Skip to main content
Erschienen in: Translational Stroke Research 1/2014

01.02.2014 | Original Article

Ion Channels in Regulation of Neuronal Regenerative Activities

verfasst von: Dongdong Chen, Shan Ping Yu, Ling Wei

Erschienen in: Translational Stroke Research | Ausgabe 1/2014

Einloggen, um Zugang zu erhalten

Abstract

The regeneration of the nervous system is achieved by the regrowth of damaged neuronal axons, the restoration of damaged nerve cells, and the generation of new neurons to replace those that have been lost. In the central nervous system, the regenerative ability is limited by various factors including damaged oligodendrocytes that are essential for neuronal axon myelination, an emerging glial scar, and secondary injury in the surrounding areas. Stem cell transplantation therapy has been shown to be a promising approach to treat neurodegenerative diseases because of the regenerative capability of the stem cells that secrete neurotrophic factors and give rise to differentiated progeny. However, some issues of stem cell transplantation, such as survival, homing, and efficiency of neural differentiation after transplantation, still need to be improved. Ion channels allow for the exchange of ions between the intra- and extracellular spaces or between the cytoplasm and organelles. These ion channels maintain the ion homeostasis in the brain and play a key role in regulating the physiological function of the nervous system and allowing the processing of neuronal signals. In seeking a potential strategy to enhance the efficacy of stem cell therapy in neurological and neurodegenerative diseases, this review briefly summarizes the roles of ion channels in cell proliferation, differentiation, migration, chemotropic axon guidance of growth cones, and axon outgrowth after injury.
Literatur
1.
Zurück zum Zitat Steward MM, Sridhar A, Meyer JS. Neural regeneration. Curr Top Microbiol Immunol. 2013;367:163–91.PubMed Steward MM, Sridhar A, Meyer JS. Neural regeneration. Curr Top Microbiol Immunol. 2013;367:163–91.PubMed
2.
Zurück zum Zitat Horner PJ, Gage FH. Regenerating the damaged central nervous system. Nature. 2000;407(6807):963–70.PubMed Horner PJ, Gage FH. Regenerating the damaged central nervous system. Nature. 2000;407(6807):963–70.PubMed
3.
Zurück zum Zitat Springer JE. Apoptotic cell death following traumatic injury to the central nervous system. J Biochem Mol Biol. 2002;35(1):94–105.PubMed Springer JE. Apoptotic cell death following traumatic injury to the central nervous system. J Biochem Mol Biol. 2002;35(1):94–105.PubMed
4.
Zurück zum Zitat Wei L et al. Necrosis, apoptosis and hybrid death in the cortex and thalamus after barrel cortex ischemia in rats. Brain Res. 2004;1022(1–2):54–61.PubMed Wei L et al. Necrosis, apoptosis and hybrid death in the cortex and thalamus after barrel cortex ischemia in rats. Brain Res. 2004;1022(1–2):54–61.PubMed
5.
Zurück zum Zitat Bahr M, Bonhoeffer F. Perspectives on axonal regeneration in the mammalian CNS. Trends Neurosci. 1994;17(11):473–9.PubMed Bahr M, Bonhoeffer F. Perspectives on axonal regeneration in the mammalian CNS. Trends Neurosci. 1994;17(11):473–9.PubMed
6.
Zurück zum Zitat Horner PJ, Gage FH. Regeneration in the adult and aging brain. Arch Neurol. 2002;59(11):1717–20.PubMed Horner PJ, Gage FH. Regeneration in the adult and aging brain. Arch Neurol. 2002;59(11):1717–20.PubMed
7.
Zurück zum Zitat Kahle MP, Bix GJ. Neuronal restoration following ischemic stroke: influences, barriers, and therapeutic potential. Neurorehabil Neural Repair. 2013;27(5):469–78.PubMed Kahle MP, Bix GJ. Neuronal restoration following ischemic stroke: influences, barriers, and therapeutic potential. Neurorehabil Neural Repair. 2013;27(5):469–78.PubMed
8.
Zurück zum Zitat Snyder EY et al. Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proc Natl Acad Sci U S A. 1997;94(21):11663–8.PubMedCentralPubMed Snyder EY et al. Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proc Natl Acad Sci U S A. 1997;94(21):11663–8.PubMedCentralPubMed
9.
Zurück zum Zitat Drury-Stewart D et al. Highly efficient differentiation of neural precursors from human embryonic stem cells and benefits of transplantation after ischemic stroke in mice. Stem Cell Res Ther. 2013;4(4):93.PubMedCentralPubMed Drury-Stewart D et al. Highly efficient differentiation of neural precursors from human embryonic stem cells and benefits of transplantation after ischemic stroke in mice. Stem Cell Res Ther. 2013;4(4):93.PubMedCentralPubMed
10.
Zurück zum Zitat Mohamad O et al. Vector-free and transgene-free human iPS cells differentiate into functional neurons and enhance functional recovery after ischemic stroke in mice. PLoS One. 2013;8(5):e64160.PubMedCentralPubMed Mohamad O et al. Vector-free and transgene-free human iPS cells differentiate into functional neurons and enhance functional recovery after ischemic stroke in mice. PLoS One. 2013;8(5):e64160.PubMedCentralPubMed
11.
