Skip to main content
Erschienen in: Translational Stroke Research 4/2014

01.08.2014 | Review Article

Iron and Intracerebral Hemorrhage: From Mechanism to Translation

verfasst von: Xiao-Yi Xiong, Jian Wang, Zhong-Ming Qian, Qing-Wu Yang

Erschienen in: Translational Stroke Research | Ausgabe 4/2014

Einloggen, um Zugang zu erhalten

Abstract

Intracerebral hemorrhage (ICH) is a leading cause of morbidity and mortality around the world. Currently, there is no effective medical treatment available to improve functional outcomes in patients with ICH due to its unknown mechanisms of damage. Increasing evidence has shown that the metabolic products of erythrocytes are the key contributor of ICH-induced secondary brain injury. Iron, an important metabolic product that accumulates in the brain parenchyma, has a detrimental effect on secondary injury following ICH. Because the damage mechanism of iron during ICH-induced secondary injury is clear, iron removal therapy research on animal models is effective. Although many animal and clinical studies have been conducted, the exact metabolic pathways of iron and the mechanisms of iron removal treatments are still not clear. This review summarizes recent progress concerning the iron metabolism mechanisms underlying ICH-induced injury. We focus on iron, brain iron metabolism, the role of iron in oxidative injury, and iron removal therapy following ICH, and we suggest that further studies focus on brain iron metabolism after ICH and the mechanism for iron removal therapy.
Literatur
1.
Zurück zum Zitat Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol. 2010;92(4):463–77.PubMedCentralPubMed Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol. 2010;92(4):463–77.PubMedCentralPubMed
2.
Zurück zum Zitat Mayer SA, Rincon F. Treatment of intracerebral haemorrhage. Lancet Neurol. 2005;4(10):662–72.PubMed Mayer SA, Rincon F. Treatment of intracerebral haemorrhage. Lancet Neurol. 2005;4(10):662–72.PubMed
3.
Zurück zum Zitat Sutherland GR, Auer RN. Primary intracerebral hemorrhage. J Clin Neurosci. 2006;13(5):511–7.PubMed Sutherland GR, Auer RN. Primary intracerebral hemorrhage. J Clin Neurosci. 2006;13(5):511–7.PubMed
4.
Zurück zum Zitat Chaudhary N, Gemmete JJ, Thompson BG, Xi G, Pandey AS. Iron-potential therapeutic target in hemorrhagic stroke. World Neurosurg. 2013;79(1):7–9.PubMed Chaudhary N, Gemmete JJ, Thompson BG, Xi G, Pandey AS. Iron-potential therapeutic target in hemorrhagic stroke. World Neurosurg. 2013;79(1):7–9.PubMed
5.
Zurück zum Zitat Ke Y, Qian ZM. Brain iron metabolism: neurobiology and neurochemistry. Prog Neurobiol. 2007;83(3):149–73.PubMed Ke Y, Qian ZM. Brain iron metabolism: neurobiology and neurochemistry. Prog Neurobiol. 2007;83(3):149–73.PubMed
6.
Zurück zum Zitat Hua Y, Nakamura T, Keep RF, Wu J, Schallert T, Hoff JT, et al. Long-term effects of experimental intracerebral hemorrhage: the role of iron. J Neurosurg. 2006;104(2):305–12.PubMed Hua Y, Nakamura T, Keep RF, Wu J, Schallert T, Hoff JT, et al. Long-term effects of experimental intracerebral hemorrhage: the role of iron. J Neurosurg. 2006;104(2):305–12.PubMed
7.
Zurück zum Zitat Wu J, Hua Y, Keep RF, Nakamura T, Hoff JT, Xi G. Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke. 2003;34(12):2964–9.PubMed Wu J, Hua Y, Keep RF, Nakamura T, Hoff JT, Xi G. Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke. 2003;34(12):2964–9.PubMed
8.
Zurück zum Zitat Wang J, Doré S. Heme oxygenase-1 exacerbates early brain injury after intracerebral haemorrhage. Brain. 2007;130(6):1643–52.PubMedCentralPubMed Wang J, Doré S. Heme oxygenase-1 exacerbates early brain injury after intracerebral haemorrhage. Brain. 2007;130(6):1643–52.PubMedCentralPubMed
9.
Zurück zum Zitat Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol. 1997;37(1):517–54.PubMed Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol. 1997;37(1):517–54.PubMed
10.
Zurück zum Zitat Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5(1):53–63.PubMed Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5(1):53–63.PubMed
11.
Zurück zum Zitat Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol. 2012;11(8):720–31.PubMed Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol. 2012;11(8):720–31.PubMed
12.
Zurück zum Zitat Jin H, Wu G, Hu S, Hua Y, Keep RF, Wu J, et al. T2 and T2* magnetic resonance imaging sequences predict brain injury after intracerebral hemorrhage in rats. Acta Neurochir Suppl. 2013;18:151–5. Jin H, Wu G, Hu S, Hua Y, Keep RF, Wu J, et al. T2 and T2* magnetic resonance imaging sequences predict brain injury after intracerebral hemorrhage in rats. Acta Neurochir Suppl. 2013;18:151–5.
13.
Zurück zum Zitat Wang W, Di X, D'Agostino RB, Torti SV, Torti FM. Excess capacity of the iron regulatory protein system. J Biol Chem. 2007;282(34):24650–9.PubMed Wang W, Di X, D'Agostino RB, Torti SV, Torti FM. Excess capacity of the iron regulatory protein system. J Biol Chem. 2007;282(34):24650–9.PubMed
14.
Zurück zum Zitat Crichton RR, Wilmet S, Legssyer R, Ward RJ. Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J Inorg Biochem. 2002;91(1):9–18.PubMed Crichton RR, Wilmet S, Legssyer R, Ward RJ. Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J Inorg Biochem. 2002;91(1):9–18.PubMed
15.
16.
Zurück zum Zitat Galy B, Ferring-Appel D, Becker C, Gretz N, Gröne H-J, Schümann K, et al. Iron regulatory proteins control a mucosal block to intestinal iron absorption. Cell Rep. 2013;3(3):844–57.PubMed Galy B, Ferring-Appel D, Becker C, Gretz N, Gröne H-J, Schümann K, et al. Iron regulatory proteins control a mucosal block to intestinal iron absorption. Cell Rep. 2013;3(3):844–57.PubMed
17.
