Sipe DM, Kaplan J (1994) The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76(2):403–410PubMed Askwith C, Eide D, Van Ho A, Bernard PS, Li L, Davis-Kaplan S, Sipe DM, Kaplan J (1994) The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76(2):403–410PubMed
16.
Zurück zum Zitat Stearman R, Yuan DS, Yamaguchi-Iwai Y, Klausner RD, Dancis A (1996) A permease–oxidase complex involved in high-affinity iron uptake in yeast. Science 271(5255):1552–1557PubMed Stearman R, Yuan DS, Yamaguchi-Iwai Y, Klausner RD, Dancis A (1996) A permease–oxidase complex involved in high-affinity iron uptake in yeast. Science 271(5255):1552–1557PubMed
17.
Zurück zum Zitat Pandolfo M (2006) Iron and Friedreich ataxia. J Neural Transm Suppl 70:143–146PubMed Pandolfo M (2006) Iron and Friedreich ataxia. J Neural Transm Suppl 70:143–146PubMed
18.
Zurück zum Zitat Geoffroy G, Barbeau A, Breton G, Lemieux B, Aube M, Leger C et al (1976) Clinical description and roentgenologic evaluation of patients with Friedreich’s ataxia. Can J Neurol Sci 3(4):279–286PubMed Geoffroy G, Barbeau A, Breton G, Lemieux B, Aube M, Leger C et al (1976) Clinical description and roentgenologic evaluation of patients with Friedreich’s ataxia. Can J Neurol Sci 3(4):279–286PubMed
19.
Zurück zum Zitat Harding A (1981) Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 104(3):589–620PubMed Harding A (1981) Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 104(3):589–620PubMed
20.
Zurück zum Zitat Klockgether T, Chamberlain S, Wüllner U, Fetter M, Dittmann H, Petersen D et al (1993) Late-onset Friedreich’s ataxia. Molecular genetics, clinical neurophysiology, and magnetic resonance imaging. Arch Neurol 50(8):803–806PubMed Klockgether T, Chamberlain S, Wüllner U, Fetter M, Dittmann H, Petersen D et al (1993) Late-onset Friedreich’s ataxia. Molecular genetics, clinical neurophysiology, and magnetic resonance imaging. Arch Neurol 50(8):803–806PubMed
21.
Zurück zum Zitat Dürr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C et al (1996) Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 335(16):1169–1175PubMed Dürr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C et al (1996) Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 335(16):1169–1175PubMed
22.
Zurück zum Zitat Lamont P, Davis M, Wood N (1997) Identification and sizing of the GAA trinucleotide repeat expansion of Friedreich’s ataxia in 56 patients. Clinical and genetic correlates. Brain 120(Pt 4):673–680PubMed Lamont P, Davis M, Wood N (1997) Identification and sizing of the GAA trinucleotide repeat expansion of Friedreich’s ataxia in 56 patients. Clinical and genetic correlates. Brain 120(Pt 4):673–680PubMed
23.
Zurück zum Zitat Schöls L, Amoiridis G, Przuntek H, Frank G, Epplen J, Epplen C (1997) Friedreich’s ataxia. Revision of the phenotype according to molecular genetics. Brain 120(Pt 12):2131–2140PubMed Schöls L, Amoiridis G, Przuntek H, Frank G, Epplen J, Epplen C (1997) Friedreich’s ataxia. Revision of the phenotype according to molecular genetics. Brain 120(Pt 12):2131–2140PubMed
24.
Zurück zum Zitat Ohshima K, Montermini L, Wells R, Pandolfo M (1998) Inhibitory effects of expanded GAA.TTC triplet repeats from intron I of the Friedreich ataxia gene on transcription and replication in vivo. J Biol Chem 273(23):14588–14595PubMed Ohshima K, Montermini L, Wells R, Pandolfo M (1998) Inhibitory effects of expanded GAA.TTC triplet repeats from intron I of the Friedreich ataxia gene on transcription and replication in vivo. J Biol Chem 273(23):14588–14595PubMed
25.
Zurück zum Zitat Bidichandani S, Ashizawa T, Patel P (1998) The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am J Hum Genet 62(1):111–121PubMed Bidichandani S, Ashizawa T, Patel P (1998) The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am J Hum Genet 62(1):111–121PubMed
26.
Zurück zum Zitat Sakamoto N, Chastain P, Parniewski P, Ohshima K, Pandolfo M, Griffith J et al (1999) Sticky DNA: self-association properties of long GAA.TTC repeats in R.R.Y triplex structures from Friedreich’s ataxia. Mol Cell 3(4):465–475PubMed Sakamoto N, Chastain P, Parniewski P, Ohshima K, Pandolfo M, Griffith J et al (1999) Sticky DNA: self-association properties of long GAA.TTC repeats in R.R.Y triplex structures from Friedreich’s ataxia. Mol Cell 3(4):465–475PubMed
27.
Zurück zum Zitat Sakamoto N, Ohshima K, Montermini L, Pandolfo M, Wells R (2001) Sticky DNA, a self-associated complex formed at long GAA*TTC repeats in intron 1 of the frataxin gene, inhibits transcription. J Biol Chem 276(29):27171–27177PubMed Sakamoto N, Ohshima K, Montermini L, Pandolfo M, Wells R (2001) Sticky DNA, a self-associated complex formed at long GAA*TTC repeats in intron 1 of the frataxin gene, inhibits transcription. J Biol Chem 276(29):27171–27177PubMed
28.
Zurück zum Zitat Wells R (2008) DNA triplexes and Friedreich ataxia. FASEB J 22(6):1625–1634PubMed Wells R (2008) DNA triplexes and Friedreich ataxia. FASEB J 22(6):1625–1634PubMed
29.
Zurück zum Zitat Grabczyk E, Usdin K (2000) Alleviating transcript insufficiency caused by Friedreich’s ataxia triplet repeats. Nucleic Acids Res 28(24):4930–4937PubMed Grabczyk E, Usdin K (2000) Alleviating transcript insufficiency caused by Friedreich’s ataxia triplet repeats. Nucleic Acids Res 28(24):4930–4937PubMed
30.