Zurück zum Zitat Song M et al. Restoration of intracortical and thalamocortical circuits after transplantation of bone marrow mesenchymal stem cells into the ischemic brain of mice. Cell Transplant. 2012;22(11):2001–15.PubMed Song M et al. Restoration of intracortical and thalamocortical circuits after transplantation of bone marrow mesenchymal stem cells into the ischemic brain of mice. Cell Transplant. 2012;22(11):2001–15.PubMed
12.
Zurück zum Zitat Wei N et al. Delayed intranasal delivery of hypoxic-preconditioned bone marrow mesenchymal stem cells enhanced cell homing and therapeutic benefits after ischemic stroke in mice. Cell Transplant. 2013;22(6):977–91.PubMed Wei N et al. Delayed intranasal delivery of hypoxic-preconditioned bone marrow mesenchymal stem cells enhanced cell homing and therapeutic benefits after ischemic stroke in mice. Cell Transplant. 2013;22(6):977–91.PubMed
13.
Zurück zum Zitat Wei L et al. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol Dis. 2012;46(3):635–45.PubMedCentralPubMed Wei L et al. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol Dis. 2012;46(3):635–45.PubMedCentralPubMed
14.
Zurück zum Zitat Wei L et al. Transplantation of embryonic stem cells overexpressing bcl-2 promotes functional recovery after transient cerebral ischemia. Neurobiol Dis. 2005;19(1–2):183–93.PubMed Wei L et al. Transplantation of embryonic stem cells overexpressing bcl-2 promotes functional recovery after transient cerebral ischemia. Neurobiol Dis. 2005;19(1–2):183–93.PubMed
15.
Zurück zum Zitat Theus MH et al. In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and functional benefits after transplantation into the ischemic rat brain. Exp Neurol. 2008;210(2):656–70.PubMed Theus MH et al. In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and functional benefits after transplantation into the ischemic rat brain. Exp Neurol. 2008;210(2):656–70.PubMed
16.
Zurück zum Zitat Azevedo-Pereira RL, Daadi MM. Isolation and purification of self-renewable human neural stem cells for cell therapy in experimental model of ischemic stroke. Methods Mol Biol. 2013;1059:157–67.PubMed Azevedo-Pereira RL, Daadi MM. Isolation and purification of self-renewable human neural stem cells for cell therapy in experimental model of ischemic stroke. Methods Mol Biol. 2013;1059:157–67.PubMed
17.
Zurück zum Zitat Kim SU, Lee HJ, Kim YB. Neural stem cell-based treatment for neurodegenerative diseases. Neuropathology. 2013;33:491–504.PubMed Kim SU, Lee HJ, Kim YB. Neural stem cell-based treatment for neurodegenerative diseases. Neuropathology. 2013;33:491–504.PubMed
18.
Zurück zum Zitat Marchionini DM et al. Reassessment of caspase inhibition to augment grafted dopamine neuron survival. Cell Transplant. 2004;13(3):273–82.PubMed Marchionini DM et al. Reassessment of caspase inhibition to augment grafted dopamine neuron survival. Cell Transplant. 2004;13(3):273–82.PubMed
19.
Zurück zum Zitat Sortwell CE. Strategies for the augmentation of grafted dopamine neuron survival. Front Biosci. 2003;8:s522–32.PubMed Sortwell CE. Strategies for the augmentation of grafted dopamine neuron survival. Front Biosci. 2003;8:s522–32.PubMed
20.
Zurück zum Zitat Sortwell CE et al. Effects of ex vivo transduction of mesencephalic reaggregates with bcl-2 on grafted dopamine neuron survival. Brain Res. 2007;1134(1):33–44.PubMedCentralPubMed Sortwell CE et al. Effects of ex vivo transduction of mesencephalic reaggregates with bcl-2 on grafted dopamine neuron survival. Brain Res. 2007;1134(1):33–44.PubMedCentralPubMed
22.
Zurück zum Zitat Park KI. Transplantation of neural stem cells: cellular & gene therapy for hypoxic-ischemic brain injury. Yonsei Med J. 2000;41(6):825–35.PubMed Park KI. Transplantation of neural stem cells: cellular & gene therapy for hypoxic-ischemic brain injury. Yonsei Med J. 2000;41(6):825–35.PubMed
23.
Zurück zum Zitat Lindvall O, Kokaia Z, Martinez-Serrano A. Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med. 2004;10(Suppl):S42–50.PubMed Lindvall O, Kokaia Z, Martinez-Serrano A. Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med. 2004;10(Suppl):S42–50.PubMed
24.
Zurück zum Zitat Hu X et al. Hypoxic preconditioning enhances bone marrow mesenchymal stem cell migration via Kv2.1 channel and FAK activation. Am J Physiol Cell Physiol. 2011;301(2):C362–72.PubMed Hu X et al. Hypoxic preconditioning enhances bone marrow mesenchymal stem cell migration via Kv2.1 channel and FAK activation. Am J Physiol Cell Physiol. 2011;301(2):C362–72.PubMed
25.