Zurück zum Zitat Anderson GJ, Frazer DM, McLaren GD. Iron absorption and metabolism. Curr Opin Gastroenterol. 2009;25(2):129–35.PubMed Anderson GJ, Frazer DM, McLaren GD. Iron absorption and metabolism. Curr Opin Gastroenterol. 2009;25(2):129–35.PubMed
18.
Zurück zum Zitat Knutson MD. Iron-sensing proteins that regulate hepcidin and enteric iron absorption. Annu Rev Nutr. 2010;30:149–71.PubMed Knutson MD. Iron-sensing proteins that regulate hepcidin and enteric iron absorption. Annu Rev Nutr. 2010;30:149–71.PubMed
19.
Zurück zum Zitat Schümann K, Moret R, Künzle H, Kühn LC. Iron regulatory protein as an endogenous sensor of iron in rat intestinal mucosa. EurJ Biochem. 1999;260(2):362–72. Schümann K, Moret R, Künzle H, Kühn LC. Iron regulatory protein as an endogenous sensor of iron in rat intestinal mucosa. EurJ Biochem. 1999;260(2):362–72.
20.
Zurück zum Zitat Mastrogiannaki M, Matak P, Keith B, Simon MC, Vaulont S, Peyssonnaux C. HIF-2α, but not HIF-1α, promotes iron absorption in mice. J Clin Invest. 2009;119(5):1159.PubMedCentralPubMed Mastrogiannaki M, Matak P, Keith B, Simon MC, Vaulont S, Peyssonnaux C. HIF-2α, but not HIF-1α, promotes iron absorption in mice. J Clin Invest. 2009;119(5):1159.PubMedCentralPubMed
21.
Zurück zum Zitat Shah YM, Matsubara T, Ito S, Yim S-H, Gonzalez FJ. Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency. Cell Metab. 2009;9(2):152–64.PubMedCentralPubMed Shah YM, Matsubara T, Ito S, Yim S-H, Gonzalez FJ. Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency. Cell Metab. 2009;9(2):152–64.PubMedCentralPubMed
22.
Zurück zum Zitat Taylor M, Qu A, Anderson ER, Matsubara T, Martin A, Gonzalez FJ, et al. Hypoxia-inducible factor-2α mediates the adaptive increase of intestinal ferroportin during iron deficiency in mice. Gastroenterology. 2011;140(7):2044–55.PubMedCentralPubMed Taylor M, Qu A, Anderson ER, Matsubara T, Martin A, Gonzalez FJ, et al. Hypoxia-inducible factor-2α mediates the adaptive increase of intestinal ferroportin during iron deficiency in mice. Gastroenterology. 2011;140(7):2044–55.PubMedCentralPubMed
23.
Zurück zum Zitat Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306(5704):2090–3.PubMed Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306(5704):2090–3.PubMed
24.
Zurück zum Zitat Rolfs A, Hediger MA. Metal ion transporters in mammals: structure, function and pathological implications. J Physiol. 1999;518(1):1–12.PubMedCentralPubMed Rolfs A, Hediger MA. Metal ion transporters in mammals: structure, function and pathological implications. J Physiol. 1999;518(1):1–12.PubMedCentralPubMed
25.
Zurück zum Zitat Goldman BS, Kranz RG. ABC transporters associated with cytochrome c biogenesis. Res microbiol. 2001;152(3):323–9.PubMed Goldman BS, Kranz RG. ABC transporters associated with cytochrome c biogenesis. Res microbiol. 2001;152(3):323–9.PubMed
26.
Zurück zum Zitat Malecki EA, Devenyi AG, Beard JL, Connor JR. Existing and emerging mechanisms for transport of iron and manganese to the brain. J Neurosci Res. 1999;56(2):113.PubMed Malecki EA, Devenyi AG, Beard JL, Connor JR. Existing and emerging mechanisms for transport of iron and manganese to the brain. J Neurosci Res. 1999;56(2):113.PubMed
27.
Zurück zum Zitat Moos T, Morgan EH. Transferrin and transferrin receptor function in brain barrier systems. Cell Mol Neurobiol. 2000;20(1):77–95.PubMed Moos T, Morgan EH. Transferrin and transferrin receptor function in brain barrier systems. Cell Mol Neurobiol. 2000;20(1):77–95.PubMed
28.
Zurück zum Zitat Bradbury M. Transport of iron in the blood–brain–cerebrospinal fluid system. J Neurochem. 1997;69(2):443–54.PubMed Bradbury M. Transport of iron in the blood–brain–cerebrospinal fluid system. J Neurochem. 1997;69(2):443–54.PubMed
29.
Zurück zum Zitat Talukder M, Takeuchi T, Harada E. Receptor-mediated transport of lactoferrin into the cerebrospinal fluid via plasma in young calves. J Vet Med Sci. 2003;65(9):957–64.PubMed Talukder M, Takeuchi T, Harada E. Receptor-mediated transport of lactoferrin into the cerebrospinal fluid via plasma in young calves. J Vet Med Sci. 2003;65(9):957–64.PubMed
30.
Zurück zum Zitat Ji B, Maeda J, Higuchi M, Inoue K, Akita H, Harashima H, et al. Pharmacokinetics and brain uptake of lactoferrin in rats. Life Sci. 2006;78(8):851–5.PubMed Ji B, Maeda J, Higuchi M, Inoue K, Akita H, Harashima H, et al. Pharmacokinetics and brain uptake of lactoferrin in rats. Life Sci. 2006;78(8):851–5.PubMed
31.
Zurück zum Zitat Qian ZM, Morgan EH. Changes in the uptake of transferrin-free and transferrin-bound iron during reticulocyte maturation in vivo and in vitro. Biochim Biophys Acta. 1992;1135(1):35–43.PubMed Qian ZM, Morgan EH. Changes in the uptake of transferrin-free and transferrin-bound iron during reticulocyte maturation in vivo and in vitro. Biochim Biophys Acta. 1992;1135(1):35–43.PubMed
32.
