Skip to main content
Erschienen in: Tumor Biology 1/2015

01.01.2015 | Review

Warburg meets non-coding RNAs: the emerging role of ncRNA in regulating the glucose metabolism of cancer cells

verfasst von: Chenxiao Yu, Jiao Xue, Wei Zhu, Yang Jiao, Shuyu Zhang, Jianping Cao

Erschienen in: Tumor Biology | Ausgabe 1/2015

Einloggen, um Zugang zu erhalten

Abstract

Unlike normal differentiated cells, cancer cells primarily rely on glycolysis to generate energy needed for cellular processes even in normoxia conditions. This phenomenon is called aerobic glycolysis or “the Warburg effect.” Aerobic glycolysis is inefficient to generate ATP, but the advantages it confers to cancer cells remain to be fully explained. Several oncogenic signaling pathways, interplaying with enzymes and kinases involved in glucose metabolism, participate in the switch from oxidative phosphorylation (OXPHOS) to aerobic glycolysis. Non-coding RNAs (ncRNAs) are a family of functional RNA molecules that are not further translated into proteins, which exert regulatatory roles in gene transcription and translation. ncRNAs, especially miRNAs and long non-coding RNAs (lncRNAs), may also have great effect on glucose metabolism by targeting not only glycolysis enzymes directly but also oncogenic signaling pathways indirectly. A better understanding of the Warburg effect and the regulatory role of ncRNAs in cancer glucose metabolism may contribute to the treatment of cancers.
Literatur
1.
Zurück zum Zitat Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMed Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMed
2.
Zurück zum Zitat Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.PubMedPubMedCentral Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.PubMedPubMedCentral
3.
Zurück zum Zitat Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006;9(6):425–34.PubMed Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006;9(6):425–34.PubMed
4.
Zurück zum Zitat Szymanski M et al. Noncoding RNA transcripts. J Appl Genet. 2003;44(1):1–20.PubMed Szymanski M et al. Noncoding RNA transcripts. J Appl Genet. 2003;44(1):1–20.PubMed
5.
Zurück zum Zitat Hüttenhofer A, Schattner P, Polacek N. Non-coding RNAs: hope or hype? Trends Genet. 2005;21(5):289–97.PubMed Hüttenhofer A, Schattner P, Polacek N. Non-coding RNAs: hope or hype? Trends Genet. 2005;21(5):289–97.PubMed
6.
Zurück zum Zitat Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6(5):376–85.PubMed Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6(5):376–85.PubMed
7.
Zurück zum Zitat Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.PubMed Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.PubMed
8.
Zurück zum Zitat Lee Y et al. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 2002;21(17):4663–70.PubMedPubMedCentral Lee Y et al. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 2002;21(17):4663–70.PubMedPubMedCentral
9.
Zurück zum Zitat Han J et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell. 2006;125(5):887–901.PubMed Han J et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell. 2006;125(5):887–901.PubMed
10.
Zurück zum Zitat Denli AM et al. Processing of primary microRNAs by the Microprocessor complex. Nature. 2004;432(7014):231–5.PubMed Denli AM et al. Processing of primary microRNAs by the Microprocessor complex. Nature. 2004;432(7014):231–5.PubMed
11.
Zurück zum Zitat Yi R et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17(24):3011–6.PubMedPubMedCentral Yi R et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17(24):3011–6.PubMedPubMedCentral
12.
Zurück zum Zitat Vermeulen A et al. The contributions of dsRNA structure to Dicer specificity and efficiency. RNA. 2005;11(5):674–82.PubMedPubMedCentral Vermeulen A et al. The contributions of dsRNA structure to Dicer specificity and efficiency. RNA. 2005;11(5):674–82.PubMedPubMedCentral
13.
Zurück zum Zitat Gregory RI et al. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005;123(4):631–40.PubMed Gregory RI et al. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005;123(4):631–40.PubMed
15.
Zurück zum Zitat Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003;115(2):209–16.PubMed Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003;115(2):209–16.PubMed
17.
Zurück zum Zitat Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(4):629–41.PubMed Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(4):629–41.PubMed
18.
Zurück zum Zitat Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–9.PubMed Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–9.PubMed
19.
