Skip to main content
Erschienen in: Neurotoxicity Research 2/2017

01.08.2017 | ORIGINAL ARTICLE

α-Ketoadipic Acid and α-Aminoadipic Acid Cause Disturbance of Glutamatergic Neurotransmission and Induction of Oxidative Stress In Vitro in Brain of Adolescent Rats

verfasst von: Janaína Camacho da Silva, Alexandre Umpierrez Amaral, Cristiane Cecatto, Alessandro Wajner, Kálita dos Santos Godoy, Rafael Teixeira Ribeiro, Aline de Mello Gonçalves, Ângela Zanatta, Mateus Struecker da Rosa, Samanta Oliveira Loureiro, Carmen Regla Vargas, Guilhian Leipnitz, Diogo Onofre Gomes de Souza, Moacir Wajner

Erschienen in: Neurotoxicity Research | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

Tissue accumulation of α-ketoadipic (KAA) and α-aminoadipic (AAA) acids is the biochemical hallmark of α-ketoadipic aciduria. This inborn error of metabolism is currently considered a biochemical phenotype with uncertain clinical significance. Considering that KAA and AAA are structurally similar to α-ketoglutarate and glutamate, respectively, we investigated the in vitro effects of these compounds on glutamatergic neurotransmission in the brain of adolescent rats. Bioenergetics and redox homeostasis were also investigated because they represent fundamental systems for brain development and functioning. We first observed that AAA significantly decreased glutamate uptake, whereas glutamate dehydrogenase activity was markedly inhibited by KAA in a competitive fashion. In addition, AAA and more markedly KAA induced generation of reactive oxygen and nitrogen species (increase of 2′,7′-dichloroflurescein (DCFH) oxidation and nitrite/nitrate levels), lipid peroxidation (increase of malondialdehyde concentrations), and protein oxidation (increase of carbonyl formation and decrease of sulfhydryl content), besides decreasing the antioxidant defenses (reduced glutathione (GSH)) and aconitase activity. Furthermore, KAA-induced lipid peroxidation and GSH decrease were prevented by the antioxidants α-tocopherol, melatonin, and resveratrol, suggesting the involvement of reactive species in these effects. Noteworthy, the classical inhibitor of NMDA glutamate receptors MK-801 was not able to prevent KAA-induced and AAA-induced oxidative stress, determined by DCFH oxidation and GSH levels, making unlikely a secondary induction of oxidative stress through overstimulation of glutamate receptors. In contrast, KAA and AAA did not significantly change brain bioenergetic parameters. We speculate that disturbance of glutamatergic neurotransmission and redox homeostasis by KAA and AAA may play a role in those cases of α-ketoadipic aciduria that display neurological symptoms.
Literatur
Zurück zum Zitat Akerman KE, Wikstrom MK (1976) Safranine as a probe of the mitochondrial membrane potential. FEBS Lett 68(2):191–197CrossRefPubMed Akerman KE, Wikstrom MK (1976) Safranine as a probe of the mitochondrial membrane potential. FEBS Lett 68(2):191–197CrossRefPubMed
Zurück zum Zitat Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302(2–3):141–145CrossRefPubMed Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302(2–3):141–145CrossRefPubMed
Zurück zum Zitat Anisimov VN (2006) Premature ageing prevention: limitations and perspectives of pharmacological interventions. Curr Drug Targets 7(11):1485–1503CrossRefPubMed Anisimov VN (2006) Premature ageing prevention: limitations and perspectives of pharmacological interventions. Curr Drug Targets 7(11):1485–1503CrossRefPubMed
Zurück zum Zitat Au A, Lam W, Tsang J, Yau TK, Soong I, Yeo W, Suen J, Ho WM, Wong KY, Kwong A, Suen D, Sze WK, Ng A, Girgis A, Fielding R (2013) Supportive care needs in Hong Kong Chinese women confronting advanced breast cancer. Psychooncology 22(5):1144–1151CrossRefPubMed Au A, Lam W, Tsang J, Yau TK, Soong I, Yeo W, Suen J, Ho WM, Wong KY, Kwong A, Suen D, Sze WK, Ng A, Girgis A, Fielding R (2013) Supportive care needs in Hong Kong Chinese women confronting advanced breast cancer. Psychooncology 22(5):1144–1151CrossRefPubMed
Zurück zum Zitat Bhandary B, Marahatta A, Kim HR, Chae HJ (2012) An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int J Mol Sci 14(1):434–456CrossRefPubMedPubMedCentral Bhandary B, Marahatta A, Kim HR, Chae HJ (2012) An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int J Mol Sci 14(1):434–456CrossRefPubMedPubMedCentral
Zurück zum Zitat Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMed Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMed
Zurück zum Zitat Brown DR, Kretzschmar HA (1998) The glio-toxic mechanism of alpha-aminoadipic acid on cultured astrocytes. J Neurocytol 27(2):109–118CrossRefPubMed Brown DR, Kretzschmar HA (1998) The glio-toxic mechanism of alpha-aminoadipic acid on cultured astrocytes. J Neurocytol 27(2):109–118CrossRefPubMed
Zurück zum Zitat Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352PubMed Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352PubMed
Zurück zum Zitat Castro L, Rodriguez M, Radi R (1994) Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J Biol Chem 269(47):29409–29415PubMed Castro L, Rodriguez M, Radi R (1994) Aconitase is readily inactivated by peroxynitrite, but not by its precursor, nitric oxide. J Biol Chem 269(47):29409–29415PubMed
Zurück zum Zitat Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+-stimulated atpase activity. Anal Biochem 157(2):375–380CrossRefPubMed Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+-stimulated atpase activity. Anal Biochem 157(2):375–380CrossRefPubMed
Zurück zum Zitat Cornish-Bowden A (1974) A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. The Biochemical journal 137(1):143–144CrossRefPubMedPubMedCentral Cornish-Bowden A (1974) A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. The Biochemical journal 137(1):143–144CrossRefPubMedPubMedCentral
Zurück zum Zitat Danhauser K, Sauer SW, Haack TB, Wieland T, Staufner C, Graf E, Zschocke J, Strom TM, Traub T, Okun JG, Meitinger T, Hoffmann GF, Prokisch H, Kolker S (2012) DHTKD1 mutations cause 2-aminoadipic and 2-oxoadipic aciduria. Am J Hum Genet 91(6):1082–1087CrossRefPubMedPubMedCentral Danhauser K, Sauer SW, Haack TB, Wieland T, Staufner C, Graf E, Zschocke J, Strom TM, Traub T, Okun JG, Meitinger T, Hoffmann GF, Prokisch H, Kolker S (2012) DHTKD1 mutations cause 2-aminoadipic and 2-oxoadipic aciduria. Am J Hum Genet 91(6):1082–1087CrossRefPubMedPubMedCentral
Zurück zum Zitat Di Meo S, Reed TT, Venditti P, Victor VM (2016) Role of ROS and RNS sources in physiological and pathological conditions. Oxidative Med Cell Longev 2016:1245049 Di Meo S, Reed TT, Venditti P, Victor VM (2016) Role of ROS and RNS sources in physiological and pathological conditions. Oxidative Med Cell Longev 2016:1245049
Zurück zum Zitat Dienel GA (2013) Astrocytic energetics during excitatory neurotransmission: what are contributions of glutamate oxidation and glycolysis? Neurochem Int 63(4):244–258CrossRefPubMedPubMedCentral Dienel GA (2013) Astrocytic energetics during excitatory neurotransmission: what are contributions of glutamate oxidation and glycolysis? Neurochem Int 63(4):244–258CrossRefPubMedPubMedCentral
Zurück zum Zitat Dominah GA, McMinimy RA, Kallon S, Kwakye GF (2017) Acute exposure to chlorpyrifos caused NADPH oxidase mediated oxidative stress and neurotoxicity in a striatal cell model of Huntington’s disease. Neurotoxicology. In press Dominah GA, McMinimy RA, Kallon S, Kwakye GF (2017) Acute exposure to chlorpyrifos caused NADPH oxidase mediated oxidative stress and neurotoxicity in a striatal cell model of Huntington’s disease. Neurotoxicology. In press
Zurück zum Zitat Duran M, Beemer FA, Wadman SK, Wendel U, Janssen B (1984) A patient with alpha-ketoadipic and alpha-aminoadipic aciduria. J Inherit Metab Dis 7(2):61CrossRefPubMed Duran M, Beemer FA, Wadman SK, Wendel U, Janssen B (1984) A patient with alpha-ketoadipic and alpha-aminoadipic aciduria. J Inherit Metab Dis 7(2):61CrossRefPubMed
Zurück zum Zitat Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421CrossRefPubMed Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421CrossRefPubMed
Zurück zum Zitat Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi EA (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388(2):261–266CrossRefPubMed Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi EA (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388(2):261–266CrossRefPubMed
Zurück zum Zitat Fenton WA, Gravel RA, Rosenblatt DS (2001) Disorders of propionate and methylmalonate metabolism. In: The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill Inc, New York Fenton WA, Gravel RA, Rosenblatt DS (2001) Disorders of propionate and methylmalonate metabolism. In: The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill Inc, New York
Zurück zum Zitat Figueira TR, Melo DR, Vercesi AE, Castilho RF (2012) Safranine as a fluorescent probe for the evaluation of mitochondrial membrane potential in isolated organelles and permeabilized cells. Methods Mol Biol 810:103–117CrossRefPubMed Figueira TR, Melo DR, Vercesi AE, Castilho RF (2012) Safranine as a fluorescent probe for the evaluation of mitochondrial membrane potential in isolated organelles and permeabilized cells. Methods Mol Biol 810:103–117CrossRefPubMed