Zurück zum Zitat Qian ZM, Tang PL, Morgan EH. Effect of lipid peroxidation on transferrin-free iron uptake by rabbit reticulocytes. Biochim Biophys Acta. 1996;1310(3):293–302.PubMed Qian ZM, Tang PL, Morgan EH. Effect of lipid peroxidation on transferrin-free iron uptake by rabbit reticulocytes. Biochim Biophys Acta. 1996;1310(3):293–302.PubMed
33.
Zurück zum Zitat Deane R, Zheng W, Zlokovic BV. Brain capillary endothelium and choroid plexus epithelium regulate transport of transferrin-bound and free iron into the rat brain. J Neurochem. 2004;88(4):813–20.PubMedCentralPubMed Deane R, Zheng W, Zlokovic BV. Brain capillary endothelium and choroid plexus epithelium regulate transport of transferrin-bound and free iron into the rat brain. J Neurochem. 2004;88(4):813–20.PubMedCentralPubMed
34.
Zurück zum Zitat Li H, Qian ZM. Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev. 2002;22(3):225–50.PubMed Li H, Qian ZM. Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev. 2002;22(3):225–50.PubMed
35.
Zurück zum Zitat Rouault TA, Cooperman S. Brain iron metabolism. Semin pediatr neurol. 2006;13(3):142–8.PubMed Rouault TA, Cooperman S. Brain iron metabolism. Semin pediatr neurol. 2006;13(3):142–8.PubMed
36.
Zurück zum Zitat Hahn P, Qian Y, Dentchev T, Chen L, Beard J, Harris ZL, et al. Disruption of ceruloplasmin and hephaestin in mice causes retinal iron overload and retinal degeneration with features of age-related macular degeneration. Proc Natl Acad Sci U S A. 2004;101(38):13850–5.PubMedCentralPubMed Hahn P, Qian Y, Dentchev T, Chen L, Beard J, Harris ZL, et al. Disruption of ceruloplasmin and hephaestin in mice causes retinal iron overload and retinal degeneration with features of age-related macular degeneration. Proc Natl Acad Sci U S A. 2004;101(38):13850–5.PubMedCentralPubMed
37.
Zurück zum Zitat Qian ZM, Chang YZ, Zhu L, Yang L, Du JR, Ho KP, et al. Development and iron‐dependent expression of hephaestin in different brain regions of rats. J Cell Biochem. 2007;102(5):1225–33.PubMed Qian ZM, Chang YZ, Zhu L, Yang L, Du JR, Ho KP, et al. Development and iron‐dependent expression of hephaestin in different brain regions of rats. J Cell Biochem. 2007;102(5):1225–33.PubMed
38.
Zurück zum Zitat Moos T. Brain iron homeostasis. Dan Med Bull. 2002;49(4):279.PubMed Moos T. Brain iron homeostasis. Dan Med Bull. 2002;49(4):279.PubMed
39.
Zurück zum Zitat los Monteros D, Espinosa A, Kumar S, Scully S, Cole R, de Vellis J. Transferrin gene expression and secretion by rat brain cells in vitro. J Neurosci Res. 1990;25(4):576–80. los Monteros D, Espinosa A, Kumar S, Scully S, Cole R, de Vellis J. Transferrin gene expression and secretion by rat brain cells in vitro. J Neurosci Res. 1990;25(4):576–80.
40.
Zurück zum Zitat Moos T, Morgan EH. Evidence for low molecular weight, non-transferrin-bound iron in rat brain and cerebrospinal fluid. J Neurosci Res. 1998;54(4):486–94.PubMed Moos T, Morgan EH. Evidence for low molecular weight, non-transferrin-bound iron in rat brain and cerebrospinal fluid. J Neurosci Res. 1998;54(4):486–94.PubMed
41.
Zurück zum Zitat Qian ZM, Shen X. Brain iron transport and neurodegeneration. Trends Mol Med. 2001;7(3):103–8.PubMed Qian ZM, Shen X. Brain iron transport and neurodegeneration. Trends Mol Med. 2001;7(3):103–8.PubMed
42.
Zurück zum Zitat Attieh ZK, Mukhopadhyay CK, Seshadri V, Tripoulas NA, Fox PL. Ceruloplasmin ferroxidase activity stimulates cellular iron uptake by a trivalent cation-specific transport mechanism. J Biol Chem. 1999;274(2):1116–23.PubMed Attieh ZK, Mukhopadhyay CK, Seshadri V, Tripoulas NA, Fox PL. Ceruloplasmin ferroxidase activity stimulates cellular iron uptake by a trivalent cation-specific transport mechanism. J Biol Chem. 1999;274(2):1116–23.PubMed
43.
Zurück zum Zitat Hulet S, Hess E, Debinski W, Arosio P, Bruce K, Powers S, et al. Characterization and distribution of ferritin binding sites in the adult mouse brain. J Neurochem. 1999;72(2):868–74.PubMed Hulet S, Hess E, Debinski W, Arosio P, Bruce K, Powers S, et al. Characterization and distribution of ferritin binding sites in the adult mouse brain. J Neurochem. 1999;72(2):868–74.PubMed
44.
Zurück zum Zitat Hulet S, Heyliger S, Powers S, Connor J. Oligodendrocyte progenitor cells internalize ferritin via clathrin-dependent receptor mediated endocytosis. J Neurosci Res. 2000;61(1):52–60.PubMed Hulet S, Heyliger S, Powers S, Connor J. Oligodendrocyte progenitor cells internalize ferritin via clathrin-dependent receptor mediated endocytosis. J Neurosci Res. 2000;61(1):52–60.PubMed
45.
Zurück zum Zitat Ke Y, Qian ZM. Iron misregulation in the brain: a primary cause of neurodegenerative disorders. Lancet Neurol. 2003;2(4):246–53.PubMed Ke Y, Qian ZM. Iron misregulation in the brain: a primary cause of neurodegenerative disorders. Lancet Neurol. 2003;2(4):246–53.PubMed
46.
Zurück zum Zitat Rouault TA. Systemic iron metabolism: a review and implications for brain iron metabolism. Pediatr Neurol. 2001;25(2):130–7.PubMed Rouault TA. Systemic iron metabolism: a review and implications for brain iron metabolism. Pediatr Neurol. 2001;25(2):130–7.PubMed
47.