Zurück zum Zitat Mercer TR et al. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci. 2008;105(2):716–21.PubMedPubMedCentral Mercer TR et al. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci. 2008;105(2):716–21.PubMedPubMedCentral
20.
Zurück zum Zitat Babak T, Blencowe BJ, Hughes TR. Considerations in the identification of functional RNA structural elements in genomic alignments. BMC Bioinforma. 2007;8(1):33. Babak T, Blencowe BJ, Hughes TR. Considerations in the identification of functional RNA structural elements in genomic alignments. BMC Bioinforma. 2007;8(1):33.
21.
Zurück zum Zitat Seto AG, Kingston RE, Lau NC. The coming of age for PIWI proteins. Mol Cell. 2007;26(5):603–9.PubMed Seto AG, Kingston RE, Lau NC. The coming of age for PIWI proteins. Mol Cell. 2007;26(5):603–9.PubMed
22.
Zurück zum Zitat Gunawardane LS et al. A slicer-mediated mechanism for repeat-associated siRNA 5′end formation in Drosophila. Science. 2007;315(5818):1587–90.PubMed Gunawardane LS et al. A slicer-mediated mechanism for repeat-associated siRNA 5′end formation in Drosophila. Science. 2007;315(5818):1587–90.PubMed
23.
Zurück zum Zitat Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74.PubMed Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74.PubMed
24.
Zurück zum Zitat Lehninger N, Cox MN. Principles of biochemistry. New York: WH Freeman & Co.; 2008. Lehninger N, Cox MN. Principles of biochemistry. New York: WH Freeman & Co.; 2008.
25.
Zurück zum Zitat DeBerardinis RJ et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci. 2007;104(49):19345–50.PubMedPubMedCentral DeBerardinis RJ et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci. 2007;104(49):19345–50.PubMedPubMedCentral
26.
Zurück zum Zitat DeBerardinis RJ, Thompson CB. Cellular metabolism and disease: what do metabolic outliers teach us? Cell. 2012;148(6):1132–44.PubMedPubMedCentral DeBerardinis RJ, Thompson CB. Cellular metabolism and disease: what do metabolic outliers teach us? Cell. 2012;148(6):1132–44.PubMedPubMedCentral
27.
Zurück zum Zitat DeBerardinis RJ et al. Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev. 2008;18(1):54–61.PubMedPubMedCentral DeBerardinis RJ et al. Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev. 2008;18(1):54–61.PubMedPubMedCentral
28.
Zurück zum Zitat Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 2008;8(9):705–13.PubMed Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 2008;8(9):705–13.PubMed
29.
Zurück zum Zitat Quagliaro L et al. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells the role of protein kinase C and NAD (P) H-oxidase activation. Diabetes. 2003;52(11):2795–804.PubMed Quagliaro L et al. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells the role of protein kinase C and NAD (P) H-oxidase activation. Diabetes. 2003;52(11):2795–804.PubMed
30.
Zurück zum Zitat Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18(16):1926–45.PubMed Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18(16):1926–45.PubMed
31.
Zurück zum Zitat Inoki K, Zhu T, Guan K-L. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577–90.PubMed Inoki K, Zhu T, Guan K-L. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577–90.PubMed
32.
Zurück zum Zitat Wouters BG, Koritzinsky M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer. 2008;8(11):851–64.PubMed Wouters BG, Koritzinsky M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer. 2008;8(11):851–64.PubMed
34.
Zurück zum Zitat Kato M et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci. 2007;104(9):3432–7.PubMedPubMedCentral Kato M et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci. 2007;104(9):3432–7.PubMedPubMedCentral
35.
Zurück zum Zitat Yang H et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 2008;68(2):425–33.PubMed Yang H et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 2008;68(2):425–33.PubMed
36.
Zurück zum Zitat Uesugi A et al. The tumor suppressive microRNA miR-218 targets the mTOR component Rictor and inhibits AKT phosphorylation in oral cancer. Cancer Res. 2011;71(17):5765–78.PubMed Uesugi A et al. The tumor suppressive microRNA miR-218 targets the mTOR component Rictor and inhibits AKT phosphorylation in oral cancer. Cancer Res. 2011;71(17):5765–78.PubMed
37.