Zurück zum Zitat Zhou X et al. Potential role of KCNQ/M-channels in regulating neuronal differentiation in mouse hippocampal and embryonic stem cell-derived neuronal cultures. Exp Neurol. 2011;229(2):471–83.PubMedCentralPubMed Zhou X et al. Potential role of KCNQ/M-channels in regulating neuronal differentiation in mouse hippocampal and embryonic stem cell-derived neuronal cultures. Exp Neurol. 2011;229(2):471–83.PubMedCentralPubMed
26.
Zurück zum Zitat Yu SP, Canzoniero LM, Choi DW. Ion homeostasis and apoptosis. Curr Opin Cell Biol. 2001;13(4):405–11.PubMed Yu SP, Canzoniero LM, Choi DW. Ion homeostasis and apoptosis. Curr Opin Cell Biol. 2001;13(4):405–11.PubMed
27.
Zurück zum Zitat Purves DAG, Fitzpatrick D. Channels and transporter. In: Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia A-S, McNamara JO, Williams SM, editors. Neuroscience. 2nd ed. Sunderland: Sinauer Associates, Inc; 2011. Purves DAG, Fitzpatrick D. Channels and transporter. In: Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia A-S, McNamara JO, Williams SM, editors. Neuroscience. 2nd ed. Sunderland: Sinauer Associates, Inc; 2011.
28.
Zurück zum Zitat Krupp JJ. Role of ion channels in neurological disorders. CNS Neurol Disord Drug Targets. 2008;7(2):120–1.PubMed Krupp JJ. Role of ion channels in neurological disorders. CNS Neurol Disord Drug Targets. 2008;7(2):120–1.PubMed
29.
Zurück zum Zitat Swayne LA, Wicki-Stordeur L. Ion channels in postnatal neurogenesis: potential targets for brain repair. Channels (Austin). 2012;6(2):69–74. Swayne LA, Wicki-Stordeur L. Ion channels in postnatal neurogenesis: potential targets for brain repair. Channels (Austin). 2012;6(2):69–74.
30.
Zurück zum Zitat Simanov D et al. The flatworm Macrostomum lignano is a powerful model organism for ion channel and stem cell research. Stem Cells Int. 2012;2012:167265.PubMedCentralPubMed Simanov D et al. The flatworm Macrostomum lignano is a powerful model organism for ion channel and stem cell research. Stem Cells Int. 2012;2012:167265.PubMedCentralPubMed
31.
Zurück zum Zitat DeCoursey TE et al. Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis? Nature. 1984;307(5950):465–8.PubMed DeCoursey TE et al. Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis? Nature. 1984;307(5950):465–8.PubMed
32.
Zurück zum Zitat Wang E et al. Physiological electric fields control the G1/S phase cell cycle checkpoint to inhibit endothelial cell proliferation. FASEB J. 2003;17(3):458–60.PubMed Wang E et al. Physiological electric fields control the G1/S phase cell cycle checkpoint to inhibit endothelial cell proliferation. FASEB J. 2003;17(3):458–60.PubMed
33.
Zurück zum Zitat Valero ML et al. TRPM8 ion channels differentially modulate proliferation and cell cycle distribution of normal and cancer prostate cells. PLoS One. 2012;7(12):e51825.PubMedCentralPubMed Valero ML et al. TRPM8 ion channels differentially modulate proliferation and cell cycle distribution of normal and cancer prostate cells. PLoS One. 2012;7(12):e51825.PubMedCentralPubMed
34.
Zurück zum Zitat Cidad P et al. Kv1.3 channels can modulate cell proliferation during phenotypic switch by an ion-flux independent mechanism. Arterioscler Thromb Vasc Biol. 2012;32(5):1299–307.PubMed Cidad P et al. Kv1.3 channels can modulate cell proliferation during phenotypic switch by an ion-flux independent mechanism. Arterioscler Thromb Vasc Biol. 2012;32(5):1299–307.PubMed
35.
Zurück zum Zitat Becchetti A. Ion channels and transporters in cancer. Ion channels and cell proliferation in cancer. Am J Physiol Cell Physiol. 2011;301(2):C255–65.PubMed Becchetti A. Ion channels and transporters in cancer. Ion channels and cell proliferation in cancer. Am J Physiol Cell Physiol. 2011;301(2):C255–65.PubMed
36.
Zurück zum Zitat Lang F et al. Cell volume regulatory ion channels in cell proliferation and cell death. Methods Enzymol. 2007;428:209–25.PubMed Lang F et al. Cell volume regulatory ion channels in cell proliferation and cell death. Methods Enzymol. 2007;428:209–25.PubMed
37.
Zurück zum Zitat Lang F et al. Ion channels in cell proliferation and apoptotic cell death. J Membr Biol. 2005;205(3):147–57.PubMed Lang F et al. Ion channels in cell proliferation and apoptotic cell death. J Membr Biol. 2005;205(3):147–57.PubMed
38.
Zurück zum Zitat Scheffler B et al. Phenotypic and functional characterization of adult brain neuropoiesis. Proc Natl Acad Sci U S A. 2005;102(26):9353–8.PubMedCentralPubMed Scheffler B et al. Phenotypic and functional characterization of adult brain neuropoiesis. Proc Natl Acad Sci U S A. 2005;102(26):9353–8.PubMedCentralPubMed
39.