Zurück zum Zitat Grabczyk E, Mancuso M, Sammarco M (2007) A persistent RNA.DNA hybrid formed by transcription of the Friedreich ataxia triplet repeat in live bacteria, and by T7 RNAP in vitro. Nucleic Acids Res 35(16):5351–5359PubMed Grabczyk E, Mancuso M, Sammarco M (2007) A persistent RNA.DNA hybrid formed by transcription of the Friedreich ataxia triplet repeat in live bacteria, and by T7 RNAP in vitro. Nucleic Acids Res 35(16):5351–5359PubMed
31.
Zurück zum Zitat Saveliev A, Everett C, Sharpe T, Webster Z, Festenstein R (2003) DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing. Nature 422(6934):909–913PubMed Saveliev A, Everett C, Sharpe T, Webster Z, Festenstein R (2003) DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing. Nature 422(6934):909–913PubMed
32.
Zurück zum Zitat Grabczyk E, Kumari D, Usdin K (2001) Fragile X syndrome and Friedreich’s ataxia: two different paradigms for repeat induced transcript insufficiency. Brain Res Bull 56(3–4):367–373PubMed Grabczyk E, Kumari D, Usdin K (2001) Fragile X syndrome and Friedreich’s ataxia: two different paradigms for repeat induced transcript insufficiency. Brain Res Bull 56(3–4):367–373PubMed
33.
Zurück zum Zitat Stewart M, Li J, Wong J (2005) Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol Cell Biol 25(7):2525–2538PubMed Stewart M, Li J, Wong J (2005) Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol Cell Biol 25(7):2525–2538PubMed
34.
Zurück zum Zitat Kernochan L, Russo M, Woodling N, Huynh T, Avila A, Fischbeck K et al (2005) The role of histone acetylation in SMN gene expression. Hum Mol Genet 14(9):1171–1182PubMed Kernochan L, Russo M, Woodling N, Huynh T, Avila A, Fischbeck K et al (2005) The role of histone acetylation in SMN gene expression. Hum Mol Genet 14(9):1171–1182PubMed
35.
Zurück zum Zitat Langley B, Gensert J, Beal M, Ratan R (2005) Remodeling chromatin and stress resistance in the central nervous system: histone deacetylase inhibitors as novel and broadly effective neuroprotective agents. Curr Drug Targets CNS Neurol Disord 4(1):41–50PubMed Langley B, Gensert J, Beal M, Ratan R (2005) Remodeling chromatin and stress resistance in the central nervous system: histone deacetylase inhibitors as novel and broadly effective neuroprotective agents. Curr Drug Targets CNS Neurol Disord 4(1):41–50PubMed
36.
Zurück zum Zitat Cho D, Thienes C, Mahoney S, Analau E, Filippova G, Tapscott S (2005) Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained by CTCF. Mol Cell 20(3):483–489PubMed Cho D, Thienes C, Mahoney S, Analau E, Filippova G, Tapscott S (2005) Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained by CTCF. Mol Cell 20(3):483–489PubMed
37.
Zurück zum Zitat Tapscott S, Klesert T, Widrow R, Stöger R, Laird C (1998) Fragile-X syndrome and myotonic dystrophy: parallels and paradoxes. Curr Opin Genet Dev 8(2):245–253PubMed Tapscott S, Klesert T, Widrow R, Stöger R, Laird C (1998) Fragile-X syndrome and myotonic dystrophy: parallels and paradoxes. Curr Opin Genet Dev 8(2):245–253PubMed
38.
Zurück zum Zitat Herman D, Jenssen K, Burnett R, Soragni E, Perlman S, Gottesfeld J (2006) Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia. Nat Chem Biol 2(10):551–558PubMed Herman D, Jenssen K, Burnett R, Soragni E, Perlman S, Gottesfeld J (2006) Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia. Nat Chem Biol 2(10):551–558PubMed
39.
Zurück zum Zitat Gottesfeld J (2007) Small molecules affecting transcription in Friedreich ataxia. Pharmacol Ther 116(2):236–248PubMed Gottesfeld J (2007) Small molecules affecting transcription in Friedreich ataxia. Pharmacol Ther 116(2):236–248PubMed
40.
Zurück zum Zitat Elgin S, Grewal S (2003) Heterochromatin: silence is golden. Curr Biol 13(23):R895–R898PubMed Elgin S, Grewal S (2003) Heterochromatin: silence is golden. Curr Biol 13(23):R895–R898PubMed
41.
Zurück zum Zitat Miranda C, Santos M, Ohshima K, Smith J, Li L, Bunting M et al (2002) Frataxin knockin mouse. FEBS Lett 512(1–3):291–297PubMed Miranda C, Santos M, Ohshima K, Smith J, Li L, Bunting M et al (2002) Frataxin knockin mouse. FEBS Lett 512(1–3):291–297PubMed
42.
Zurück zum Zitat Rai M, Soragni E, Jenssen K, Burnett R, Herman D, Coppola G et al (2008) HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PLoS ONE 3(4):e1958PubMed Rai M, Soragni E, Jenssen K, Burnett R, Herman D, Coppola G et al (2008) HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PLoS ONE 3(4):e1958PubMed
43.
Zurück zum Zitat Greene E, Mahishi L, Entezam A, Kumari D, Usdin K (2007) Repeat-induced epigenetic changes in intron 1 of the frataxin gene and its consequences in Friedreich ataxia. Nucleic Acids Res 35(10):3383–3390PubMed Greene E, Mahishi L, Entezam A, Kumari D, Usdin K (2007) Repeat-induced epigenetic changes in intron 1 of the frataxin gene and its consequences in Friedreich ataxia. Nucleic Acids Res 35(10):3383–3390PubMed
44.
Zurück zum Zitat El-Osta A, Wolffe A (2000) DNA methylation and histone deacetylation in the control of gene expression: basic biochemistry to human development and disease. Gene Expr 9(1–2):63–75PubMed El-Osta A, Wolffe A (2000) DNA methylation and histone deacetylation in the control of gene expression: basic biochemistry to human development and disease. Gene Expr 9(1–2):63–75PubMed
45.
Zurück zum Zitat Castaldo I, Pinelli M, Monticelli A, Acquaviva F, Giacchetti M, Filla A et al (2008) DNA methylation in intron 1 of the frataxin gene is related to GAA repeat length and age of onset in Friedreich’s ataxia patients. J Med Genet 45:808–812 Castaldo I, Pinelli M, Monticelli A, Acquaviva F, Giacchetti M, Filla A et al (2008) DNA methylation in intron 1 of the frataxin gene is related to GAA repeat length and age of onset in Friedreich’s ataxia patients. J Med Genet 45:808–812
46.