Zurück zum Zitat Fischer MH, Brown RR (1980) Tryptophan and lysine metabolism in alpha-aminoadipic aciduria. Am J Med Genet 5(1):35–41CrossRefPubMed Fischer MH, Brown RR (1980) Tryptophan and lysine metabolism in alpha-aminoadipic aciduria. Am J Med Genet 5(1):35–41CrossRefPubMed
Zurück zum Zitat Fischer MH, Gerritsen T, Opitz JM (1974) Alpha-aminoadipic aciduria, a non-deleterious inborn metabolic defect. Humangenetik 24(4):265–270PubMed Fischer MH, Gerritsen T, Opitz JM (1974) Alpha-aminoadipic aciduria, a non-deleterious inborn metabolic defect. Humangenetik 24(4):265–270PubMed
Zurück zum Zitat Fischer JC, Ruitenbeek W, Berden JA, Trijbels JMF, Veerkamp JH, Stadhouders AM, Sengers RCA, Janssen AJM (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clinica chimica acta; international journal of clinical chemistry 153(1):23–36CrossRefPubMed Fischer JC, Ruitenbeek W, Berden JA, Trijbels JMF, Veerkamp JH, Stadhouders AM, Sengers RCA, Janssen AJM (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clinica chimica acta; international journal of clinical chemistry 153(1):23–36CrossRefPubMed
Zurück zum Zitat Frigerio F, Karaca M, De Roo M, Mlynarik V, Skytt DM, Carobbio S, Pajecka K, Waagepetersen HS, Gruetter R, Muller D, Maechler P (2012) Deletion of glutamate dehydrogenase 1 (Glud1) in the central nervous system affects glutamate handling without altering synaptic transmission. J Neurochem 123(3):342–348CrossRefPubMed Frigerio F, Karaca M, De Roo M, Mlynarik V, Skytt DM, Carobbio S, Pajecka K, Waagepetersen HS, Gruetter R, Muller D, Maechler P (2012) Deletion of glutamate dehydrogenase 1 (Glud1) in the central nervous system affects glutamate handling without altering synaptic transmission. J Neurochem 123(3):342–348CrossRefPubMed
Zurück zum Zitat Frizzo ME, Lara DR, Prokopiuk Ade S, Vargas CR, Salbego CG, Wajner M, Souza DO (2002) Guanosine enhances glutamate uptake in brain cortical slices at normal and excitotoxic conditions. Cell Mol Neurobiol 22(3):353–363CrossRefPubMed Frizzo ME, Lara DR, Prokopiuk Ade S, Vargas CR, Salbego CG, Wajner M, Souza DO (2002) Guanosine enhances glutamate uptake in brain cortical slices at normal and excitotoxic conditions. Cell Mol Neurobiol 22(3):353–363CrossRefPubMed
Zurück zum Zitat Funk CB, Prasad AN, Frosk P, Sauer S, Kolker S, Greenberg CR, Del Bigio MR (2005) Neuropathological, biochemical and molecular findings in a glutaric acidemia type 1 cohort. Brain 128(Pt 4):711–722CrossRefPubMed Funk CB, Prasad AN, Frosk P, Sauer S, Kolker S, Greenberg CR, Del Bigio MR (2005) Neuropathological, biochemical and molecular findings in a glutaric acidemia type 1 cohort. Brain 128(Pt 4):711–722CrossRefPubMed
Zurück zum Zitat Gardner PR (2002) Aconitase: sensitive target and measure of superoxide. Methods Enzymol 349:9–23CrossRefPubMed Gardner PR (2002) Aconitase: sensitive target and measure of superoxide. Methods Enzymol 349:9–23CrossRefPubMed
Zurück zum Zitat Gardner PR, Fridovich I (1992) Inactivation-reactivation of aconitase in Escherichia coli. A sensitive measure of superoxide radical. J Biol Chem 267(13):8757–8763PubMed Gardner PR, Fridovich I (1992) Inactivation-reactivation of aconitase in Escherichia coli. A sensitive measure of superoxide radical. J Biol Chem 267(13):8757–8763PubMed
Zurück zum Zitat Gardner PR, Fridovich I (1993) Effect of glutathione on aconitase in Escherichia coli. Arch Biochem Biophys 301(1):98–102CrossRefPubMed Gardner PR, Fridovich I (1993) Effect of glutathione on aconitase in Escherichia coli. Arch Biochem Biophys 301(1):98–102CrossRefPubMed
Zurück zum Zitat Gardner PR, Raineri I, Epstein LB, White CW (1995) Superoxide radical and iron modulate aconitase activity in mammalian cells. J Biol Chem 270(22):13399–13405CrossRefPubMed Gardner PR, Raineri I, Epstein LB, White CW (1995) Superoxide radical and iron modulate aconitase activity in mammalian cells. J Biol Chem 270(22):13399–13405CrossRefPubMed
Zurück zum Zitat Gnaiger E (2009) Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology. Int J Biochem Cell Biol 41(10):1837–1845CrossRefPubMed Gnaiger E (2009) Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology. Int J Biochem Cell Biol 41(10):1837–1845CrossRefPubMed