Zurück zum Zitat Yasuda T, Bartlett PF, Adams DJ. K(ir) and K(v) channels regulate electrical properties and proliferation of adult neural precursor cells. Mol Cell Neurosci. 2008;37(2):284–97.PubMed Yasuda T, Bartlett PF, Adams DJ. K(ir) and K(v) channels regulate electrical properties and proliferation of adult neural precursor cells. Mol Cell Neurosci. 2008;37(2):284–97.PubMed
40.
Zurück zum Zitat Yasuda T, Cuny H, Adams DJ. Kv3.1 channels stimulate adult neural precursor cell proliferation and neuronal differentiation. J Physiol. 2013;591(Pt 10):2579–91.PubMed Yasuda T, Cuny H, Adams DJ. Kv3.1 channels stimulate adult neural precursor cell proliferation and neuronal differentiation. J Physiol. 2013;591(Pt 10):2579–91.PubMed
41.
Zurück zum Zitat Zhang YY et al. BK and hEag1 channels regulate cell proliferation and differentiation in human bone marrow-derived mesenchymal stem cells. J Cell Physiol. 2013;8(11):e79952. Zhang YY et al. BK and hEag1 channels regulate cell proliferation and differentiation in human bone marrow-derived mesenchymal stem cells. J Cell Physiol. 2013;8(11):e79952.
42.
Zurück zum Zitat Zhang J et al. Regulation of cell proliferation of human induced pluripotent stem cell-derived mesenchymal stem cells via ether-a-go-go 1 (hEAG1) potassium channel. Am J Physiol Cell Physiol. 2012;303(2):C115–25.PubMed Zhang J et al. Regulation of cell proliferation of human induced pluripotent stem cell-derived mesenchymal stem cells via ether-a-go-go 1 (hEAG1) potassium channel. Am J Physiol Cell Physiol. 2012;303(2):C115–25.PubMed
43.
Zurück zum Zitat Linta L et al. Calcium activated potassium channel expression during human iPS cell-derived neurogenesis. Ann Anat. 2013;195(4):303–11.PubMed Linta L et al. Calcium activated potassium channel expression during human iPS cell-derived neurogenesis. Ann Anat. 2013;195(4):303–11.PubMed
44.
Zurück zum Zitat Kong H et al. AQP4 knockout impairs proliferation, migration and neuronal differentiation of adult neural stem cells. J Cell Sci. 2008;121(Pt 24):4029–36.PubMed Kong H et al. AQP4 knockout impairs proliferation, migration and neuronal differentiation of adult neural stem cells. J Cell Sci. 2008;121(Pt 24):4029–36.PubMed
45.
Zurück zum Zitat Zheng GQ et al. Beyond water channel: aquaporin-4 in adult neurogenesis. Neurochem Int. 2010;56(5):651–4.PubMed Zheng GQ et al. Beyond water channel: aquaporin-4 in adult neurogenesis. Neurochem Int. 2010;56(5):651–4.PubMed
46.
Zurück zum Zitat Li M et al. A TRPC1-mediated increase in store-operated Ca2+ entry is required for the proliferation of adult hippocampal neural progenitor cells. Cell Calcium. 2012;51(6):486–96.PubMed Li M et al. A TRPC1-mediated increase in store-operated Ca2+ entry is required for the proliferation of adult hippocampal neural progenitor cells. Cell Calcium. 2012;51(6):486–96.PubMed
47.
Zurück zum Zitat Rosenberg SS, Spitzer NC. Calcium signaling in neuronal development. Cold Spring Harb Perspect Biol. 2011;3(10):a004259.PubMed Rosenberg SS, Spitzer NC. Calcium signaling in neuronal development. Cold Spring Harb Perspect Biol. 2011;3(10):a004259.PubMed
48.
Zurück zum Zitat Henley JR et al. Calcium mediates bidirectional growth cone turning induced by myelin-associated glycoprotein. Neuron. 2004;44(6):909–16.PubMedCentralPubMed Henley JR et al. Calcium mediates bidirectional growth cone turning induced by myelin-associated glycoprotein. Neuron. 2004;44(6):909–16.PubMedCentralPubMed
49.
Zurück zum Zitat Hong K et al. Calcium signalling in the guidance of nerve growth by netrin-1. Nature. 2000;403(6765):93–8.PubMed Hong K et al. Calcium signalling in the guidance of nerve growth by netrin-1. Nature. 2000;403(6765):93–8.PubMed
50.
Zurück zum Zitat Shim S et al. XTRPC1-dependent chemotropic guidance of neuronal growth cones. Nat Neurosci. 2005;8(6):730–5.PubMed Shim S et al. XTRPC1-dependent chemotropic guidance of neuronal growth cones. Nat Neurosci. 2005;8(6):730–5.PubMed
51.
Zurück zum Zitat Tojima T. Intracellular signaling and membrane trafficking control bidirectional growth cone guidance. Neurosci Res. 2012;73(4):269–74.PubMed Tojima T. Intracellular signaling and membrane trafficking control bidirectional growth cone guidance. Neurosci Res. 2012;73(4):269–74.PubMed
52.