Zurück zum Zitat Al-Mahdawi S, Pinto R, Ismail O, Varshney D, Lymperi S, Sandi C et al (2008) The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and transgenic mouse brain and heart tissues. Hum Mol Genet 17(5):735–746PubMed Al-Mahdawi S, Pinto R, Ismail O, Varshney D, Lymperi S, Sandi C et al (2008) The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and transgenic mouse brain and heart tissues. Hum Mol Genet 17(5):735–746PubMed
47.
Zurück zum Zitat Babcock M, de Silva D, Oaks R, Davis-Kaplan S, Jiralerspong S, Montermini L et al (1997) Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 276(5319):1709–1712PubMed Babcock M, de Silva D, Oaks R, Davis-Kaplan S, Jiralerspong S, Montermini L et al (1997) Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 276(5319):1709–1712PubMed
48.
Zurück zum Zitat Foury F, Cazzalini O (1997) Deletion of the yeast homologue of the human gene associated with Friedreich’s ataxia elicits iron accumulation in mitochondria. FEBS Lett 411(2–3):373–377PubMed Foury F, Cazzalini O (1997) Deletion of the yeast homologue of the human gene associated with Friedreich’s ataxia elicits iron accumulation in mitochondria. FEBS Lett 411(2–3):373–377PubMed
49.
Zurück zum Zitat Schoenfeld R, Napoli E, Wong A, Zhan S, Reutenauer L, Morin D et al (2005) Frataxin deficiency alters heme pathway transcripts and decreases mitochondrial heme metabolites in mammalian cells. Hum Mol Genet 14(24):3787–3799PubMed Schoenfeld R, Napoli E, Wong A, Zhan S, Reutenauer L, Morin D et al (2005) Frataxin deficiency alters heme pathway transcripts and decreases mitochondrial heme metabolites in mammalian cells. Hum Mol Genet 14(24):3787–3799PubMed
50.
Zurück zum Zitat Stehling O, Elsässer H, Brückel B, Mühlenhoff U, Lill R (2004) Iron–sulfur protein maturation in human cells: evidence for a function of frataxin. Hum Mol Genet 3(23):3007–3015 Stehling O, Elsässer H, Brückel B, Mühlenhoff U, Lill R (2004) Iron–sulfur protein maturation in human cells: evidence for a function of frataxin. Hum Mol Genet 3(23):3007–3015
51.
Zurück zum Zitat Ramazzotti A, Vanmansart V, Foury F (2004) Mitochondrial functional interactions between frataxin and Isu1p, the iron–sulfur cluster scaffold protein, in Saccharomyces cerevisiae. FEBS Lett 557(1–3):215–220PubMed Ramazzotti A, Vanmansart V, Foury F (2004) Mitochondrial functional interactions between frataxin and Isu1p, the iron–sulfur cluster scaffold protein, in Saccharomyces cerevisiae. FEBS Lett 557(1–3):215–220PubMed
52.
Zurück zum Zitat Yoon T, Cowan J (2003) Iron–sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for assembly of [2Fe–2S] clusters in ISU-type proteins. J Am Chem Soc 125(20):6078–6084PubMed Yoon T, Cowan J (2003) Iron–sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for assembly of [2Fe–2S] clusters in ISU-type proteins. J Am Chem Soc 125(20):6078–6084PubMed
53.
Zurück zum Zitat Yoon T, Cowan J (2004) Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesis. J Biol Chem 279(25):25943–25946PubMed Yoon T, Cowan J (2004) Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesis. J Biol Chem 279(25):25943–25946PubMed
54.
Zurück zum Zitat Zhang Y, Lyver E, Knight S, Lesuisse E, Dancis A (2005) Frataxin and mitochondrial carrier proteins, Mrs3p and Mrs4p, cooperate in providing iron for heme synthesis. J Biol Chem 280(20):19794–19807PubMed Zhang Y, Lyver E, Knight S, Lesuisse E, Dancis A (2005) Frataxin and mitochondrial carrier proteins, Mrs3p and Mrs4p, cooperate in providing iron for heme synthesis. J Biol Chem 280(20):19794–19807PubMed
55.
Zurück zum Zitat Mühlenhoff U, Gerber J, Richhardt N, Lill R (2003) Components involved in assembly and dislocation of iron–sulfur clusters on the scaffold protein Isu1p. EMBO J 22(18):4815–4825PubMed Mühlenhoff U, Gerber J, Richhardt N, Lill R (2003) Components involved in assembly and dislocation of iron–sulfur clusters on the scaffold protein Isu1p. EMBO J 22(18):4815–4825PubMed
56.
Zurück zum Zitat Park S, Gakh O, O’Neill H, Mangravita A, Nichol H, Ferreira G et al (2003) Yeast frataxin sequentially chaperones and stores iron by coupling protein assembly with iron oxidation. J Biol Chem 278(33):31340–31351PubMed Park S, Gakh O, O’Neill H, Mangravita A, Nichol H, Ferreira G et al (2003) Yeast frataxin sequentially chaperones and stores iron by coupling protein assembly with iron oxidation. J Biol Chem 278(33):31340–31351PubMed
57.
Zurück zum Zitat Gakh O, Adamec J, Gacy A, Twesten R, Owen W, Isaya G (2002) Physical evidence that yeast frataxin is an iron storage protein. Biochemistry 41(21):6798–6804PubMed Gakh O, Adamec J, Gacy A, Twesten R, Owen W, Isaya G (2002) Physical evidence that yeast frataxin is an iron storage protein. Biochemistry 41(21):6798–6804PubMed
58.
Zurück zum Zitat Gakh O, Park S, Liu G, Macomber L, Imlay J, Ferreira G et al (2006) Mitochondrial iron detoxification is a primary function of frataxin that limits oxidative damage and preserves cell longevity. Hum Mol Genet 15(3):467–479PubMed Gakh O, Park S, Liu G, Macomber L, Imlay J, Ferreira G et al (2006) Mitochondrial iron detoxification is a primary function of frataxin that limits oxidative damage and preserves cell longevity. Hum Mol Genet 15(3):467–479PubMed
59.