Zurück zum Zitat Crowe A, Morgan EH. Iron and transferrrin uptake by brain and cerebrospinal fluid in the rat. Brain Res. 1992;592(1):8–16.PubMed Crowe A, Morgan EH. Iron and transferrrin uptake by brain and cerebrospinal fluid in the rat. Brain Res. 1992;592(1):8–16.PubMed
48.
Zurück zum Zitat Descamps L, Dehouck M-P, Torpier G, Cecchelli R. Receptor-mediated transcytosis of transferrin through blood–brain barrier endothelial cells. Am J Physiol. 1996;270(4):H1149–58.PubMed Descamps L, Dehouck M-P, Torpier G, Cecchelli R. Receptor-mediated transcytosis of transferrin through blood–brain barrier endothelial cells. Am J Physiol. 1996;270(4):H1149–58.PubMed
49.
Zurück zum Zitat REGAN RF, PANTER S. Hemoglobin potentiates excitotoxic injury in cortical cell culture. J Neurotrauma. 1996;13(4):223–31.PubMed REGAN RF, PANTER S. Hemoglobin potentiates excitotoxic injury in cortical cell culture. J Neurotrauma. 1996;13(4):223–31.PubMed
50.
Zurück zum Zitat Goldstein L, Teng ZP, Zeserson E, Patel M, Regan RF. Hemin induces an iron-dependent, oxidative injury to human neuron-like cells. J Neurosci Res. 2003;73(1):113–21.PubMed Goldstein L, Teng ZP, Zeserson E, Patel M, Regan RF. Hemin induces an iron-dependent, oxidative injury to human neuron-like cells. J Neurosci Res. 2003;73(1):113–21.PubMed
51.
Zurück zum Zitat Cooper CE. Nitric oxide and iron proteins. Biochim Biophys Acta. 1999;1411(2):290–309.PubMed Cooper CE. Nitric oxide and iron proteins. Biochim Biophys Acta. 1999;1411(2):290–309.PubMed
52.
Zurück zum Zitat Nakamura T, Keep RF, Hua Y, Hoff JT, Xi G. Oxidative DNA injury after experimental intracerebral hemorrhage. Brain Res. 2005;1039(1):30–6.PubMed Nakamura T, Keep RF, Hua Y, Hoff JT, Xi G. Oxidative DNA injury after experimental intracerebral hemorrhage. Brain Res. 2005;1039(1):30–6.PubMed
53.
Zurück zum Zitat Zaman K, Ryu H, Hall D, O'Donovan K, Lin K-I, Miller MP, et al. Protection from oxidative stress–induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced dna binding of hypoxia-inducible factor-1 and atf-1/creb and increased expression of glycolytic enzymes, p21waf1/cip1, and erythropoietin. J Neurosci. 1999;19(22):9821–30.PubMed Zaman K, Ryu H, Hall D, O'Donovan K, Lin K-I, Miller MP, et al. Protection from oxidative stress–induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced dna binding of hypoxia-inducible factor-1 and atf-1/creb and increased expression of glycolytic enzymes, p21waf1/cip1, and erythropoietin. J Neurosci. 1999;19(22):9821–30.PubMed
54.
Zurück zum Zitat Tanji K, Imaizumi T, Matsumiya T, Itaya H, Fujimoto K, Cui X-F, et al. Desferrioxamine, an iron chelator, upregulates cyclooxygenase-2 expression and prostaglandin production in a human macrophage cell line. Biochim Biophys Acta. 2001;1530(2):227–35.PubMed Tanji K, Imaizumi T, Matsumiya T, Itaya H, Fujimoto K, Cui X-F, et al. Desferrioxamine, an iron chelator, upregulates cyclooxygenase-2 expression and prostaglandin production in a human macrophage cell line. Biochim Biophys Acta. 2001;1530(2):227–35.PubMed
55.
Zurück zum Zitat Willmore JL, Ballinger Jr WE, Boggs W, Sypert GW, Rubin JJ. Dendritic alterations in rat isocortex within an iron-induced chronic epileptic focus. Neurosurg. 1980;7(2):142–6. Willmore JL, Ballinger Jr WE, Boggs W, Sypert GW, Rubin JJ. Dendritic alterations in rat isocortex within an iron-induced chronic epileptic focus. Neurosurg. 1980;7(2):142–6.
56.
Zurück zum Zitat Reid SA, Sypert GW, Boggs WM, Willmore LJ. Histopathology of the ferric-induced chronic epileptic focus in cat: a Golgi study. Exp Neurol. 1979;66(2):205–19.PubMed Reid SA, Sypert GW, Boggs WM, Willmore LJ. Histopathology of the ferric-induced chronic epileptic focus in cat: a Golgi study. Exp Neurol. 1979;66(2):205–19.PubMed
57.
Zurück zum Zitat Connor JR, Menzies SL. Relationship of iron to oligondendrocytes and myelination. Glia. 1996;17(2):83–93.PubMed Connor JR, Menzies SL. Relationship of iron to oligondendrocytes and myelination. Glia. 1996;17(2):83–93.PubMed
58.
Zurück zum Zitat Kondo Y, Ogawa N, Asanuma M, Ota Z, Mori A. Regional differences in late-onset iron deposition, ferritin, transferrin, astrocyte proliferation, and microglial activation after transient forebrain ischemia in rat brain. J Cereb Blood Flow Metab. 1995;15(2):216–26.PubMed Kondo Y, Ogawa N, Asanuma M, Ota Z, Mori A. Regional differences in late-onset iron deposition, ferritin, transferrin, astrocyte proliferation, and microglial activation after transient forebrain ischemia in rat brain. J Cereb Blood Flow Metab. 1995;15(2):216–26.PubMed
59.
Zurück zum Zitat Dwork A, Schon E, Herbert J. Nonidentical distribution of transferrin and ferric iron in human brain. Neuroscience. 1988;27(1):333–45.PubMed Dwork A, Schon E, Herbert J. Nonidentical distribution of transferrin and ferric iron in human brain. Neuroscience. 1988;27(1):333–45.PubMed
60.