Zurück zum Zitat Michaelsen K, Lohmann C. Calcium dynamics at developing synapses: mechanisms and functions. Eur J Neurosci. 2010;32(2):218–23.PubMed Michaelsen K, Lohmann C. Calcium dynamics at developing synapses: mechanisms and functions. Eur J Neurosci. 2010;32(2):218–23.PubMed
53.
Zurück zum Zitat Platel JC, Dave KA, Bordey A. Control of neuroblast production and migration by converging GABA and glutamate signals in the postnatal forebrain. J Physiol. 2008;586(16):3739–43.PubMed Platel JC, Dave KA, Bordey A. Control of neuroblast production and migration by converging GABA and glutamate signals in the postnatal forebrain. J Physiol. 2008;586(16):3739–43.PubMed
54.
Zurück zum Zitat Li Y et al. Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature. 2005;434(7035):894–8.PubMed Li Y et al. Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature. 2005;434(7035):894–8.PubMed
55.
Zurück zum Zitat Wang GX, Poo MM. Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones. Nature. 2005;434(7035):898–904.PubMed Wang GX, Poo MM. Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones. Nature. 2005;434(7035):898–904.PubMed
56.
Zurück zum Zitat Greka A et al. TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci. 2003;6(8):837–45.PubMed Greka A et al. TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci. 2003;6(8):837–45.PubMed
57.
Zurück zum Zitat Li HS, Xu XZ, Montell C. Activation of a TRPC3-dependent cation current through the neurotrophin BDNF. Neuron. 1999;24(1):261–73.PubMed Li HS, Xu XZ, Montell C. Activation of a TRPC3-dependent cation current through the neurotrophin BDNF. Neuron. 1999;24(1):261–73.PubMed
58.
Zurück zum Zitat Shim S et al. Peptidyl-prolyl isomerase FKBP52 controls chemotropic guidance of neuronal growth cones via regulation of TRPC1 channel opening. Neuron. 2009;64(4):471–83.PubMedCentralPubMed Shim S et al. Peptidyl-prolyl isomerase FKBP52 controls chemotropic guidance of neuronal growth cones via regulation of TRPC1 channel opening. Neuron. 2009;64(4):471–83.PubMedCentralPubMed
59.
Zurück zum Zitat Kaczmarek JS, Riccio A, Clapham DE. Calpain cleaves and activates the TRPC5 channel to participate in semaphorin 3A-induced neuronal growth cone collapse. Proc Natl Acad Sci U S A. 2012;109(20):7888–92.PubMedCentralPubMed Kaczmarek JS, Riccio A, Clapham DE. Calpain cleaves and activates the TRPC5 channel to participate in semaphorin 3A-induced neuronal growth cone collapse. Proc Natl Acad Sci U S A. 2012;109(20):7888–92.PubMedCentralPubMed
60.
Zurück zum Zitat Davare MA et al. Transient receptor potential canonical 5 channels activate Ca2+/calmodulin kinase Igamma to promote axon formation in hippocampal neurons. J Neurosci. 2009;29(31):9794–808.PubMedCentralPubMed Davare MA et al. Transient receptor potential canonical 5 channels activate Ca2+/calmodulin kinase Igamma to promote axon formation in hippocampal neurons. J Neurosci. 2009;29(31):9794–808.PubMedCentralPubMed
61.
Zurück zum Zitat Heo DK et al. Opposite regulatory effects of TRPC1 and TRPC5 on neurite outgrowth in PC12 cells. Cell Signal. 2012;24(4):899–906.PubMed Heo DK et al. Opposite regulatory effects of TRPC1 and TRPC5 on neurite outgrowth in PC12 cells. Cell Signal. 2012;24(4):899–906.PubMed
62.
Zurück zum Zitat Kumar S et al. Mechanisms controlling neurite outgrowth in a pheochromocytoma cell line: the role of TRPC channels. J Cell Physiol. 2012;227(4):1408–19.PubMed Kumar S et al. Mechanisms controlling neurite outgrowth in a pheochromocytoma cell line: the role of TRPC channels. J Cell Physiol. 2012;227(4):1408–19.PubMed
63.
64.
Zurück zum Zitat Subramanian N et al. Role of Na(v)1.9 in activity-dependent axon growth in motoneurons. Hum Mol Genet. 2012;21(16):3655–67.PubMed Subramanian N et al. Role of Na(v)1.9 in activity-dependent axon growth in motoneurons. Hum Mol Genet. 2012;21(16):3655–67.PubMed
65.
Zurück zum Zitat Wu D et al. TRPC4 in rat dorsal root ganglion neurons is increased after nerve injury and is necessary for neurite outgrowth. J Biol Chem. 2008;283(1):416–26.PubMed Wu D et al. TRPC4 in rat dorsal root ganglion neurons is increased after nerve injury and is necessary for neurite outgrowth. J Biol Chem. 2008;283(1):416–26.PubMed
66.