Zurück zum Zitat Goodman SI, Duran M (2014) Biochemical phenotypes of questionable clinical significance. Physician’s guide to the diagnosis, treatment, and follow-up of inherited metabolic diseases, 1st edn. Springer, Heidelberg Goodman SI, Duran M (2014) Biochemical phenotypes of questionable clinical significance. Physician’s guide to the diagnosis, treatment, and follow-up of inherited metabolic diseases, 1st edn. Springer, Heidelberg
Zurück zum Zitat Hagen J, te Brinke H, Wanders RJ, Knegt AC, Oussoren E, Hoogeboom AJ, Ruijter GJ, Becker D, Schwab KO, Franke I, Duran M, Waterham HR, Sass JO, Houten SM (2015) Genetic basis of alpha-aminoadipic and alpha-ketoadipic aciduria. J Inherit Metab Dis 38(5):873–879CrossRefPubMed Hagen J, te Brinke H, Wanders RJ, Knegt AC, Oussoren E, Hoogeboom AJ, Ruijter GJ, Becker D, Schwab KO, Franke I, Duran M, Waterham HR, Sass JO, Houten SM (2015) Genetic basis of alpha-aminoadipic and alpha-ketoadipic aciduria. J Inherit Metab Dis 38(5):873–879CrossRefPubMed
Zurück zum Zitat Hallen A, Jamie JF, Cooper AJ (2013) Lysine metabolism in mammalian brain: an update on the importance of recent discoveries. Amino Acids 45(6):1249–1272CrossRefPubMed Hallen A, Jamie JF, Cooper AJ (2013) Lysine metabolism in mammalian brain: an update on the importance of recent discoveries. Amino Acids 45(6):1249–1272CrossRefPubMed
Zurück zum Zitat Halliwell B, Gutteridge JMC (2007) Measurement of reactive species. Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford Halliwell B, Gutteridge JMC (2007) Measurement of reactive species. Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford
Zurück zum Zitat Hoffmann GF, Kölker, S (2011) Cerebral organic acid disorders and other disorders of lysine catabolism. Inborn Metabolic Diseases, 5 edn., Heidelberg Hoffmann GF, Kölker, S (2011) Cerebral organic acid disorders and other disorders of lysine catabolism. Inborn Metabolic Diseases, 5 edn., Heidelberg
Zurück zum Zitat Hoffmann GF, Seppel CK, Holmes B, Mitchell L, Christen HJ, Hanefeld F, Rating D, Nyhan WL (1993) Quantitative organic acid analysis in cerebrospinal fluid and plasma: reference values in a pediatric population. J Chromatogr 617(1):1–10CrossRefPubMed Hoffmann GF, Seppel CK, Holmes B, Mitchell L, Christen HJ, Hanefeld F, Rating D, Nyhan WL (1993) Quantitative organic acid analysis in cerebrospinal fluid and plasma: reference values in a pediatric population. J Chromatogr 617(1):1–10CrossRefPubMed
Zurück zum Zitat Huck S, Grass F, Hortnagl H (1984) The glutamate analogue alpha-aminoadipic acid is taken up by astrocytes before exerting its gliotoxic effect in vitro. The Journal of neuroscience : the official journal of the Society for Neuroscience 4(10):2650–2657 Huck S, Grass F, Hortnagl H (1984) The glutamate analogue alpha-aminoadipic acid is taken up by astrocytes before exerting its gliotoxic effect in vitro. The Journal of neuroscience : the official journal of the Society for Neuroscience 4(10):2650–2657
Zurück zum Zitat Hughes BP (1962) A method for estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clinica chimica acta; international journal of clinical chemistry 7(5):597–59&CrossRefPubMed Hughes BP (1962) A method for estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological sera. Clinica chimica acta; international journal of clinical chemistry 7(5):597–59&CrossRefPubMed
Zurück zum Zitat Jafari P, Braissant O, Bonafe L, Ballhausen D (2011) The unsolved puzzle of neuropathogenesis in glutaric aciduria type I. Mol Genet Metab 104(4):425–437CrossRefPubMed Jafari P, Braissant O, Bonafe L, Ballhausen D (2011) The unsolved puzzle of neuropathogenesis in glutaric aciduria type I. Mol Genet Metab 104(4):425–437CrossRefPubMed
Zurück zum Zitat Jones DH, Matus AI (1974) Isolation of synaptic plasma membrane from brain by combined flotation-sedimentation density gradient centrifugation. Biochim Biophys Acta 356(3):276–287CrossRefPubMed Jones DH, Matus AI (1974) Isolation of synaptic plasma membrane from brain by combined flotation-sedimentation density gradient centrifugation. Biochim Biophys Acta 356(3):276–287CrossRefPubMed
Zurück zum Zitat Kolker S, Hoffmann GF, Schor DS, Feyh P, Wagner L, Jeffrey I, Pourfarzam M, Okun JG, Zschocke J, Baric I, Bain MD, Jakobs C, Chalmers RA (2003) Glutaryl-CoA dehydrogenase deficiency: region-specific analysis of organic acids and acylcarnitines in post mortem brain predicts vulnerability of the putamen. Neuropediatrics 34(5):253–260CrossRefPubMed Kolker S, Hoffmann GF, Schor DS, Feyh P, Wagner L, Jeffrey I, Pourfarzam M, Okun JG, Zschocke J, Baric I, Bain MD, Jakobs C, Chalmers RA (2003) Glutaryl-CoA dehydrogenase deficiency: region-specific analysis of organic acids and acylcarnitines in post mortem brain predicts vulnerability of the putamen. Neuropediatrics 34(5):253–260CrossRefPubMed