Zurück zum Zitat Wang J et al. MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb. PLoS Pathog. 2013;9(10):e1003697.PubMedPubMedCentral Wang J et al. MicroRNA-155 promotes autophagy to eliminate intracellular mycobacteria by targeting Rheb. PLoS Pathog. 2013;9(10):e1003697.PubMedPubMedCentral
38.
Zurück zum Zitat Meng F et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647–58.PubMedPubMedCentral Meng F et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647–58.PubMedPubMedCentral
39.
Zurück zum Zitat Aguda BD et al. MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc Natl Acad Sci. 2008;105(50):19678–83.PubMedPubMedCentral Aguda BD et al. MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc Natl Acad Sci. 2008;105(50):19678–83.PubMedPubMedCentral
41.
Zurück zum Zitat Liang Z et al. Regulation of miR-19 to breast cancer chemoresistance through targeting PTEN. Pharm Res. 2011;28(12):3091–100.PubMedPubMedCentral Liang Z et al. Regulation of miR-19 to breast cancer chemoresistance through targeting PTEN. Pharm Res. 2011;28(12):3091–100.PubMedPubMedCentral
42.
Zurück zum Zitat Kefas B et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res. 2008;68(10):3566–72.PubMed Kefas B et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res. 2008;68(10):3566–72.PubMed
43.
Zurück zum Zitat Tsukamoto Y et al. MicroRNA-375 is down regulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3ζ. Cancer Res. 2010;70(6):2339–49.PubMed Tsukamoto Y et al. MicroRNA-375 is down regulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3ζ. Cancer Res. 2010;70(6):2339–49.PubMed
44.
Zurück zum Zitat Matoba S et al. p53 regulates mitochondrial respiration. Science. 2006;312(5780):1650–3.PubMed Matoba S et al. p53 regulates mitochondrial respiration. Science. 2006;312(5780):1650–3.PubMed
45.
Zurück zum Zitat Samuels-Lev Y et al. ASPP proteins specifically stimulate the apoptotic function of p53. Mol Cell. 2001;8(4):781–94.PubMed Samuels-Lev Y et al. ASPP proteins specifically stimulate the apoptotic function of p53. Mol Cell. 2001;8(4):781–94.PubMed
46.
Zurück zum Zitat Li Q et al. Daxx cooperates with the Axin/HIPK2/p53 complex to induce cell death. Cancer Res. 2007;67(1):66–74.PubMed Li Q et al. Daxx cooperates with the Axin/HIPK2/p53 complex to induce cell death. Cancer Res. 2007;67(1):66–74.PubMed
47.
Zurück zum Zitat Shikama N et al. A novel cofactor for p300 that regulates the p53 response. Mol Cell. 1999;4(3):365–76.PubMed Shikama N et al. A novel cofactor for p300 that regulates the p53 response. Mol Cell. 1999;4(3):365–76.PubMed
48.
Zurück zum Zitat Kumar M et al. Negative regulation of the tumor suppressor p53 gene by microRNAs. Oncogene. 2011;30(7):843–53.PubMed Kumar M et al. Negative regulation of the tumor suppressor p53 gene by microRNAs. Oncogene. 2011;30(7):843–53.PubMed
49.
Zurück zum Zitat Ji P et al. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22(39):8031–41.PubMed Ji P et al. MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22(39):8031–41.PubMed
50.
Zurück zum Zitat Zhang X et al. Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression, and functions. Endocrinology. 2010;151(3):939–47.PubMed Zhang X et al. Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression, and functions. Endocrinology. 2010;151(3):939–47.PubMed
51.
Zurück zum Zitat Weger S, Hammer E, Heilbronn R. Topors, a p53 and topoisomerase I binding protein, interacts with the adeno-associated virus (AAV-2) Rep78/68 proteins and enhances AAV-2 gene expression. J Gen Virol. 2002;83(3):511–6.PubMed Weger S, Hammer E, Heilbronn R. Topors, a p53 and topoisomerase I binding protein, interacts with the adeno-associated virus (AAV-2) Rep78/68 proteins and enhances AAV-2 gene expression. J Gen Virol. 2002;83(3):511–6.PubMed
52.