Zurück zum Zitat Kulbatski I, Cook DJ, Tator CH. Calcium entry through L-type calcium channels is essential for neurite regeneration in cultured sympathetic neurons. J Neurotrauma. 2004;21(3):357–74.PubMed Kulbatski I, Cook DJ, Tator CH. Calcium entry through L-type calcium channels is essential for neurite regeneration in cultured sympathetic neurons. J Neurotrauma. 2004;21(3):357–74.PubMed
67.
Zurück zum Zitat Weick JP, Austin Johnson M, Zhang SC. Developmental regulation of human embryonic stem cell-derived neurons by calcium entry via transient receptor potential channels. Stem Cells. 2009;27(12):2906–16.PubMedCentralPubMed Weick JP, Austin Johnson M, Zhang SC. Developmental regulation of human embryonic stem cell-derived neurons by calcium entry via transient receptor potential channels. Stem Cells. 2009;27(12):2906–16.PubMedCentralPubMed
68.
Zurück zum Zitat Ding F et al. Involvement of cationic channels in proliferation and migration of human mesenchymal stem cells. Tissue Cell. 2012;44(6):358–64.PubMed Ding F et al. Involvement of cationic channels in proliferation and migration of human mesenchymal stem cells. Tissue Cell. 2012;44(6):358–64.PubMed
69.
Zurück zum Zitat Schwab A et al. Role of ion channels and transporters in cell migration. Physiol Rev. 2012;92(4):1865–913.PubMed Schwab A et al. Role of ion channels and transporters in cell migration. Physiol Rev. 2012;92(4):1865–913.PubMed
70.
Zurück zum Zitat Schwab A. Function and spatial distribution of ion channels and transporters in cell migration. Am J Physiol Renal Physiol. 2001;280(5):F739–47.PubMed Schwab A. Function and spatial distribution of ion channels and transporters in cell migration. Am J Physiol Renal Physiol. 2001;280(5):F739–47.PubMed
71.
Zurück zum Zitat Schwab A et al. Potassium channels keep mobile cells on the go. Physiology (Bethesda). 2008;23:212–20. Schwab A et al. Potassium channels keep mobile cells on the go. Physiology (Bethesda). 2008;23:212–20.
72.
Zurück zum Zitat Yu X et al. Hypoxic preconditioning with cobalt of bone marrow mesenchymal stem cells improves cell migration and enhances therapy for treatment of ischemic acute kidney injury. PLoS One. 2013;8(5):e62703.PubMedCentralPubMed Yu X et al. Hypoxic preconditioning with cobalt of bone marrow mesenchymal stem cells improves cell migration and enhances therapy for treatment of ischemic acute kidney injury. PLoS One. 2013;8(5):e62703.PubMedCentralPubMed
73.
Zurück zum Zitat Komuro H, Kumada T. Ca2+ transients control CNS neuronal migration. Cell Calcium. 2005;37(5):387–93.PubMed Komuro H, Kumada T. Ca2+ transients control CNS neuronal migration. Cell Calcium. 2005;37(5):387–93.PubMed
74.
Zurück zum Zitat Betapudi V et al. Novel regulation and dynamics of myosin II activation during epidermal wound responses. Exp Cell Res. 2010;316(6):980–91.PubMedCentralPubMed Betapudi V et al. Novel regulation and dynamics of myosin II activation during epidermal wound responses. Exp Cell Res. 2010;316(6):980–91.PubMedCentralPubMed
75.
Zurück zum Zitat Franco SJ, Huttenlocher A. Regulating cell migration: calpains make the cut. J Cell Sci. 2005;118(Pt 17):3829–38.PubMed Franco SJ, Huttenlocher A. Regulating cell migration: calpains make the cut. J Cell Sci. 2005;118(Pt 17):3829–38.PubMed
76.
Zurück zum Zitat Easley CAT et al. CaMK-II promotes focal adhesion turnover and cell motility by inducing tyrosine dephosphorylation of FAK and paxillin. Cell Motil Cytoskeleton. 2008;65(8):662–74.PubMedCentralPubMed Easley CAT et al. CaMK-II promotes focal adhesion turnover and cell motility by inducing tyrosine dephosphorylation of FAK and paxillin. Cell Motil Cytoskeleton. 2008;65(8):662–74.PubMedCentralPubMed
77.
Zurück zum Zitat Brundage RA et al. Calcium gradients underlying polarization and chemotaxis of eosinophils. Science. 1991;254(5032):703–6.PubMed Brundage RA et al. Calcium gradients underlying polarization and chemotaxis of eosinophils. Science. 1991;254(5032):703–6.PubMed
78.
Zurück zum Zitat Hahn K, DeBiasio R, Taylor DL. Patterns of elevated free calcium and calmodulin activation in living cells. Nature. 1992;359(6397):736–8.PubMed Hahn K, DeBiasio R, Taylor DL. Patterns of elevated free calcium and calmodulin activation in living cells. Nature. 1992;359(6397):736–8.PubMed
79.
Zurück zum Zitat Schwab A et al. Intracellular Ca2+ distribution in migrating transformed epithelial cells. Pflugers Arch. 1997;434(1):70–6.PubMed Schwab A et al. Intracellular Ca2+ distribution in migrating transformed epithelial cells. Pflugers Arch. 1997;434(1):70–6.PubMed
80.