Zurück zum Zitat LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5(2):227–231CrossRefPubMed LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5(2):227–231CrossRefPubMed
Zurück zum Zitat Leipnitz G, Seminotti B, Fernandes CG, Amaral AU, Beskow AP, da Silva LB, Zanatta A, Ribeiro CA, Vargas CR, Wajner M (2009) Striatum is more vulnerable to oxidative damage induced by the metabolites accumulating in 3-hydroxy-3-methylglutaryl-CoA lyase deficiency as compared to liver. Int J Dev Neurosci 27(4):351–356CrossRefPubMed Leipnitz G, Seminotti B, Fernandes CG, Amaral AU, Beskow AP, da Silva LB, Zanatta A, Ribeiro CA, Vargas CR, Wajner M (2009) Striatum is more vulnerable to oxidative damage induced by the metabolites accumulating in 3-hydroxy-3-methylglutaryl-CoA lyase deficiency as compared to liver. Int J Dev Neurosci 27(4):351–356CrossRefPubMed
Zurück zum Zitat Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357CrossRefPubMed Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357CrossRefPubMed
Zurück zum Zitat Liang LP, Waldbaum S, Rowley S, Huang TT, Day BJ, Patel M (2012) Mitochondrial oxidative stress and epilepsy in SOD2 deficient mice: attenuation by a lipophilic metalloporphyrin. Neurobiol Dis 45(3):1068–1076CrossRefPubMed Liang LP, Waldbaum S, Rowley S, Huang TT, Day BJ, Patel M (2012) Mitochondrial oxidative stress and epilepsy in SOD2 deficient mice: attenuation by a lipophilic metalloporphyrin. Neurobiol Dis 45(3):1068–1076CrossRefPubMed
Zurück zum Zitat Lormans S, Lowenthal A (1974) Alpha-amino adipic aciduria in an oligophrenic child. Clinica chimica acta; international journal of clinical chemistry 57(1):97–101CrossRefPubMed Lormans S, Lowenthal A (1974) Alpha-amino adipic aciduria in an oligophrenic child. Clinica chimica acta; international journal of clinical chemistry 57(1):97–101CrossRefPubMed
Zurück zum Zitat Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275PubMed Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275PubMed
Zurück zum Zitat Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, Brann DW (2017) NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener 12(1):7CrossRefPubMedPubMedCentral Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, Brann DW (2017) NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener 12(1):7CrossRefPubMedPubMedCentral
Zurück zum Zitat Maciel EN, Kowaltowski AJ, Schwalm FD, Rodrigues JM, Souza DO, Vercesi AE, Wajner M, Castilho RF (2004) Mitochondrial permeability transition in neuronal damage promoted by Ca2+ and respiratory chain complex II inhibition. J Neurochem 90(5):1025–1035CrossRefPubMed Maciel EN, Kowaltowski AJ, Schwalm FD, Rodrigues JM, Souza DO, Vercesi AE, Wajner M, Castilho RF (2004) Mitochondrial permeability transition in neuronal damage promoted by Ca2+ and respiratory chain complex II inhibition. J Neurochem 90(5):1025–1035CrossRefPubMed
Zurück zum Zitat McBean GJ (1990) Intrastriatal injection of DL-alpha-aminoadipate reduces kainate toxicity in vitro. Neuroscience 34(1):225–234CrossRefPubMed McBean GJ (1990) Intrastriatal injection of DL-alpha-aminoadipate reduces kainate toxicity in vitro. Neuroscience 34(1):225–234CrossRefPubMed
Zurück zum Zitat McBean GJ (1994) Inhibition of the glutamate transporter and glial enzymes in rat striatum by the gliotoxin, alpha aminoadipate. Br J Pharmacol 113(2):536–540CrossRefPubMedPubMedCentral McBean GJ (1994) Inhibition of the glutamate transporter and glial enzymes in rat striatum by the gliotoxin, alpha aminoadipate. Br J Pharmacol 113(2):536–540CrossRefPubMedPubMedCentral
Zurück zum Zitat McKenna MC (2011) Glutamate dehydrogenase in brain mitochondria: do lipid modifications and transient metabolon formation influence enzyme activity? Neurochem Int 59(4):525–533CrossRefPubMedPubMedCentral McKenna MC (2011) Glutamate dehydrogenase in brain mitochondria: do lipid modifications and transient metabolon formation influence enzyme activity? Neurochem Int 59(4):525–533CrossRefPubMedPubMedCentral
Zurück zum Zitat McKenna MC (2013) Glutamate pays its own way in astrocytes. Front Endocrinol 4:191CrossRef McKenna MC (2013) Glutamate pays its own way in astrocytes. Front Endocrinol 4:191CrossRef