53.
Zurück zum Zitat Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci. 2008;105(36):13421–6.PubMedPubMedCentral Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci. 2008;105(36):13421–6.PubMedPubMedCentral
54.
Zurück zum Zitat Zhong H et al. Modulation of hypoxia-inducible factor 1α expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 2000;60(6):1541–5.PubMed Zhong H et al. Modulation of hypoxia-inducible factor 1α expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 2000;60(6):1541–5.PubMed
55.
Zurück zum Zitat Iyer NV et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev. 1998;12(2):149–62.PubMedPubMedCentral Iyer NV et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev. 1998;12(2):149–62.PubMedPubMedCentral
56.
Zurück zum Zitat Ryan HE, Lo J, Johnson RS. HIF‐1α is required for solid tumor formation and embryonic vascularization. EMBO J. 1998;17(11):3005–15.PubMedPubMedCentral Ryan HE, Lo J, Johnson RS. HIF‐1α is required for solid tumor formation and embryonic vascularization. EMBO J. 1998;17(11):3005–15.PubMedPubMedCentral
57.
Zurück zum Zitat Taguchi A et al. Identification of hypoxia-inducible factor-1α as a novel target for miR-17-92 microRNA cluster. Cancer Res. 2008;68(14):5540–5.PubMed Taguchi A et al. Identification of hypoxia-inducible factor-1α as a novel target for miR-17-92 microRNA cluster. Cancer Res. 2008;68(14):5540–5.PubMed
58.
Zurück zum Zitat Burant CF, Bell GI. Mammalian facilitative glucose transporters: evidence for similar substrate recognition sites in functionally monomeric proteins. Biochemistry. 1992;31(42):10414–20.PubMed Burant CF, Bell GI. Mammalian facilitative glucose transporters: evidence for similar substrate recognition sites in functionally monomeric proteins. Biochemistry. 1992;31(42):10414–20.PubMed
59.
Zurück zum Zitat Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol. 2005;202(3):654–62.PubMed Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol. 2005;202(3):654–62.PubMed
60.
Zurück zum Zitat Joost H-G et al. Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. Am J Physiol Endocrinol Metab. 2002;282(4):E974–6.PubMed Joost H-G et al. Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. Am J Physiol Endocrinol Metab. 2002;282(4):E974–6.PubMed
61.
Zurück zum Zitat Thorens H-G, Bernard J. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members. Mol Membr Biol. 2001;18(4):247–56.PubMed Thorens H-G, Bernard J. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members. Mol Membr Biol. 2001;18(4):247–56.PubMed
62.
Zurück zum Zitat Fabani MM, Gait MJ. miR-122 targeting with LNA/2′-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA–peptide conjugates. RNA. 2008;14(2):336–46.PubMedPubMedCentral Fabani MM, Gait MJ. miR-122 targeting with LNA/2′-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA–peptide conjugates. RNA. 2008;14(2):336–46.PubMedPubMedCentral
63.
Zurück zum Zitat Lu H, Buchan RJ, Cook SA. MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res. 2010;86(3):410–20.PubMed Lu H, Buchan RJ, Cook SA. MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res. 2010;86(3):410–20.PubMed
64.
Zurück zum Zitat Yamasaki T et al. Tumor‐suppressive microRNA‐1291 directly regulates glucose transporter 1 in renal cell carcinoma. Cancer Sci. 2013;104(11):1411–9.PubMed Yamasaki T et al. Tumor‐suppressive microRNA‐1291 directly regulates glucose transporter 1 in renal cell carcinoma. Cancer Sci. 2013;104(11):1411–9.PubMed
65.
Zurück zum Zitat Fang R et al. MicroRNA-143 (miR-143) regulates cancer glycolysis via targeting hexokinase 2 gene. J Biol Chem. 2012;287(27):23227–35.PubMedPubMedCentral Fang R et al. MicroRNA-143 (miR-143) regulates cancer glycolysis via targeting hexokinase 2 gene. J Biol Chem. 2012;287(27):23227–35.PubMedPubMedCentral
66.