Zurück zum Zitat Wagner KR, Sharp FR, Ardizzone TD, Lu A, Clark JF. Heme and iron metabolism: role in cerebral hemorrhage. J Cereb Blood Flow Metab. 2003;23(6):629–52.PubMed Wagner KR, Sharp FR, Ardizzone TD, Lu A, Clark JF. Heme and iron metabolism: role in cerebral hemorrhage. J Cereb Blood Flow Metab. 2003;23(6):629–52.PubMed
61.
Zurück zum Zitat Connor JR, Menzies SL. Cellular management of iron in the brain. J Neurol Sci. 1995;134:33–44.PubMed Connor JR, Menzies SL. Cellular management of iron in the brain. J Neurol Sci. 1995;134:33–44.PubMed
62.
Zurück zum Zitat Connor JR, Menzies SL, Burdo JR, Boyer PJ. Iron and iron management proteins in neurobiology. Pediatr Neurol. 2001;25(2):118–29.PubMed Connor JR, Menzies SL, Burdo JR, Boyer PJ. Iron and iron management proteins in neurobiology. Pediatr Neurol. 2001;25(2):118–29.PubMed
63.
Zurück zum Zitat Zhao F, Hua Y, He Y, Keep RF, Xi G. Minocycline-induced attenuation of iron overload and brain injury after experimental intracerebral hemorrhage. Stroke. 2011;42(12):3587–93.PubMedCentralPubMed Zhao F, Hua Y, He Y, Keep RF, Xi G. Minocycline-induced attenuation of iron overload and brain injury after experimental intracerebral hemorrhage. Stroke. 2011;42(12):3587–93.PubMedCentralPubMed
64.
Zurück zum Zitat Kaur C, Ling E. Increased expression of transferrin receptors and iron in amoeboid microglial cells in postnatal rats following an exposure to hypoxia. Neurosci Lett. 1999;262(3):183–6.PubMed Kaur C, Ling E. Increased expression of transferrin receptors and iron in amoeboid microglial cells in postnatal rats following an exposure to hypoxia. Neurosci Lett. 1999;262(3):183–6.PubMed
65.
Zurück zum Zitat Djeha A, Perez-Arellano J-L, Hayes SL, Oria R, Simpson RJ, Raja KB, et al. Cytokine-mediated regulation of transferrin synthesis in mouse macrophages and human T lymphocytes. Blood. 1995;85(4):1036–42.PubMed Djeha A, Perez-Arellano J-L, Hayes SL, Oria R, Simpson RJ, Raja KB, et al. Cytokine-mediated regulation of transferrin synthesis in mouse macrophages and human T lymphocytes. Blood. 1995;85(4):1036–42.PubMed
66.
Zurück zum Zitat She H, Xiong S, Lin M, Zandi E, Giulivi C, Tsukamoto H. Iron activates NF-κB in Kupffer cells. Am J Physiol Gastrointest Liver Physiol. 2002;283(3):G719–26.PubMed She H, Xiong S, Lin M, Zandi E, Giulivi C, Tsukamoto H. Iron activates NF-κB in Kupffer cells. Am J Physiol Gastrointest Liver Physiol. 2002;283(3):G719–26.PubMed
67.
Zurück zum Zitat Mehdiratta M, Kumar S, Hackney D, Schlaug G, Selim M. Association between serum ferritin level and perihematoma edema volume in patients with spontaneous intracerebral hemorrhage. Stroke. 2008;39(4):1165–70.PubMed Mehdiratta M, Kumar S, Hackney D, Schlaug G, Selim M. Association between serum ferritin level and perihematoma edema volume in patients with spontaneous intracerebral hemorrhage. Stroke. 2008;39(4):1165–70.PubMed
68.
Zurück zum Zitat de la Ossa NP, Sobrino T, Silva Y, Blanco M, Millán M, Gomis M, et al. Iron-related brain damage in patients with intracerebral hemorrhage. Stroke. 2010;41(4):810–3. de la Ossa NP, Sobrino T, Silva Y, Blanco M, Millán M, Gomis M, et al. Iron-related brain damage in patients with intracerebral hemorrhage. Stroke. 2010;41(4):810–3.
69.
Zurück zum Zitat Ghosh S, Hevi S, Chuck SL. Regulated secretion of glycosylated human ferritin from hepatocytes. Blood. 2004;103(6):2369–76.PubMed Ghosh S, Hevi S, Chuck SL. Regulated secretion of glycosylated human ferritin from hepatocytes. Blood. 2004;103(6):2369–76.PubMed
70.
Zurück zum Zitat Tran TN, Eubanks SK, Schaffer KJ, Zhou CY, Linder MC. Secretion of ferritin by rat hepatoma cells and its regulation by inflammatory cytokines and iron. Blood. 1997;90(12):4979–86.PubMed Tran TN, Eubanks SK, Schaffer KJ, Zhou CY, Linder MC. Secretion of ferritin by rat hepatoma cells and its regulation by inflammatory cytokines and iron. Blood. 1997;90(12):4979–86.PubMed
71.
Zurück zum Zitat Sibille JC, Kondo H, Aisen P. Interactions between isolated hepatocytes and Kupffer cells in iron metabolism: a possible role for ferritin as an iron carrier protein. Hepatology. 1988;8(2):296–301.PubMed Sibille JC, Kondo H, Aisen P. Interactions between isolated hepatocytes and Kupffer cells in iron metabolism: a possible role for ferritin as an iron carrier protein. Hepatology. 1988;8(2):296–301.PubMed
72.
Zurück zum Zitat Cohen LA, Gutierrez L, Weiss A, Leichtmann-Bardoogo Y, Zhang D-L, Crooks DR, et al. Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway. Blood. 2010;116(9):1574–84.PubMed Cohen LA, Gutierrez L, Weiss A, Leichtmann-Bardoogo Y, Zhang D-L, Crooks DR, et al. Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway. Blood. 2010;116(9):1574–84.PubMed
73.
Zurück zum Zitat Gutteridge J. Hydroxyl radicals, iron, oxidative stress, and neurodegeneration. Ann NY Acad Sci. 1994;738(1):201–13.PubMed Gutteridge J. Hydroxyl radicals, iron, oxidative stress, and neurodegeneration. Ann NY Acad Sci. 1994;738(1):201–13.PubMed
74.