81.
Zurück zum Zitat Fabian A et al. TRPC1 channels regulate directionality of migrating cells. Pflugers Arch. 2008;457(2):475–84.PubMed Fabian A et al. TRPC1 channels regulate directionality of migrating cells. Pflugers Arch. 2008;457(2):475–84.PubMed
82.
Zurück zum Zitat Louhivuori LM et al. Role of low voltage activated calcium channels in neuritogenesis and active migration of embryonic neural progenitor cells. Stem Cells Dev. 2013;22(8):1206–19.PubMed Louhivuori LM et al. Role of low voltage activated calcium channels in neuritogenesis and active migration of embryonic neural progenitor cells. Stem Cells Dev. 2013;22(8):1206–19.PubMed
83.
Zurück zum Zitat Paez PM et al. Multiple kinase pathways regulate voltage-dependent Ca2+ influx and migration in oligodendrocyte precursor cells. J Neurosci. 2010;30(18):6422–33.PubMedCentralPubMed Paez PM et al. Multiple kinase pathways regulate voltage-dependent Ca2+ influx and migration in oligodendrocyte precursor cells. J Neurosci. 2010;30(18):6422–33.PubMedCentralPubMed
84.
Zurück zum Zitat Morgan PJ et al. Spontaneous calcium transients in human neural progenitor cells mediated by transient receptor potential channels. Stem Cells Dev. 2013;22(18):2477–86.PubMed Morgan PJ et al. Spontaneous calcium transients in human neural progenitor cells mediated by transient receptor potential channels. Stem Cells Dev. 2013;22(18):2477–86.PubMed
85.
Zurück zum Zitat Paez PM et al. Golli myelin basic proteins regulate oligodendroglial progenitor cell migration through voltage-gated Ca2+ influx. J Neurosci. 2009;29(20):6663–76.PubMedCentralPubMed Paez PM et al. Golli myelin basic proteins regulate oligodendroglial progenitor cell migration through voltage-gated Ca2+ influx. J Neurosci. 2009;29(20):6663–76.PubMedCentralPubMed
86.
Zurück zum Zitat Paez PM et al. Voltage-operated Ca(2+) and Na(+) channels in the oligodendrocyte lineage. J Neurosci Res. 2009;87(15):3259–66.PubMed Paez PM et al. Voltage-operated Ca(2+) and Na(+) channels in the oligodendrocyte lineage. J Neurosci Res. 2009;87(15):3259–66.PubMed
87.
Zurück zum Zitat Kuang CY et al. Knockdown of transient receptor potential canonical-1 reduces the proliferation and migration of endothelial progenitor cells. Stem Cells Dev. 2012;21(3):487–96.PubMed Kuang CY et al. Knockdown of transient receptor potential canonical-1 reduces the proliferation and migration of endothelial progenitor cells. Stem Cells Dev. 2012;21(3):487–96.PubMed
88.
Zurück zum Zitat Moustakas A et al. The cytoskeleton in cell volume regulation. Contrib Nephrol. 1998;123:121–34.PubMed Moustakas A et al. The cytoskeleton in cell volume regulation. Contrib Nephrol. 1998;123:121–34.PubMed
89.
Zurück zum Zitat Pedersen SF, Hoffmann EK, Mills JW. The cytoskeleton and cell volume regulation. Comp Biochem Physiol A Mol Integr Physiol. 2001;130(3):385–99.PubMed Pedersen SF, Hoffmann EK, Mills JW. The cytoskeleton and cell volume regulation. Comp Biochem Physiol A Mol Integr Physiol. 2001;130(3):385–99.PubMed
90.
Zurück zum Zitat Schwab A et al. Oscillating activity of a Ca(2+)-sensitive K+ channel. A prerequisite for migration of transformed Madin-Darby canine kidney focus cells. J Clin Invest. 1994;93(4):1631–6.PubMedCentralPubMed Schwab A et al. Oscillating activity of a Ca(2+)-sensitive K+ channel. A prerequisite for migration of transformed Madin-Darby canine kidney focus cells. J Clin Invest. 1994;93(4):1631–6.PubMedCentralPubMed
91.
Zurück zum Zitat Pettit EJ, Fay FS. Cytosolic free calcium and the cytoskeleton in the control of leukocyte chemotaxis. Physiol Rev. 1998;78(4):949–67.PubMed Pettit EJ, Fay FS. Cytosolic free calcium and the cytoskeleton in the control of leukocyte chemotaxis. Physiol Rev. 1998;78(4):949–67.PubMed
92.
Zurück zum Zitat Yu SP. Regulation and critical role of potassium homeostasis in apoptosis. Prog Neurobiol. 2003;70(4):363–86.PubMed Yu SP. Regulation and critical role of potassium homeostasis in apoptosis. Prog Neurobiol. 2003;70(4):363–86.PubMed
93.