Zurück zum Zitat Gregersen LH et al. MicroRNA-143 down-regulates hexokinase 2 in colon cancer cells. BMC Cancer. 2012;12(1):232.PubMed Gregersen LH et al. MicroRNA-143 down-regulates hexokinase 2 in colon cancer cells. BMC Cancer. 2012;12(1):232.PubMed
67.
Zurück zum Zitat Mazurek S. Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol. 2011;43(7):969–80.PubMed Mazurek S. Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol. 2011;43(7):969–80.PubMed
68.
Zurück zum Zitat Liu AM et al. miR-122 targets pyruvate kinase M2 and affects metabolism of hepatocellular carcinoma. PLoS One. 2014;9(1):e86872.PubMedPubMedCentral Liu AM et al. miR-122 targets pyruvate kinase M2 and affects metabolism of hepatocellular carcinoma. PLoS One. 2014;9(1):e86872.PubMedPubMedCentral
69.
Zurück zum Zitat Burchard J, et al. MicroRNA‐122 as a regulator of mitochondrial metabolic gene network in hepatocellular carcinoma. Mol Syst Biol. 2010;6(1). Burchard J, et al. MicroRNA‐122 as a regulator of mitochondrial metabolic gene network in hepatocellular carcinoma. Mol Syst Biol. 2010;6(1).
70.
Zurück zum Zitat Bruning U et al. MicroRNA-155 promotes resolution of hypoxia-inducible factor 1α activity during prolonged hypoxia. Mol Cell Biol. 2011;31(19):4087–96.PubMedPubMedCentral Bruning U et al. MicroRNA-155 promotes resolution of hypoxia-inducible factor 1α activity during prolonged hypoxia. Mol Cell Biol. 2011;31(19):4087–96.PubMedPubMedCentral
71.
Zurück zum Zitat Yang F, et al. Reciprocal regulation of HIF-1α and LincRNA-p21 modulates the Warburg effect. Mol Cell. 2013. Yang F, et al. Reciprocal regulation of HIF-1α and LincRNA-p21 modulates the Warburg effect. Mol Cell. 2013.
72.
Zurück zum Zitat Aschrafi A et al. MicroRNA-338 regulates local cytochrome c oxidase IV mRNA levels and oxidative phosphorylation in the axons of sympathetic neurons. J Neurosci. 2008;28(47):12581–90.PubMedPubMedCentral Aschrafi A et al. MicroRNA-338 regulates local cytochrome c oxidase IV mRNA levels and oxidative phosphorylation in the axons of sympathetic neurons. J Neurosci. 2008;28(47):12581–90.PubMedPubMedCentral
73.
Zurück zum Zitat Bhaskar PT, Hay N. The two TORCs and AKT. Dev Cell. 2007;12(4):487–502.PubMed Bhaskar PT, Hay N. The two TORCs and AKT. Dev Cell. 2007;12(4):487–502.PubMed
74.
Zurück zum Zitat Robey RB, Hay N. Is Akt the “Warburg kinase”?—Akt-energy metabolism interactions and oncogenesis. In: Seminars in cancer biology. 2009. Elsevier. Robey RB, Hay N. Is Akt the “Warburg kinase”?—Akt-energy metabolism interactions and oncogenesis. In: Seminars in cancer biology. 2009. Elsevier.
75.
Zurück zum Zitat Gottlob K et al. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev. 2001;15(11):1406–18.PubMedPubMedCentral Gottlob K et al. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev. 2001;15(11):1406–18.PubMedPubMedCentral
76.
Zurück zum Zitat Nogueira V et al. Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell. 2008;14(6):458–70.PubMedPubMedCentral Nogueira V et al. Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell. 2008;14(6):458–70.PubMedPubMedCentral
77.
Zurück zum Zitat Kohn AD et al. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem. 1996;271(49):31372–8.PubMed Kohn AD et al. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem. 1996;271(49):31372–8.PubMed
78.
Zurück zum Zitat Bryant NJ, Govers R, James DE. Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol. 2002;3(4):267–77.PubMed Bryant NJ, Govers R, James DE. Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol. 2002;3(4):267–77.PubMed
79.