Zurück zum Zitat Thompson KJ, Shoham S, Connor JR. Iron and neurodegenerative disorders. Brain Res Bull. 2001;55(2):155–64.PubMed Thompson KJ, Shoham S, Connor JR. Iron and neurodegenerative disorders. Brain Res Bull. 2001;55(2):155–64.PubMed
75.
Zurück zum Zitat Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci. 2004;5(11):863–73.PubMed Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci. 2004;5(11):863–73.PubMed
76.
Zurück zum Zitat Gu Y, Hua Y, Keep RF, Morgenstern LB, Xi G. Deferoxamine reduces intracerebral hematoma-induced iron accumulation and neuronal death in piglets. Stroke. 2009;40(6):2241–3.PubMedCentralPubMed Gu Y, Hua Y, Keep RF, Morgenstern LB, Xi G. Deferoxamine reduces intracerebral hematoma-induced iron accumulation and neuronal death in piglets. Stroke. 2009;40(6):2241–3.PubMedCentralPubMed
77.
Zurück zum Zitat Nakamura T, Keep RF, Hua Y, Schallert T, Hoff JT, Xi G. Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. J Neurosurg. 2004;100(4):672–8.PubMed Nakamura T, Keep RF, Hua Y, Schallert T, Hoff JT, Xi G. Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage. J Neurosurg. 2004;100(4):672–8.PubMed
78.
Zurück zum Zitat Warkentin LM, Auriat AM, Wowk S, Colbourne F. Failure of deferoxamine, an iron chelator, to improve outcome after collagenase-induced intracerebral hemorrhage in rats. Brain Res. 2010;1309:95–103.PubMed Warkentin LM, Auriat AM, Wowk S, Colbourne F. Failure of deferoxamine, an iron chelator, to improve outcome after collagenase-induced intracerebral hemorrhage in rats. Brain Res. 2010;1309:95–103.PubMed
79.
Zurück zum Zitat Auriat AM, Silasi G, Wei Z, Paquette R, Paterson P, Nichol H, et al. Ferric iron chelation lowers brain iron levels after intracerebral hemorrhage in rats but does not improve outcome. Exp Neurol. 2012;234(1):136–43.PubMed Auriat AM, Silasi G, Wei Z, Paquette R, Paterson P, Nichol H, et al. Ferric iron chelation lowers brain iron levels after intracerebral hemorrhage in rats but does not improve outcome. Exp Neurol. 2012;234(1):136–43.PubMed
80.
Zurück zum Zitat Selim M. Deferoxamine mesylate: a new hope for intracerebral hemorrhage: from bench to clinical trials. Stroke. 2009;40(3 suppl 1):S90–1.PubMed Selim M. Deferoxamine mesylate: a new hope for intracerebral hemorrhage: from bench to clinical trials. Stroke. 2009;40(3 suppl 1):S90–1.PubMed
81.
Zurück zum Zitat Regan RF, Rogers B. Delayed treatment of hemoglobin neurotoxicity. J neurotrauma. 2003;20(1):111–20.PubMed Regan RF, Rogers B. Delayed treatment of hemoglobin neurotoxicity. J neurotrauma. 2003;20(1):111–20.PubMed
82.
Zurück zum Zitat Okauchi M, Hua Y, Keep RF, Morgenstern LB, Xi G. Effects of deferoxamine on intracerebral hemorrhage-induced brain injury in aged rats. Stroke. 2009;40(5):1858–63.PubMedCentralPubMed Okauchi M, Hua Y, Keep RF, Morgenstern LB, Xi G. Effects of deferoxamine on intracerebral hemorrhage-induced brain injury in aged rats. Stroke. 2009;40(5):1858–63.PubMedCentralPubMed
83.
Zurück zum Zitat Song S, Hua Y, Keep R, He Y, Wang J, Wu J. Deferoxamine reduces brain swelling in a rat model of hippocampal intracerebral hemorrhage. Acta Neurochir Suppl. 2008;105:13–8.PubMed Song S, Hua Y, Keep R, He Y, Wang J, Wu J. Deferoxamine reduces brain swelling in a rat model of hippocampal intracerebral hemorrhage. Acta Neurochir Suppl. 2008;105:13–8.PubMed
84.
Zurück zum Zitat Wu H, Wu T, Xu X, Wang J, Wang J. Iron toxicity in mice with collagenase-induced intracerebral hemorrhage. J Cereb Blood Flow Metab. 2010;31(5):1243–50.PubMedCentralPubMed Wu H, Wu T, Xu X, Wang J, Wang J. Iron toxicity in mice with collagenase-induced intracerebral hemorrhage. J Cereb Blood Flow Metab. 2010;31(5):1243–50.PubMedCentralPubMed
85.
Zurück zum Zitat Wan S, Hua Y, Keep R, Hoff J, Xi G. Deferoxamine reduces CSF free iron levels following intracerebral hemorrhage. Acta Neurochir Suppl. 2006;96:199–202.PubMed Wan S, Hua Y, Keep R, Hoff J, Xi G. Deferoxamine reduces CSF free iron levels following intracerebral hemorrhage. Acta Neurochir Suppl. 2006;96:199–202.PubMed
86.
Zurück zum Zitat Rosenberg GA, Mun-Bryce S, Wesley M, Kornfeld M. Collagenase-induced intracerebral hemorrhage in rats. Stroke. 1990;21(5):801–7.PubMed Rosenberg GA, Mun-Bryce S, Wesley M, Kornfeld M. Collagenase-induced intracerebral hemorrhage in rats. Stroke. 1990;21(5):801–7.PubMed
87.
Zurück zum Zitat Paraskevaidis IA, Iliodromitis EK, Vlahakos D, Tsiapras DP, Nikolaidis A, Marathias A, et al. Deferoxamine infusion during coronary artery bypass grafting ameliorates lipid peroxidation and protects the myocardium against reperfusion injury: immediate and long-term significance. Eur Heart J. 2005;26(3):263–70.PubMed Paraskevaidis IA, Iliodromitis EK, Vlahakos D, Tsiapras DP, Nikolaidis A, Marathias A, et al. Deferoxamine infusion during coronary artery bypass grafting ameliorates lipid peroxidation and protects the myocardium against reperfusion injury: immediate and long-term significance. Eur Heart J. 2005;26(3):263–70.PubMed
88.