Zurück zum Zitat O’Neill H, Gakh O, Park S, Cui J, Mooney S, Sampson M et al (2005) Assembly of human frataxin is a mechanism for detoxifying redox-active iron. Biochemistry 44(2):537–545PubMed O’Neill H, Gakh O, Park S, Cui J, Mooney S, Sampson M et al (2005) Assembly of human frataxin is a mechanism for detoxifying redox-active iron. Biochemistry 44(2):537–545PubMed
60.
Zurück zum Zitat Karlberg T, Schagerlöf U, Gakh O, Park S, Ryde U, Lindahl M et al (2006) The structures of frataxin oligomers reveal the mechanism for the delivery and detoxification of iron. Structure 14(10):1535–1546PubMed Karlberg T, Schagerlöf U, Gakh O, Park S, Ryde U, Lindahl M et al (2006) The structures of frataxin oligomers reveal the mechanism for the delivery and detoxification of iron. Structure 14(10):1535–1546PubMed
61.
Zurück zum Zitat Adamec J, Rusnak F, Owen W, Naylor S, Benson L, Gacy A et al (2000) Iron-dependent self-assembly of recombinant yeast frataxin: implications for Friedreich ataxia. Am J Hum Genet 67(3):549–562PubMed Adamec J, Rusnak F, Owen W, Naylor S, Benson L, Gacy A et al (2000) Iron-dependent self-assembly of recombinant yeast frataxin: implications for Friedreich ataxia. Am J Hum Genet 67(3):549–562PubMed
62.
Zurück zum Zitat Chantrel-Groussard K, Geromel V, Puccio H, Koenig M, Munnich A, Rötig A et al (2001) Disabled early recruitment of antioxidant defenses in Friedreich’s ataxia. Hum Mol Genet 10(19):2061–2067PubMed Chantrel-Groussard K, Geromel V, Puccio H, Koenig M, Munnich A, Rötig A et al (2001) Disabled early recruitment of antioxidant defenses in Friedreich’s ataxia. Hum Mol Genet 10(19):2061–2067PubMed
63.
Zurück zum Zitat Karthikeyan G, Lewis L, Resnick M (2002) The mitochondrial protein frataxin prevents nuclear damage. Hum Mol Genet 11(11):1351–1362PubMed Karthikeyan G, Lewis L, Resnick M (2002) The mitochondrial protein frataxin prevents nuclear damage. Hum Mol Genet 11(11):1351–1362PubMed
64.
Zurück zum Zitat Karthikeyan G, Santos J, Graziewicz M, Copeland W, Isaya G, Van Houten B et al (2003) Reduction in frataxin causes progressive accumulation of mitochondrial damage. Hum Mol Genet 12(24):3331–3342PubMed Karthikeyan G, Santos J, Graziewicz M, Copeland W, Isaya G, Van Houten B et al (2003) Reduction in frataxin causes progressive accumulation of mitochondrial damage. Hum Mol Genet 12(24):3331–3342PubMed
65.
Zurück zum Zitat Wong A, Yang J, Cavadini P, Gellera C, Lonnerdal B, Taroni F et al (1999) The Friedreich’s ataxia mutation confers cellular sensitivity to oxidant stress which is rescued by chelators of iron and calcium and inhibitors of apoptosis. Hum Mol Genet 8(3):425–430PubMed Wong A, Yang J, Cavadini P, Gellera C, Lonnerdal B, Taroni F et al (1999) The Friedreich’s ataxia mutation confers cellular sensitivity to oxidant stress which is rescued by chelators of iron and calcium and inhibitors of apoptosis. Hum Mol Genet 8(3):425–430PubMed
66.
Zurück zum Zitat Cavadini P, Adamec J, Taroni F, Gakh O, Isaya G (2000) Two-step processing of human frataxin by mitochondrial processing peptidase. Precursor and intermediate forms are cleaved at different rates. J Biol Chem 275(52):41469–41475PubMed Cavadini P, Adamec J, Taroni F, Gakh O, Isaya G (2000) Two-step processing of human frataxin by mitochondrial processing peptidase. Precursor and intermediate forms are cleaved at different rates. J Biol Chem 275(52):41469–41475PubMed
67.
Zurück zum Zitat Yoon T, Dizin E, Cowan J (2007) N-terminal iron-mediated self-cleavage of human frataxin: regulation of iron binding and complex formation with target proteins. J Biol Inorg Chem 12(4):535–542PubMed Yoon T, Dizin E, Cowan J (2007) N-terminal iron-mediated self-cleavage of human frataxin: regulation of iron binding and complex formation with target proteins. J Biol Inorg Chem 12(4):535–542PubMed
68.
Zurück zum Zitat Condò I, Ventura N, Malisan F, Rufini A, Tomassini B, Testi R (2007) In vivo maturation of human frataxin. Hum Mol Genet 16(13):1534–1540PubMed Condò I, Ventura N, Malisan F, Rufini A, Tomassini B, Testi R (2007) In vivo maturation of human frataxin. Hum Mol Genet 16(13):1534–1540PubMed
69.
Zurück zum Zitat Babady N, Pang Y, Elpeleg O, Isaya G (2007) Cryptic proteolytic activity of dihydrolipoamide dehydrogenase. Proc Natl Acad Sci U S A 104(15):6158–6163PubMed Babady N, Pang Y, Elpeleg O, Isaya G (2007) Cryptic proteolytic activity of dihydrolipoamide dehydrogenase. Proc Natl Acad Sci U S A 104(15):6158–6163PubMed
70.
Zurück zum Zitat Acquaviva F, De Biase I, Nezi L, Ruggiero G, Tatangelo F, Pisano C et al (2005) Extra-mitochondrial localisation of frataxin and its association with IscU1 during enterocyte-like differentiation of the human colon adenocarcinoma cell line Caco-2. J Cell Sci 118(Pt 17):3917–3924PubMed Acquaviva F, De Biase I, Nezi L, Ruggiero G, Tatangelo F, Pisano C et al (2005) Extra-mitochondrial localisation of frataxin and its association with IscU1 during enterocyte-like differentiation of the human colon adenocarcinoma cell line Caco-2. J Cell Sci 118(Pt 17):3917–3924PubMed
71.