Zurück zum Zitat Pastorino JG, Hoek JB, Shulga N. Activation of glycogen synthase kinase 3β disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res. 2005;65(22):10545–54.PubMed Pastorino JG, Hoek JB, Shulga N. Activation of glycogen synthase kinase 3β disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res. 2005;65(22):10545–54.PubMed
80.
Zurück zum Zitat Miyamoto S, Murphy AN, Brown JH. Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-II. Cell Death Differ. 2008;15(3):521–9.PubMed Miyamoto S, Murphy AN, Brown JH. Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-II. Cell Death Differ. 2008;15(3):521–9.PubMed
81.
Zurück zum Zitat Robey RA, Hay N. Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene. 2006;25(34):4683–96.PubMed Robey RA, Hay N. Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene. 2006;25(34):4683–96.PubMed
82.
Zurück zum Zitat Deprez J et al. Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem. 1997;272(28):17269–75.PubMed Deprez J et al. Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem. 1997;272(28):17269–75.PubMed
83.
Zurück zum Zitat Skeen JE et al. Akt deficiency impairs normal cell proliferation and suppresses oncogenesis in a p53-independent and mTORC1-dependent manner. Cancer Cell. 2006;10(4):269–80.PubMed Skeen JE et al. Akt deficiency impairs normal cell proliferation and suppresses oncogenesis in a p53-independent and mTORC1-dependent manner. Cancer Cell. 2006;10(4):269–80.PubMed
84.
Zurück zum Zitat Gingras A-C et al. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt (PKB) signaling pathway. Genes Dev. 1998;12(4):502–13.PubMedPubMedCentral Gingras A-C et al. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt (PKB) signaling pathway. Genes Dev. 1998;12(4):502–13.PubMedPubMedCentral
85.
Zurück zum Zitat Hahn-Windgassen A et al. Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem. 2005;280(37):32081–9.PubMed Hahn-Windgassen A et al. Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem. 2005;280(37):32081–9.PubMed
86.
Zurück zum Zitat Majumder PK et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med. 2004;10(6):594–601.PubMed Majumder PK et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med. 2004;10(6):594–601.PubMed
87.
Zurück zum Zitat Kato M et al. TGF-β activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol. 2009;11(7):881–9.PubMedPubMedCentral Kato M et al. TGF-β activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol. 2009;11(7):881–9.PubMedPubMedCentral
88.
Zurück zum Zitat Guo C et al. The noncoding RNA, miR‐126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3‐kinase signaling and is frequently lost in colon cancers. Genes Chromosom Cancer. 2008;47(11):939–46.PubMedPubMedCentral Guo C et al. The noncoding RNA, miR‐126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3‐kinase signaling and is frequently lost in colon cancers. Genes Chromosom Cancer. 2008;47(11):939–46.PubMedPubMedCentral
89.
Zurück zum Zitat Wang F, et al. UCA1, a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS Lett. 2008;582(13):1919–27. Wang F, et al. UCA1, a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS Lett. 2008;582(13):1919–27.
90.
Zurück zum Zitat Wu W et al. Ets-2 regulates cell apoptosis via the Akt pathway, through the regulation of urothelial cancer associated 1, a long non-coding RNA, in bladder cancer cells. PLoS One. 2013;8(9):e73920.PubMedPubMedCentral Wu W et al. Ets-2 regulates cell apoptosis via the Akt pathway, through the regulation of urothelial cancer associated 1, a long non-coding RNA, in bladder cancer cells. PLoS One. 2013;8(9):e73920.PubMedPubMedCentral
91.
Zurück zum Zitat Poliseno L et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010;465(7301):1033–8.PubMedPubMedCentral Poliseno L et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010;465(7301):1033–8.PubMedPubMedCentral
92.
Zurück zum Zitat Li D et al. Long intergenic noncoding RNA HOTAIR is overexpressed and regulates PTEN methylation in laryngeal squamous cell carcinoma. Am J Pathol. 2013;182(1):64–70.PubMed Li D et al. Long intergenic noncoding RNA HOTAIR is overexpressed and regulates PTEN methylation in laryngeal squamous cell carcinoma. Am J Pathol. 2013;182(1):64–70.PubMed
93.
Zurück zum Zitat Kahn BB et al. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1(1):15–25.PubMed Kahn BB et al. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1(1):15–25.PubMed
94.