Zurück zum Zitat Melo DR, Mirandola SR, Assuncao NA, Castilho RF (2012) Methylmalonate impairs mitochondrial respiration supported by NADH-linked substrates: involvement of mitochondrial glutamate metabolism. J Neurosci Res 90(6):1190–1199CrossRefPubMed Melo DR, Mirandola SR, Assuncao NA, Castilho RF (2012) Methylmalonate impairs mitochondrial respiration supported by NADH-linked substrates: involvement of mitochondrial glutamate metabolism. J Neurosci Res 90(6):1190–1199CrossRefPubMed
Zurück zum Zitat Mirandola SR, Melo DR, Schuck PF, Ferreira GC, Wajner M, Castilho RF (2008) Methylmalonate inhibits succinate-supported oxygen consumption by interfering with mitochondrial succinate uptake. J Inherit Metab Dis 31(1):44–54CrossRefPubMed Mirandola SR, Melo DR, Schuck PF, Ferreira GC, Wajner M, Castilho RF (2008) Methylmalonate inhibits succinate-supported oxygen consumption by interfering with mitochondrial succinate uptake. J Inherit Metab Dis 31(1):44–54CrossRefPubMed
Zurück zum Zitat Mori N, Yasutake A, Hirayama K (2007) Comparative study of activities in reactive oxygen species production/defense system in mitochondria of rat brain and liver, and their susceptibility to methylmercury toxicity. Arch Toxicol 81(11):769–776CrossRefPubMed Mori N, Yasutake A, Hirayama K (2007) Comparative study of activities in reactive oxygen species production/defense system in mitochondria of rat brain and liver, and their susceptibility to methylmercury toxicity. Arch Toxicol 81(11):769–776CrossRefPubMed
Zurück zum Zitat Navarro-Gonzalvez JA, Garcia-Benayas C, Arenas J (1998) Semiautomated measurement of nitrate in biological fluids. Clin Chem 44(3):679–681PubMed Navarro-Gonzalvez JA, Garcia-Benayas C, Arenas J (1998) Semiautomated measurement of nitrate in biological fluids. Clin Chem 44(3):679–681PubMed
Zurück zum Zitat Niizuma K, Endo H, Chan PH (2009) Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem 109(Suppl 1):133–138CrossRefPubMedPubMedCentral Niizuma K, Endo H, Chan PH (2009) Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem 109(Suppl 1):133–138CrossRefPubMedPubMedCentral
Zurück zum Zitat Nissen JD, Pajecka K, Stridh MH, Skytt DM, Waagepetersen HS (2015) Dysfunctional TCA-cycle metabolism in glutamate dehydrogenase deficient astrocytes. Glia 63(12):2313–2326CrossRefPubMed Nissen JD, Pajecka K, Stridh MH, Skytt DM, Waagepetersen HS (2015) Dysfunctional TCA-cycle metabolism in glutamate dehydrogenase deficient astrocytes. Glia 63(12):2313–2326CrossRefPubMed
Zurück zum Zitat Olney JW, de Gubareff T, Collins JF (1980) Stereospecificity of the gliotoxic and anti-neurotoxic actions of alpha-aminoadipate. Neurosci Lett 19(3):277–282CrossRefPubMed Olney JW, de Gubareff T, Collins JF (1980) Stereospecificity of the gliotoxic and anti-neurotoxic actions of alpha-aminoadipate. Neurosci Lett 19(3):277–282CrossRefPubMed
Zurück zum Zitat Patel M (2004) Mitochondrial dysfunction and oxidative stress: cause and consequence of epileptic seizures. Free Radic Biol Med 37(12):1951–1962CrossRefPubMed Patel M (2004) Mitochondrial dysfunction and oxidative stress: cause and consequence of epileptic seizures. Free Radic Biol Med 37(12):1951–1962CrossRefPubMed
Zurück zum Zitat Pedersen OO, Karlsen RL (1979) Destruction of Muller cells in the adult rat by intravitreal injection of D,L-alpha-aminoadipic acid. An electron microscopic study Experimental eye research 28(5):569–575CrossRefPubMed Pedersen OO, Karlsen RL (1979) Destruction of Muller cells in the adult rat by intravitreal injection of D,L-alpha-aminoadipic acid. An electron microscopic study Experimental eye research 28(5):569–575CrossRefPubMed
Zurück zum Zitat Petito CK, Chung MC, Verkhovsky LM, Cooper AJ (1992) Brain glutamine synthetase increases following cerebral ischemia in the rat. Brain Res 569(2):275–280CrossRefPubMed Petito CK, Chung MC, Verkhovsky LM, Cooper AJ (1992) Brain glutamine synthetase increases following cerebral ischemia in the rat. Brain Res 569(2):275–280CrossRefPubMed
Zurück zum Zitat Plaitakis A, Zaganas I (2001) Regulation of human glutamate dehydrogenases: implications for glutamate, ammonia and energy metabolism in brain. J Neurosci Res 66(5):899–908CrossRefPubMed Plaitakis A, Zaganas I (2001) Regulation of human glutamate dehydrogenases: implications for glutamate, ammonia and energy metabolism in brain. J Neurosci Res 66(5):899–908CrossRefPubMed