Zurück zum Zitat Selim M, Yeatts S, Goldstein J, Gomes J, Greenberg S, Morgenstern L, et al. Deferoxamine Mesylate in Intracerebral Hemorrhage Investigators. Safety and tolerability of deferoxamine mesylate in patients with acute intracerebral hemorrhage. Stroke. 2011;42:3067–74.PubMedCentralPubMed Selim M, Yeatts S, Goldstein J, Gomes J, Greenberg S, Morgenstern L, et al. Deferoxamine Mesylate in Intracerebral Hemorrhage Investigators. Safety and tolerability of deferoxamine mesylate in patients with acute intracerebral hemorrhage. Stroke. 2011;42:3067–74.PubMedCentralPubMed
89.
Zurück zum Zitat Grenier D, Huot M-P, Mayrand D. Iron-chelating activity of tetracyclines and its impact on the susceptibility of Actinobacillus actinomycetemcomitans to these antibiotics. Antimicrob Agents Ch. 2000;44(3):763–6. Grenier D, Huot M-P, Mayrand D. Iron-chelating activity of tetracyclines and its impact on the susceptibility of Actinobacillus actinomycetemcomitans to these antibiotics. Antimicrob Agents Ch. 2000;44(3):763–6.
90.
Zurück zum Zitat Chen-Roetling J, Chen L, Regan RF. Minocycline attenuates iron neurotoxicity in cortical cell cultures. Biochem Biophys Res Commun. 2009;386(2):322–6.PubMedCentralPubMed Chen-Roetling J, Chen L, Regan RF. Minocycline attenuates iron neurotoxicity in cortical cell cultures. Biochem Biophys Res Commun. 2009;386(2):322–6.PubMedCentralPubMed
91.
Zurück zum Zitat Murata Y, Rosell A, Scannevin RH, Rhodes KJ, Wang X, Lo EH. Extension of the thrombolytic time window with minocycline in experimental stroke. Stroke. 2008;39(12):3372–7.PubMedCentralPubMed Murata Y, Rosell A, Scannevin RH, Rhodes KJ, Wang X, Lo EH. Extension of the thrombolytic time window with minocycline in experimental stroke. Stroke. 2008;39(12):3372–7.PubMedCentralPubMed
92.
Zurück zum Zitat Alano CC, Kauppinen TM, Valls AV, Swanson RA. Minocycline inhibits poly (ADP-ribose) polymerase-1 at nanomolar concentrations. Proc Natl Acad Sci U S A. 2006;103(25):9685–90.PubMedCentralPubMed Alano CC, Kauppinen TM, Valls AV, Swanson RA. Minocycline inhibits poly (ADP-ribose) polymerase-1 at nanomolar concentrations. Proc Natl Acad Sci U S A. 2006;103(25):9685–90.PubMedCentralPubMed
93.
Zurück zum Zitat Wasserman JK, Schlichter LC. Minocycline protects the blood–brain barrier and reduces edema following intracerebral hemorrhage in the rat. Exp Neurol. 2007;207(2):227–37.PubMed Wasserman JK, Schlichter LC. Minocycline protects the blood–brain barrier and reduces edema following intracerebral hemorrhage in the rat. Exp Neurol. 2007;207(2):227–37.PubMed
94.
Zurück zum Zitat Power C, Henry S, Del Bigio MR, Larsen PH, Corbett D, Imai Y, et al. Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases. Ann Neurol. 2003;53(6):731–42.PubMed Power C, Henry S, Del Bigio MR, Larsen PH, Corbett D, Imai Y, et al. Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases. Ann Neurol. 2003;53(6):731–42.PubMed
95.
Zurück zum Zitat Arosio P, Levi S. Ferritin, iron homeostasis, and oxidative damage. Free Radical Bio Med. 2002;33(4):457–63. Arosio P, Levi S. Ferritin, iron homeostasis, and oxidative damage. Free Radical Bio Med. 2002;33(4):457–63.
96.
Zurück zum Zitat Meyron-Holtz EG, Ghosh MC, Iwai K, LaVaute T, Brazzolotto X, Berger UV, et al. Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J. 2004;23(2):386–95.PubMedCentralPubMed Meyron-Holtz EG, Ghosh MC, Iwai K, LaVaute T, Brazzolotto X, Berger UV, et al. Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J. 2004;23(2):386–95.PubMedCentralPubMed
97.
Zurück zum Zitat Hu J, Connor JR. Demonstration and characterization of the iron regulatory protein in human brain. J Neurochem. 1996;67(2):838–44.PubMed Hu J, Connor JR. Demonstration and characterization of the iron regulatory protein in human brain. J Neurochem. 1996;67(2):838–44.PubMed
98.
Zurück zum Zitat Pantopoulos K. Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci. 2004;1012(1):1–13.PubMed Pantopoulos K. Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci. 2004;1012(1):1–13.PubMed
99.
Zurück zum Zitat Hentze MW, Caughman SW, Rouault TA, Barriocanal JG, Dancis A, Harford JB, et al. Identification of the iron-responsive element for the translational regulation of human ferritin mRNA. Science. 1987;238(4833):1570–3.PubMed Hentze MW, Caughman SW, Rouault TA, Barriocanal JG, Dancis A, Harford JB, et al. Identification of the iron-responsive element for the translational regulation of human ferritin mRNA. Science. 1987;238(4833):1570–3.PubMed
100.
Zurück zum Zitat Casey JL, Hentze MW, Koeller DM, Caughman SW, Rouault TA, Klausner RD, et al. Iron-responsive elements: regulatory RNA sequences that control mRNA levels and translation. Science. 1988;240(4854):924–8.PubMed Casey JL, Hentze MW, Koeller DM, Caughman SW, Rouault TA, Klausner RD, et al. Iron-responsive elements: regulatory RNA sequences that control mRNA levels and translation. Science. 1988;240(4854):924–8.PubMed
101.