Zurück zum Zitat Condò I, Ventura N, Malisan F, Tomassini B, Testi R (2006) A pool of extramitochondrial frataxin that promotes cell survival. J Biol Chem 281(24):16750–16756PubMed Condò I, Ventura N, Malisan F, Tomassini B, Testi R (2006) A pool of extramitochondrial frataxin that promotes cell survival. J Biol Chem 281(24):16750–16756PubMed
72.
Zurück zum Zitat O’Neill H, Gakh O, Isaya G (2005) Supramolecular assemblies of human frataxin are formed via subunit–subunit interactions mediated by a non-conserved amino-terminal region. J Mol Biol 345(3):433–439PubMed O’Neill H, Gakh O, Isaya G (2005) Supramolecular assemblies of human frataxin are formed via subunit–subunit interactions mediated by a non-conserved amino-terminal region. J Mol Biol 345(3):433–439PubMed
73.
Zurück zum Zitat Napoli E, Taroni F, Cortopassi G (2006) Frataxin, iron–sulfur clusters, heme, ROS, and aging. Antioxid Redox Signal 8(3–4):506–516PubMed Napoli E, Taroni F, Cortopassi G (2006) Frataxin, iron–sulfur clusters, heme, ROS, and aging. Antioxid Redox Signal 8(3–4):506–516PubMed
74.
Zurück zum Zitat González-Cabo P, Vázquez-Manrique R, García-Gimeno M, Sanz P, Palau F (2005) Frataxin interacts functionally with mitochondrial electron transport chain proteins. Hum Mol Genet 14(15):2091–2098PubMed González-Cabo P, Vázquez-Manrique R, García-Gimeno M, Sanz P, Palau F (2005) Frataxin interacts functionally with mitochondrial electron transport chain proteins. Hum Mol Genet 14(15):2091–2098PubMed
75.
Zurück zum Zitat Blanquart C, Barbier O, Fruchart J, Staels B, Glineur C (2003) Peroxisome proliferator-activated receptors: regulation of transcriptional activities and roles in inflammation. J Steroid Biochem Mol Biol 85(2–5):267–273PubMed Blanquart C, Barbier O, Fruchart J, Staels B, Glineur C (2003) Peroxisome proliferator-activated receptors: regulation of transcriptional activities and roles in inflammation. J Steroid Biochem Mol Biol 85(2–5):267–273PubMed
76.
Zurück zum Zitat Torchia J, Rose D, Inostroza J, Kamei Y, Westin S, Glass C et al (1997) The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387(6634):677–684. JunPubMed Torchia J, Rose D, Inostroza J, Kamei Y, Westin S, Glass C et al (1997) The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387(6634):677–684. JunPubMed
77.
Zurück zum Zitat Kelly D, Scarpulla R (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18(4):357–368PubMed Kelly D, Scarpulla R (2004) Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18(4):357–368PubMed
78.
Zurück zum Zitat Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98(1):115–124PubMed Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98(1):115–124PubMed
79.
Zurück zum Zitat St-Pierre J, Drori S, Uldry M, Silvaggi J, Rhee J, Jäger S et al (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127(2):397–408PubMed St-Pierre J, Drori S, Uldry M, Silvaggi J, Rhee J, Jäger S et al (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127(2):397–408PubMed
80.
Zurück zum Zitat Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstråle M, Laurila E et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273PubMed Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstråle M, Laurila E et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273PubMed
81.
Zurück zum Zitat Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, Miyazaki Y, Kohane I, Costello M, Saccone R et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A 100:8466–8471PubMed Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, Miyazaki Y, Kohane I, Costello M, Saccone R et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A 100:8466–8471PubMed
82.
Zurück zum Zitat Soyal S, Krempler F, Oberkofler H, Patsch W (2006) PGC-1alpha: a potent transcriptional cofactor involved in the pathogenesis of type 2 diabetes. Diabetologia 49:1477–1488PubMed Soyal S, Krempler F, Oberkofler H, Patsch W (2006) PGC-1alpha: a potent transcriptional cofactor involved in the pathogenesis of type 2 diabetes. Diabetologia 49:1477–1488PubMed
83.
Zurück zum Zitat Wilson RB (2006) Experimental therapeutics for Friedreich ataxia. In: Wells RD, Warren ST, Sarmiento M (eds) Genetic instabilities and neurological diseases, 2nd edn. Academic, San Diego, p 766 Wilson RB (2006) Experimental therapeutics for Friedreich ataxia. In: Wells RD, Warren ST, Sarmiento M (eds) Genetic instabilities and neurological diseases, 2nd edn. Academic, San Diego, p 766
84.
Zurück zum Zitat Sugiyama Y, Fujita T, Matsumoto M, Okamoto K, Imada I (1985) Effects of idebenone (CV-2619) and its metabolites on respiratory activity and lipid peroxidation in brain mitochondria from rats and dogs. J Pharmacobiodyn 8(12):1006–1017PubMed Sugiyama Y, Fujita T, Matsumoto M, Okamoto K, Imada I (1985) Effects of idebenone (CV-2619) and its metabolites on respiratory activity and lipid peroxidation in brain mitochondria from rats and dogs. J Pharmacobiodyn 8(12):1006–1017PubMed
85.
Zurück zum Zitat Rustin P, von Kleist-Retzow J, Chantrel-Groussard K, Sidi D, Munnich A, Rötig A (1999) Effect of idebenone on cardiomyopathy in Friedreich’s ataxia: a preliminary study. Lancet 354(9177):477–479PubMed Rustin P, von Kleist-Retzow J, Chantrel-Groussard K, Sidi D, Munnich A, Rötig A (1999) Effect of idebenone on cardiomyopathy in Friedreich’s ataxia: a preliminary study. Lancet 354(9177):477–479PubMed
86.
Zurück zum Zitat Di Prospero N, Baker A, Jeffries N, Fischbeck K (2007) Neurological effects of high-dose idebenone in patients with Friedreich’s ataxia: a randomised, placebo-controlled trial. Lancet Neurol 6(10):878–886PubMed Di Prospero N, Baker A, Jeffries N, Fischbeck K (2007) Neurological effects of high-dose idebenone in patients with Friedreich’s ataxia: a randomised, placebo-controlled trial. Lancet Neurol 6(10):878–886PubMed
87.