Zurück zum Zitat Przyrembel H, Bachmann D, Lombeck I, Becker K, Wendel U, Wadman SK, Bremer HJ (1975) Alpha-ketoadipic aciduria, a new inborn error of lysine metabolism; biochemical studies. Clinica chimica acta; international journal of clinical chemistry 58(3):257–269CrossRefPubMed Przyrembel H, Bachmann D, Lombeck I, Becker K, Wendel U, Wadman SK, Bremer HJ (1975) Alpha-ketoadipic aciduria, a new inborn error of lysine metabolism; biochemical studies. Clinica chimica acta; international journal of clinical chemistry 58(3):257–269CrossRefPubMed
Zurück zum Zitat Rao MS, Reddy JK (1987) Peroxisome proliferation and hepatocarcinogenesis. Carcinogenesis 8(5):631–636CrossRefPubMed Rao MS, Reddy JK (1987) Peroxisome proliferation and hepatocarcinogenesis. Carcinogenesis 8(5):631–636CrossRefPubMed
Zurück zum Zitat Rao Y, Bodmer R, Jan LY, Jan YN (1992) The big brain gene of Drosophila functions to control the number of neuronal precursors in the peripheral nervous system. Development 116(1):31–40PubMed Rao Y, Bodmer R, Jan LY, Jan YN (1992) The big brain gene of Drosophila functions to control the number of neuronal precursors in the peripheral nervous system. Development 116(1):31–40PubMed
Zurück zum Zitat Reiter RJ, Tan DX, Manchester LC, Qi W (2001) Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: a review of the evidence. Cell Biochem Biophys 34(2):237–256CrossRefPubMed Reiter RJ, Tan DX, Manchester LC, Qi W (2001) Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: a review of the evidence. Cell Biochem Biophys 34(2):237–256CrossRefPubMed
Zurück zum Zitat Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363CrossRefPubMed Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363CrossRefPubMed
Zurück zum Zitat Rosenthal RE, Hamud F, Fiskum G, Varghese PJ, Sharpe S (1987) Cerebral ischemia and reperfusion—prevention of brain mitochondrial injury by lidoflazine. J Cereb Blood Flow Metab 7(6):752–758CrossRefPubMed Rosenthal RE, Hamud F, Fiskum G, Varghese PJ, Sharpe S (1987) Cerebral ischemia and reperfusion—prevention of brain mitochondrial injury by lidoflazine. J Cereb Blood Flow Metab 7(6):752–758CrossRefPubMed
Zurück zum Zitat Rustin P, Chretien D, Bourgeron T, Gerard B, Rotig A, Saudubray JM, Munnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clinica chimica acta; international journal of clinical chemistry 228(1):35–51CrossRefPubMed Rustin P, Chretien D, Bourgeron T, Gerard B, Rotig A, Saudubray JM, Munnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clinica chimica acta; international journal of clinical chemistry 228(1):35–51CrossRefPubMed
Zurück zum Zitat Saito A, Castilho RF (2010) Inhibitory effects of adenine nucleotides on brain mitochondrial permeability transition. Neurochem Res 35(11):1667–1674CrossRefPubMed Saito A, Castilho RF (2010) Inhibitory effects of adenine nucleotides on brain mitochondrial permeability transition. Neurochem Res 35(11):1667–1674CrossRefPubMed
Zurück zum Zitat Sauer SW, Okun JG, Fricker G, Mahringer A, Muller I, Crnic LR, Muhlhausen C, Hoffmann GF, Horster F, Goodman SI, Harding CO, Koeller DM, Kolker S (2006) Intracerebral accumulation of glutaric and 3-hydroxyglutaric acids secondary to limited flux across the blood-brain barrier constitute a biochemical risk factor for neurodegeneration in glutaryl-CoA dehydrogenase deficiency. J Neurochem 97(3):899–910CrossRefPubMed Sauer SW, Okun JG, Fricker G, Mahringer A, Muller I, Crnic LR, Muhlhausen C, Hoffmann GF, Horster F, Goodman SI, Harding CO, Koeller DM, Kolker S (2006) Intracerebral accumulation of glutaric and 3-hydroxyglutaric acids secondary to limited flux across the blood-brain barrier constitute a biochemical risk factor for neurodegeneration in glutaryl-CoA dehydrogenase deficiency. J Neurochem 97(3):899–910CrossRefPubMed
Zurück zum Zitat Schapira AHV, Mann VM, Cooper JM, Dexter D, Daniel SE, Jenner P, Clark JB, Marsden CD (1990) Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 55(6):2142–2145CrossRefPubMed Schapira AHV, Mann VM, Cooper JM, Dexter D, Daniel SE, Jenner P, Clark JB, Marsden CD (1990) Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 55(6):2142–2145CrossRefPubMed
Zurück zum Zitat Stiles AR, Venturoni L, Mucci G, Elbalalesy N, Woontner M, Goodman S, Abdenur JE (2016) New cases of DHTKD1 mutations in patients with 2-ketoadipic aciduria. JIMD Rep 25:15–19CrossRefPubMed Stiles AR, Venturoni L, Mucci G, Elbalalesy N, Woontner M, Goodman S, Abdenur JE (2016) New cases of DHTKD1 mutations in patients with 2-ketoadipic aciduria. JIMD Rep 25:15–19CrossRefPubMed