Zurück zum Zitat Schwab A et al. Migration of transformed renal epithelial cells is regulated by K+ channel modulation of actin cytoskeleton and cell volume. Pflugers Arch. 1999;438(3):330–7.PubMed Schwab A et al. Migration of transformed renal epithelial cells is regulated by K+ channel modulation of actin cytoskeleton and cell volume. Pflugers Arch. 1999;438(3):330–7.PubMed
94.
Zurück zum Zitat Gendelman HE et al. Monocyte chemotactic protein-1 regulates voltage-gated K+ channels and macrophage transmigration. J NeuroImmune Pharm. 2009;4(1):47–59. Gendelman HE et al. Monocyte chemotactic protein-1 regulates voltage-gated K+ channels and macrophage transmigration. J NeuroImmune Pharm. 2009;4(1):47–59.
95.
Zurück zum Zitat Nutile-McMenemy N, Elfenbein A, Deleo JA. Minocycline decreases in vitro microglial motility, beta1-integrin, and Kv1.3 channel expression. J Neurochem. 2007;103(5):2035–46.PubMed Nutile-McMenemy N, Elfenbein A, Deleo JA. Minocycline decreases in vitro microglial motility, beta1-integrin, and Kv1.3 channel expression. J Neurochem. 2007;103(5):2035–46.PubMed
96.
Zurück zum Zitat Schwab A et al. Subcellular distribution of calcium-sensitive potassium channels (IK1) in migrating cells. J Cell Physiol. 2006;206(1):86–94.PubMed Schwab A et al. Subcellular distribution of calcium-sensitive potassium channels (IK1) in migrating cells. J Cell Physiol. 2006;206(1):86–94.PubMed
97.
Zurück zum Zitat Shao Z, Makinde TO, Agrawal DK. Calcium-activated potassium channel KCa3.1 in lung dendritic cell migration. Am J Respir Cell Mol Biol. 2011;45(5):962–8.PubMed Shao Z, Makinde TO, Agrawal DK. Calcium-activated potassium channel KCa3.1 in lung dendritic cell migration. Am J Respir Cell Mol Biol. 2011;45(5):962–8.PubMed
98.
Zurück zum Zitat Su XL et al. Insulin-mediated upregulation of K(Ca)3.1 channels promotes cell migration and proliferation in rat vascular smooth muscle. J Mol Cell Cardiol. 2011;51(1):51–7.PubMed Su XL et al. Insulin-mediated upregulation of K(Ca)3.1 channels promotes cell migration and proliferation in rat vascular smooth muscle. J Mol Cell Cardiol. 2011;51(1):51–7.PubMed
99.
Zurück zum Zitat Meng F, et al. Aqp1 enhances migration of bone marrow mesenchymal stem cells through regulation of FAK and beta-catenin. Stem Cells Dev. 2014;23(1):66–75. Meng F, et al. Aqp1 enhances migration of bone marrow mesenchymal stem cells through regulation of FAK and beta-catenin. Stem Cells Dev. 2014;23(1):66–75.
100.
Zurück zum Zitat Yu SP, Wei Z, Wei L. Preconditioning strategy in stem cell transplantation therapy. Transl Stroke Res. 2013;4(1):76–88.PubMedCentralPubMed Yu SP, Wei Z, Wei L. Preconditioning strategy in stem cell transplantation therapy. Transl Stroke Res. 2013;4(1):76–88.PubMedCentralPubMed
101.
Zurück zum Zitat Makri G et al. Transplantation of embryonic neural stem/precursor cells overexpressing BM88/Cend1 enhances the generation of neuronal cells in the injured mouse cortex. Stem Cells. 2010;28(1):127–39.PubMed Makri G et al. Transplantation of embryonic neural stem/precursor cells overexpressing BM88/Cend1 enhances the generation of neuronal cells in the injured mouse cortex. Stem Cells. 2010;28(1):127–39.PubMed
102.
Zurück zum Zitat Zhang S et al. Purified human bone marrow multipotent mesenchymal stem cells regenerate infarcted myocardium in experimental rats. Cell Transplant. 2005;14(10):787–98.PubMed Zhang S et al. Purified human bone marrow multipotent mesenchymal stem cells regenerate infarcted myocardium in experimental rats. Cell Transplant. 2005;14(10):787–98.PubMed
103.
Zurück zum Zitat Agbulut O et al. Can bone marrow-derived multipotent adult progenitor cells regenerate infarcted myocardium? Cardiovasc Res. 2006;72(1):175–83.PubMed Agbulut O et al. Can bone marrow-derived multipotent adult progenitor cells regenerate infarcted myocardium? Cardiovasc Res. 2006;72(1):175–83.PubMed
104.
Zurück zum Zitat Zhang ZG et al. Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res. 2002;90(3):284–8.PubMed Zhang ZG et al. Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res. 2002;90(3):284–8.PubMed
105.
Metadaten
Titel
Ion Channels in Regulation of Neuronal Regenerative Activities
verfasst von
Dongdong Chen
Shan Ping Yu
Ling Wei
Publikationsdatum
01.02.2014
Verlag
Springer US
Erschienen in
Translational Stroke Research / Ausgabe 1/2014
Print ISSN: 1868-4483
Elektronische ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-013-0320-z

Weitere Artikel der Ausgabe 1/2014

Translational Stroke Research 1/2014 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.