Zurück zum Zitat Gunshin H, Allerson CR, Polycarpou-Schwarz M, Rofts A, Rogers JT, Kishi F, et al. Iron-dependent regulation of the divalent metal ion transporter. FEBS Lett. 2001;509(2):309–16.PubMed Gunshin H, Allerson CR, Polycarpou-Schwarz M, Rofts A, Rogers JT, Kishi F, et al. Iron-dependent regulation of the divalent metal ion transporter. FEBS Lett. 2001;509(2):309–16.PubMed
102.
Zurück zum Zitat Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, et al. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature. 2000;403(6771):776–81.PubMed Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, et al. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature. 2000;403(6771):776–81.PubMed
103.
Zurück zum Zitat Guo B, Phillips JD, Yu Y, Leibold EA. Iron regulates the intracellular degradation of iron regulatory protein 2 by the proteasome. J Biol Chem. 1995;270(37):21645–51.PubMed Guo B, Phillips JD, Yu Y, Leibold EA. Iron regulates the intracellular degradation of iron regulatory protein 2 by the proteasome. J Biol Chem. 1995;270(37):21645–51.PubMed
104.
Zurück zum Zitat Galy B, Ferring-Appel D, Kaden S, Gröne H-J, Hentze MW. Iron regulatory proteins are essential for intestinal function and control key iron absorption molecules in the duodenum. Cell Metab. 2008;7(1):79–85.PubMed Galy B, Ferring-Appel D, Kaden S, Gröne H-J, Hentze MW. Iron regulatory proteins are essential for intestinal function and control key iron absorption molecules in the duodenum. Cell Metab. 2008;7(1):79–85.PubMed
105.
Zurück zum Zitat Smith SR, Ghosh MC, Ollivierre-Wilson H, Hang Tong W, Rouault TA. Complete loss of iron regulatory proteins 1 and 2 prevents viability of murine zygotes beyond the blastocyst stage of embryonic development. Blood Cells Mol Dis. 2006;36(2):283–7.PubMed Smith SR, Ghosh MC, Ollivierre-Wilson H, Hang Tong W, Rouault TA. Complete loss of iron regulatory proteins 1 and 2 prevents viability of murine zygotes beyond the blastocyst stage of embryonic development. Blood Cells Mol Dis. 2006;36(2):283–7.PubMed
106.
Zurück zum Zitat Chen M, Awe OO, Chen-Roetling J, Regan RF. Iron regulatory protein-2 knockout increases perihematomal ferritin expression and cell viability after intracerebral hemorrhage. Brain Res. 2010;1337:95–103.PubMedCentralPubMed Chen M, Awe OO, Chen-Roetling J, Regan RF. Iron regulatory protein-2 knockout increases perihematomal ferritin expression and cell viability after intracerebral hemorrhage. Brain Res. 2010;1337:95–103.PubMedCentralPubMed
107.
Zurück zum Zitat Regan RF, Chen M, Li Z, Zhang X, Benvenisti-Zarom L, Chen-Roetling J. Neurons lacking iron regulatory protein-2 are highly resistant to the toxicity of hemoglobin. Neurobiol Dis. 2008;31(2):242–9.PubMedCentralPubMed Regan RF, Chen M, Li Z, Zhang X, Benvenisti-Zarom L, Chen-Roetling J. Neurons lacking iron regulatory protein-2 are highly resistant to the toxicity of hemoglobin. Neurobiol Dis. 2008;31(2):242–9.PubMedCentralPubMed
108.
Zurück zum Zitat Santamaria R, Irace C, Festa M, Maffettone C, Colonna A. Induction of ferritin expression by oxalomalate. Biochim Biophys Acta. 2004;1691(2):151–9.PubMed Santamaria R, Irace C, Festa M, Maffettone C, Colonna A. Induction of ferritin expression by oxalomalate. Biochim Biophys Acta. 2004;1691(2):151–9.PubMed
109.
Zurück zum Zitat LaVaute T, Smith S, Cooperman S, Iwai K, Land W, Meyron-Holtz E, et al. Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat Genet. 2001;27(2):209–14.PubMed LaVaute T, Smith S, Cooperman S, Iwai K, Land W, Meyron-Holtz E, et al. Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat Genet. 2001;27(2):209–14.PubMed
110.
Zurück zum Zitat Festa M, Colonna A, Pietropaolo C, Ruffo A. Oxalomalate, a competitive inhibitor of aconitase, modulates the RNA-binding activity of iron-regulatory proteins. Biochem J. 2000;348:315–20.PubMedCentralPubMed Festa M, Colonna A, Pietropaolo C, Ruffo A. Oxalomalate, a competitive inhibitor of aconitase, modulates the RNA-binding activity of iron-regulatory proteins. Biochem J. 2000;348:315–20.PubMedCentralPubMed
111.
Zurück zum Zitat Schroeder SE, Reddy MB, Schalinske KL. Retinoic acid modulates hepatic iron homeostasis in rats by attenuating the RNA-binding activity of iron regulatory proteins. J Nutr. 2007;137(12):2686–90.PubMed Schroeder SE, Reddy MB, Schalinske KL. Retinoic acid modulates hepatic iron homeostasis in rats by attenuating the RNA-binding activity of iron regulatory proteins. J Nutr. 2007;137(12):2686–90.PubMed
113.
Zurück zum Zitat Allkemper T, Tombach B, Schwindt W, Kugel H, Schilling M, Debus O, et al. Acute and subacute intracerebral hemorrhages: comparison of MR imaging at 1.5 and 3.0 T—initial experience. Radiology. 2004;232(3):874–81.PubMed Allkemper T, Tombach B, Schwindt W, Kugel H, Schilling M, Debus O, et al. Acute and subacute intracerebral hemorrhages: comparison of MR imaging at 1.5 and 3.0 T—initial experience. Radiology. 2004;232(3):874–81.PubMed
Metadaten
Titel
Iron and Intracerebral Hemorrhage: From Mechanism to Translation
verfasst von
Xiao-Yi Xiong
Jian Wang
Zhong-Ming Qian
Qing-Wu Yang
Publikationsdatum
01.08.2014
Verlag
Springer US
Erschienen in
Translational Stroke Research / Ausgabe 4/2014
Print ISSN: 1868-4483
Elektronische ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-013-0317-7

Weitere Artikel der Ausgabe 4/2014

Translational Stroke Research 4/2014 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.