Zurück zum Zitat Stephens N, Parsons A, Schofield P, Kelly F, Cheeseman K, Mitchinson M (1996) Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 347(9004):781–786PubMed Stephens N, Parsons A, Schofield P, Kelly F, Cheeseman K, Mitchinson M (1996) Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 347(9004):781–786PubMed
88.
Zurück zum Zitat Shoulson I (1998) DATATOP: a decade of neuroprotective inquiry. Parkinson Study Group. Deprenyl and tocopherol antioxidative therapy of Parkinsonism. Ann Neurol 44(3 Suppl 1):S160–S166PubMed Shoulson I (1998) DATATOP: a decade of neuroprotective inquiry. Parkinson Study Group. Deprenyl and tocopherol antioxidative therapy of Parkinsonism. Ann Neurol 44(3 Suppl 1):S160–S166PubMed
89.
Zurück zum Zitat Bostick R, Potter J, McKenzie D, Sellers T, Kushi L, Steinmetz K et al (1993) Reduced risk of colon cancer with high intake of vitamin E: the Iowa Women’s Health Study. Cancer Res 53(18):4230–4237PubMed Bostick R, Potter J, McKenzie D, Sellers T, Kushi L, Steinmetz K et al (1993) Reduced risk of colon cancer with high intake of vitamin E: the Iowa Women’s Health Study. Cancer Res 53(18):4230–4237PubMed
90.
Zurück zum Zitat Musumeci O, Naini A, Slonim A, Skavin N, Hadjigeorgiou G, Krawiecki N et al (2001) Familial cerebellar ataxia with muscle coenzyme Q10 deficiency. Neurology 56(7):849–855PubMed Musumeci O, Naini A, Slonim A, Skavin N, Hadjigeorgiou G, Krawiecki N et al (2001) Familial cerebellar ataxia with muscle coenzyme Q10 deficiency. Neurology 56(7):849–855PubMed
91.
Zurück zum Zitat Cooper J, Schapira A (2007) Friedreich’s ataxia: coenzyme Q10 and vitamin E therapy. Mitochondrion 7(Suppl):S127–S135PubMed Cooper J, Schapira A (2007) Friedreich’s ataxia: coenzyme Q10 and vitamin E therapy. Mitochondrion 7(Suppl):S127–S135PubMed
92.
Zurück zum Zitat Hart P, Lodi R, Rajagopalan B, Bradley J, Crilley J, Turner C et al (2005) Antioxidant treatment of patients with Friedreich ataxia: four-year follow-up. Arch Neurol 62(4):621–626PubMed Hart P, Lodi R, Rajagopalan B, Bradley J, Crilley J, Turner C et al (2005) Antioxidant treatment of patients with Friedreich ataxia: four-year follow-up. Arch Neurol 62(4):621–626PubMed
93.
Zurück zum Zitat Hausse A, Aggoun Y, Bonnet D, Sidi D, Munnich A, Rötig A et al (2002) Idebenone and reduced cardiac hypertrophy in Friedreich’s ataxia. Heart 87(4):346–349PubMed Hausse A, Aggoun Y, Bonnet D, Sidi D, Munnich A, Rötig A et al (2002) Idebenone and reduced cardiac hypertrophy in Friedreich’s ataxia. Heart 87(4):346–349PubMed
94.
Zurück zum Zitat Buyse G, Mertens L, Di Salvo G, Matthijs I, Weidemann F, Eyskens B et al (2003) Idebenone treatment in Friedreich’s ataxia: neurological, cardiac, and biochemical monitoring. Neurology 60(10):1679–1681PubMed Buyse G, Mertens L, Di Salvo G, Matthijs I, Weidemann F, Eyskens B et al (2003) Idebenone treatment in Friedreich’s ataxia: neurological, cardiac, and biochemical monitoring. Neurology 60(10):1679–1681PubMed
95.
Zurück zum Zitat Pineda M, Arpa J, Montero R, Aracil A, Domínguez F, Galván M et al (2008) Idebenone treatment in paediatric and adult patients with Friedreich ataxia: long-term follow-up. Eur J Paediatr Neurol 12(6):470–475PubMed Pineda M, Arpa J, Montero R, Aracil A, Domínguez F, Galván M et al (2008) Idebenone treatment in paediatric and adult patients with Friedreich ataxia: long-term follow-up. Eur J Paediatr Neurol 12(6):470–475PubMed
96.
Zurück zum Zitat Kelso G, Porteous C, Coulter C, Hughes G, Porteous W, Ledgerwood E et al (2001) Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem 276(7):4588–4596PubMed Kelso G, Porteous C, Coulter C, Hughes G, Porteous W, Ledgerwood E et al (2001) Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem 276(7):4588–4596PubMed
97.
Zurück zum Zitat Smith R, Porteous C, Gane A, Murphy M (2003) Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci U S A 100(9):5407–5412PubMed Smith R, Porteous C, Gane A, Murphy M (2003) Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci U S A 100(9):5407–5412PubMed
98.
Zurück zum Zitat Kalinowski D, Richardson D (2005) The evolution of iron chelators for the treatment of iron overload disease and cancer. Pharmacol Rev 57(4):547–583PubMed Kalinowski D, Richardson D (2005) The evolution of iron chelators for the treatment of iron overload disease and cancer. Pharmacol Rev 57(4):547–583PubMed
99.
Zurück zum Zitat Richardson D, Mouralian C, Ponka P, Becker E (2001) Development of potential iron chelators for the treatment of Friedreich’s ataxia: ligands that mobilize mitochondrial iron. Biochim Biophys Acta 1536(2–3):133–140PubMed Richardson D, Mouralian C, Ponka P, Becker E (2001) Development of potential iron chelators for the treatment of Friedreich’s ataxia: ligands that mobilize mitochondrial iron. Biochim Biophys Acta 1536(2–3):133–140PubMed
100.
Zurück zum Zitat Waldvogel D, van Gelderen P, Hallett M (1999) Increased iron in the dentate nucleus of patients with Friedrich’s ataxia. Ann Neurol 46(1):123–125PubMed Waldvogel D, van Gelderen P, Hallett M (1999) Increased iron in the dentate nucleus of patients with Friedrich’s ataxia. Ann Neurol 46(1):123–125PubMed
101.
Zurück zum Zitat Wilson R (2006) Iron dysregulation in Friedreich ataxia. Semin Pediatr Neurol 13(3):166–175PubMed Wilson R (2006) Iron dysregulation in Friedreich ataxia. Semin Pediatr Neurol 13(3):166–175PubMed
102.