Zurück zum Zitat Takechi T, Okada T, Wakiguchi H, Morita H, Kurashige T, Sugahara K, Kodama H (1993) Identification of N-acetyl-alpha-aminoadipic acid in the urine of a patient with alpha-aminoadipic and alpha-ketoadipic aciduria. J Inherit Metab Dis 16(1):119–126CrossRefPubMed Takechi T, Okada T, Wakiguchi H, Morita H, Kurashige T, Sugahara K, Kodama H (1993) Identification of N-acetyl-alpha-aminoadipic acid in the urine of a patient with alpha-aminoadipic and alpha-ketoadipic aciduria. J Inherit Metab Dis 16(1):119–126CrossRefPubMed
Zurück zum Zitat Tarla MR, Ramalho F, Ramalho LN, Silva Tde C, Brandao DF, Ferreira J, Silva Ode C, Zucoloto S (2006) Cellular aspects of liver regeneration. Acta cirurgica brasileira 21(Suppl 1):63–66CrossRefPubMed Tarla MR, Ramalho F, Ramalho LN, Silva Tde C, Brandao DF, Ferreira J, Silva Ode C, Zucoloto S (2006) Cellular aspects of liver regeneration. Acta cirurgica brasileira 21(Suppl 1):63–66CrossRefPubMed
Zurück zum Zitat Trotti D, Rossi D, Gjesdal O, Levy LM, Racagni G, Danbolt NC, Volterra A (1996) Peroxynitrite inhibits glutamate transporter subtypes. J Biol Chem 271(11):5976–5979CrossRefPubMed Trotti D, Rossi D, Gjesdal O, Levy LM, Racagni G, Danbolt NC, Volterra A (1996) Peroxynitrite inhibits glutamate transporter subtypes. J Biol Chem 271(11):5976–5979CrossRefPubMed
Zurück zum Zitat Trotti D, Danbolt NC, Volterra A (1998) Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic neurodegeneration? Trends Pharmacol Sci 19(8):328–334CrossRefPubMed Trotti D, Danbolt NC, Volterra A (1998) Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic neurodegeneration? Trends Pharmacol Sci 19(8):328–334CrossRefPubMed
Zurück zum Zitat Tsakiris S, Deliconstantinos G (1984) Influence of phosphatidylserine on (Na+,K+)-stimulated ATPase and acetylcholinesterase activities of dog brain synaptosomal plasma membranes. The Biochemical journal 220(1):301–307CrossRefPubMedPubMedCentral Tsakiris S, Deliconstantinos G (1984) Influence of phosphatidylserine on (Na+,K+)-stimulated ATPase and acetylcholinesterase activities of dog brain synaptosomal plasma membranes. The Biochemical journal 220(1):301–307CrossRefPubMedPubMedCentral
Zurück zum Zitat Ullensvang K, Lehre KP, Storm-Mathisen J, Danbolt NC (1997) Differential developmental expression of the two rat brain glutamate transporter proteins GLAST and GLT. Eur J Neurosci 9(8):1646–1655CrossRefPubMed Ullensvang K, Lehre KP, Storm-Mathisen J, Danbolt NC (1997) Differential developmental expression of the two rat brain glutamate transporter proteins GLAST and GLT. Eur J Neurosci 9(8):1646–1655CrossRefPubMed
Zurück zum Zitat Volterra A, Trotti D, Tromba C, Floridi S, Racagni G (1994) Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. The Journal of neuroscience : the official journal of the Society for Neuroscience 14(5 Pt 1):2924–2932 Volterra A, Trotti D, Tromba C, Floridi S, Racagni G (1994) Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. The Journal of neuroscience : the official journal of the Society for Neuroscience 14(5 Pt 1):2924–2932
Zurück zum Zitat Wilcken B, Smith A, Brown DA (1980) Urine screening for aminoacidopathies: is it beneficial? Results of a long-term follow-up of cases detected bny screening one millon babies. J Pediatr 97(3):492–497CrossRefPubMed Wilcken B, Smith A, Brown DA (1980) Urine screening for aminoacidopathies: is it beneficial? Results of a long-term follow-up of cases detected bny screening one millon babies. J Pediatr 97(3):492–497CrossRefPubMed
Zurück zum Zitat Zhang X, Vincent AS, Halliwell B, Wong KP (2004) A mechanism of sulfite neurotoxicity: direct inhibition of glutamate dehydrogenase. J Biol Chem 279(41):43035–43045CrossRefPubMed Zhang X, Vincent AS, Halliwell B, Wong KP (2004) A mechanism of sulfite neurotoxicity: direct inhibition of glutamate dehydrogenase. J Biol Chem 279(41):43035–43045CrossRefPubMed
Metadaten
Titel
α-Ketoadipic Acid and α-Aminoadipic Acid Cause Disturbance of Glutamatergic Neurotransmission and Induction of Oxidative Stress In Vitro in Brain of Adolescent Rats
verfasst von
Janaína Camacho da Silva
Alexandre Umpierrez Amaral
Cristiane Cecatto
Alessandro Wajner
Kálita dos Santos Godoy
Rafael Teixeira Ribeiro
Aline de Mello Gonçalves
Ângela Zanatta
Mateus Struecker da Rosa
Samanta Oliveira Loureiro
Carmen Regla Vargas
Guilhian Leipnitz
Diogo Onofre Gomes de Souza
Moacir Wajner
Publikationsdatum
01.08.2017
Verlag
Springer US
Erschienen in
Neurotoxicity Research / Ausgabe 2/2017
Print ISSN: 1029-8428
Elektronische ISSN: 1476-3524
DOI
https://doi.org/10.1007/s12640-017-9735-8

Weitere Artikel der Ausgabe 2/2017

Neurotoxicity Research 2/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.