Zurück zum Zitat Richardson D (2003) Friedreich’s ataxia: iron chelators that target the mitochondrion as a therapeutic strategy? Expert Opin Investig Drugs 12(2):235–245PubMedCrossRef Richardson D (2003) Friedreich’s ataxia: iron chelators that target the mitochondrion as a therapeutic strategy? Expert Opin Investig Drugs 12(2):235–245PubMedCrossRef
103.
Zurück zum Zitat Boddaert N, Le Quan Sang K, Rötig A, Leroy-Willig A, Gallet S, Brunelle F et al (2007) Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood 110(1):401–408PubMed Boddaert N, Le Quan Sang K, Rötig A, Leroy-Willig A, Gallet S, Brunelle F et al (2007) Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood 110(1):401–408PubMed
104.
Zurück zum Zitat Sohn Y, Breuer W, Munnich A, Cabantchik Z (2008) Redistribution of accumulated cell iron: a modality of chelation with therapeutic implications. Blood 111(3):1690–1699PubMed Sohn Y, Breuer W, Munnich A, Cabantchik Z (2008) Redistribution of accumulated cell iron: a modality of chelation with therapeutic implications. Blood 111(3):1690–1699PubMed
105.
Zurück zum Zitat Li K, Besse E, Ha D, Kovtunovych G, Rouault T (2008) Iron-dependent regulation of frataxin expression: implications for treatment of Friedreich ataxia. Hum Mol Genet 17(15):2265–2273PubMed Li K, Besse E, Ha D, Kovtunovych G, Rouault T (2008) Iron-dependent regulation of frataxin expression: implications for treatment of Friedreich ataxia. Hum Mol Genet 17(15):2265–2273PubMed
106.
Zurück zum Zitat Goncalves S, Paupe V, Dassa E, Rustin P (2008) Deferiprone targets aconitase: implication for Friedreich’s ataxia treatment. BMC Neurol 8:20PubMed Goncalves S, Paupe V, Dassa E, Rustin P (2008) Deferiprone targets aconitase: implication for Friedreich’s ataxia treatment. BMC Neurol 8:20PubMed
107.
Zurück zum Zitat Drummond D, Noble C, Kirpotin D, Guo Z, Scott G, Benz C (2005) Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 45:495–528PubMed Drummond D, Noble C, Kirpotin D, Guo Z, Scott G, Benz C (2005) Clinical development of histone deacetylase inhibitors as anticancer agents. Annu Rev Pharmacol Toxicol 45:495–528PubMed
108.
Zurück zum Zitat Di Prospero N, Fischbeck K (2005) Therapeutics development for triplet repeat expansion diseases. Nat Rev Genet 6(10):756–765PubMed Di Prospero N, Fischbeck K (2005) Therapeutics development for triplet repeat expansion diseases. Nat Rev Genet 6(10):756–765PubMed
109.
Zurück zum Zitat Riessland M, Brichta L, Hahnen E, Wirth B (2006) The benzamide M344, a novel histone deacetylase inhibitor, significantly increases SMN2 RNA/protein levels in spinal muscular atrophy cells. Hum Genet 120(1):101–110PubMed Riessland M, Brichta L, Hahnen E, Wirth B (2006) The benzamide M344, a novel histone deacetylase inhibitor, significantly increases SMN2 RNA/protein levels in spinal muscular atrophy cells. Hum Genet 120(1):101–110PubMed
110.
Zurück zum Zitat Sarsero J, Li L, Wardan H, Sitte K, Williamson R, Ioannou P (2003) Upregulation of expression from the FRDA genomic locus for the therapy of Friedreich ataxia. J Gene Med 5(1):72–81PubMed Sarsero J, Li L, Wardan H, Sitte K, Williamson R, Ioannou P (2003) Upregulation of expression from the FRDA genomic locus for the therapy of Friedreich ataxia. J Gene Med 5(1):72–81PubMed
111.
Zurück zum Zitat Morishita E, Masuda S, Nagao M, Yasuda Y, Sasaki R (1997) Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience 76(1):105–116PubMed Morishita E, Masuda S, Nagao M, Yasuda Y, Sasaki R (1997) Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience 76(1):105–116PubMed
112.
Zurück zum Zitat Brines M, Ghezzi P, Keenan S, Agnello D, de Lanerolle N, Cerami C et al (2000) Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci U S A 97(19):10526–10531PubMed Brines M, Ghezzi P, Keenan S, Agnello D, de Lanerolle N, Cerami C et al (2000) Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci U S A 97(19):10526–10531PubMed
113.
Zurück zum Zitat Xenocostas A, Cheung W, Farrell F, Zakszewski C, Kelley M, Lutynski A et al (2005) The pharmacokinetics of erythropoietin in the cerebrospinal fluid after intravenous administration of recombinant human erythropoietin. Eur J Clin Pharmacol 61(3):189–195PubMed Xenocostas A, Cheung W, Farrell F, Zakszewski C, Kelley M, Lutynski A et al (2005) The pharmacokinetics of erythropoietin in the cerebrospinal fluid after intravenous administration of recombinant human erythropoietin. Eur J Clin Pharmacol 61(3):189–195PubMed
114.
Zurück zum Zitat Sakanaka M, Wen T, Matsuda S, Masuda S, Morishita E, Nagao M et al (1998) In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci U S A 95(8):4635–4640PubMed Sakanaka M, Wen T, Matsuda S, Masuda S, Morishita E, Nagao M et al (1998) In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci U S A 95(8):4635–4640PubMed
115.
Zurück zum Zitat Sirén A, Fratelli M, Brines M, Goemans C, Casagrande S, Lewczuk P et al (2001) Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci U S A 98(7):4044–4049PubMed Sirén A, Fratelli M, Brines M, Goemans C, Casagrande S, Lewczuk P et al (2001) Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci U S A 98(7):4044–4049PubMed
116.
Zurück zum Zitat Bogoyevitch M (2004) An update on the cardiac effects of erythropoietin cardioprotection by erythropoietin and the lessons learnt from studies in neuroprotection. Cardiovasc Res 63(2):208–216PubMed Bogoyevitch M (2004) An update on the cardiac effects of erythropoietin cardioprotection by erythropoietin and the lessons learnt from studies in neuroprotection. Cardiovasc Res 63(2):208–216PubMed
117.
Zurück zum Zitat Sturm B, Stupphann D, Kaun C, Boesch S, Schranzhofer M, Wojta J et al (2005) Recombinant human erythropoietin: effects on frataxin expression in vitro. Eur J Clin Invest 35(11):711–717PubMed Sturm B, Stupphann D, Kaun C, Boesch S, Schranzhofer M, Wojta J et al (2005) Recombinant human erythropoietin: effects on frataxin expression in vitro. Eur J Clin Invest 35(11):711–717PubMed
118.
Zurück zum Zitat Acquaviva F, Castaldo I, Filla A, Giacchetti M, Marmolino D, Monticelli A et al (2008) Recombinant human erythropoietin increases frataxin protein expression without increasing mRNA expression. Cerebellum 7(3):360–365PubMed Acquaviva F, Castaldo I, Filla A, Giacchetti M, Marmolino D, Monticelli A et al (2008) Recombinant human erythropoietin increases frataxin protein expression without increasing mRNA expression. Cerebellum 7(3):360–365PubMed
119.
Zurück zum Zitat Boesch S, Sturm B, Hering S, Goldenberg H, Poewe W, Scheiber-Mojdehkar B (2007) Friedreich’s ataxia: clinical pilot trial with recombinant human erythropoietin. Ann Neurol 62(5):521–524PubMed Boesch S, Sturm B, Hering S, Goldenberg H, Poewe W, Scheiber-Mojdehkar B (2007) Friedreich’s ataxia: clinical pilot trial with recombinant human erythropoietin. Ann Neurol 62(5):521–524PubMed
120.
Zurück zum Zitat Richter B, Bandeira-Echtler E, Bergerhoff K, Clar C, Ebrahim S (2006) Pioglitazone for type 2 diabetes mellitus. Cochrane Database Syst Rev (4):CD006060 Richter B, Bandeira-Echtler E, Bergerhoff K, Clar C, Ebrahim S (2006) Pioglitazone for type 2 diabetes mellitus. Cochrane Database Syst Rev (4):CD006060
121.
Zurück zum Zitat Richter B, Bandeira-Echtler E, Bergerhoff K, Clar C, Ebrahim S (2007) Rosiglitazone for type 2 diabetes mellitus. Cochrane Database Syst Rev (3):CD006063 Richter B, Bandeira-Echtler E, Bergerhoff K, Clar C, Ebrahim S (2007) Rosiglitazone for type 2 diabetes mellitus. Cochrane Database Syst Rev (3):CD006063
122.
Zurück zum Zitat Heneka M, Landreth G (2007) PPARs in the brain. Biochim Biophys Acta 1771(8):1031–1045PubMed Heneka M, Landreth G (2007) PPARs in the brain. Biochim Biophys Acta 1771(8):1031–1045PubMed
123.
Zurück zum Zitat Heneka M, Landreth G, Hüll M (2007) Drug insight: effects mediated by peroxisome proliferator-activated receptor-gamma in CNS disorders. Nat Clin Pract Neurol 3(9):496–504PubMed Heneka M, Landreth G, Hüll M (2007) Drug insight: effects mediated by peroxisome proliferator-activated receptor-gamma in CNS disorders. Nat Clin Pract Neurol 3(9):496–504PubMed
124.
Zurück zum Zitat Del Gaizo V, Payne R (2003) A novel TAT-mitochondrial signal sequence fusion protein is processed, stays in mitochondria, and crosses the placenta. Mol Ther 7(6):720–730PubMed Del Gaizo V, Payne R (2003) A novel TAT-mitochondrial signal sequence fusion protein is processed, stays in mitochondria, and crosses the placenta. Mol Ther 7(6):720–730PubMed
125.
Zurück zum Zitat Del Gaizo V, MacKenzie J, Payne R (2003) Targeting proteins to mitochondria using TAT. Mol Genet Metab 80(1–2):170–180PubMed Del Gaizo V, MacKenzie J, Payne R (2003) Targeting proteins to mitochondria using TAT. Mol Genet Metab 80(1–2):170–180PubMed
126.
Zurück zum Zitat Marmolino D, Acquaviva F, Pinelli M, Monticelli A, Castaldo I, Filla A, Cocozza S (2008) PPAR-gamma agonist azelaoyl PAF increases frataxin protein and mRNA expression. New implications for the Friedreich’s ataxia theraphy. Cerebellum. Dec. 23 (PMID: 19104905)PubMed Marmolino D, Acquaviva F, Pinelli M, Monticelli A, Castaldo I, Filla A, Cocozza S (2008) PPAR-gamma agonist azelaoyl PAF increases frataxin protein and mRNA expression. New implications for the Friedreich’s ataxia theraphy. Cerebellum. Dec. 23 (PMID: 19104905)PubMed
Metadaten
Titel
Friedreich’s Ataxia: From the (GAA) n Repeat Mediated Silencing to New Promising Molecules for Therapy
verfasst von
Daniele Marmolino
Fabio Acquaviva
Publikationsdatum
01.09.2009
Verlag
Springer-Verlag
Erschienen in
The Cerebellum / Ausgabe 3/2009
Print ISSN: 1473-4222
Elektronische ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-008-0084-2

Weitere Artikel der Ausgabe 3/2009

The Cerebellum 3/2009 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Vierten reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Bluttest erkennt Parkinson schon zehn Jahre vor der Diagnose

10.05.2024 Parkinson-Krankheit Nachrichten

Ein Bluttest kann abnorm aggregiertes Alpha-Synuclein bei einigen Menschen schon zehn Jahre vor Beginn der motorischen Parkinsonsymptome nachweisen. Mit einem solchen Test lassen sich möglicherweise Prodromalstadien erfassen und die Betroffenen früher behandeln.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Wartezeit nicht kürzer, aber Arbeit flexibler

Psychotherapie Medizin aktuell

Fünf Jahren nach der Neugestaltung der Psychotherapie-Richtlinie wurden jetzt die Effekte der vorgenommenen Änderungen ausgewertet. Das Hauptziel der Novellierung war eine kürzere Wartezeit auf Therapieplätze. Dieses Ziel wurde nicht erreicht, es gab jedoch positive Auswirkungen auf andere Bereiche.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.