Zurück zum Zitat Hardie DG. AMP-activated protein kinase—an energy sensor that regulates all aspects of cell function. Genes Dev. 2011;25(18):1895–908.PubMedPubMedCentral Hardie DG. AMP-activated protein kinase—an energy sensor that regulates all aspects of cell function. Genes Dev. 2011;25(18):1895–908.PubMedPubMedCentral
95.
Zurück zum Zitat Alessi DR, Sakamoto K, Bayascas JR. LKB1-dependent signaling pathways. Annu Rev Biochem. 2006;75:137–63.PubMed Alessi DR, Sakamoto K, Bayascas JR. LKB1-dependent signaling pathways. Annu Rev Biochem. 2006;75:137–63.PubMed
96.
Zurück zum Zitat Shaw RJ et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A. 2004;101(10):3329–35.PubMedPubMedCentral Shaw RJ et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A. 2004;101(10):3329–35.PubMedPubMedCentral
97.
Zurück zum Zitat Sakamoto K et al. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J. 2005;24(10):1810–20.PubMedPubMedCentral Sakamoto K et al. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J. 2005;24(10):1810–20.PubMedPubMedCentral
98.
Zurück zum Zitat Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721–32.PubMed Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721–32.PubMed
99.
Zurück zum Zitat Godlewski J et al. MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell. 2010;37(5):620–32.PubMedPubMedCentral Godlewski J et al. MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell. 2010;37(5):620–32.PubMedPubMedCentral
100.
Zurück zum Zitat Chen H et al. Micro-RNA-195 and-451 regulate the LKB1/AMPK signaling axis by targeting MO25. PLoS One. 2012;7(7):e41574.PubMedPubMedCentral Chen H et al. Micro-RNA-195 and-451 regulate the LKB1/AMPK signaling axis by targeting MO25. PLoS One. 2012;7(7):e41574.PubMedPubMedCentral
101.
Zurück zum Zitat Nandi S, Mishra P. miR-133a alleviates cardiac autophagy by targeting AMPK in Ins2+/−diabetic mice (868.3). FASEB J. 2014;28(1 Supplement):868.3. Nandi S, Mishra P. miR-133a alleviates cardiac autophagy by targeting AMPK in Ins2+/−diabetic mice (868.3). FASEB J. 2014;28(1 Supplement):868.3.
102.
Zurück zum Zitat Bensaad K, Vousden KH. p53: new roles in metabolism. Trends Cell Biol. 2007;17(6):286–91.PubMed Bensaad K, Vousden KH. p53: new roles in metabolism. Trends Cell Biol. 2007;17(6):286–91.PubMed
103.
Zurück zum Zitat Kondoh H et al. Glycolytic enzymes can modulate cellular life span. Cancer Res. 2005;65(1):177–85.PubMed Kondoh H et al. Glycolytic enzymes can modulate cellular life span. Cancer Res. 2005;65(1):177–85.PubMed
104.
Zurück zum Zitat Bensaad K et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 2006;126(1):107–20.PubMed Bensaad K et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 2006;126(1):107–20.PubMed
105.
Zurück zum Zitat Papagiannakopoulos T, Shapiro A, Kosik KS. MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res. 2008;68(19):8164–72.PubMed Papagiannakopoulos T, Shapiro A, Kosik KS. MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res. 2008;68(19):8164–72.PubMed
106.
Zurück zum Zitat Coutts AS, La Thangue NB. The p53 response: emerging levels of co-factor complexity. Biochem Biophys Res Commun. 2005;331(3):778–85.PubMed Coutts AS, La Thangue NB. The p53 response: emerging levels of co-factor complexity. Biochem Biophys Res Commun. 2005;331(3):778–85.PubMed
107.
Zurück zum Zitat Moumen A et al. hnRNP K: an HDM2 target and transcriptional coactivator of p53 in response to DNA damage. Cell. 2005;123(6):1065–78.PubMed Moumen A et al. hnRNP K: an HDM2 target and transcriptional coactivator of p53 in response to DNA damage. Cell. 2005;123(6):1065–78.PubMed
109.
Zurück zum Zitat Yamakuchi M, Lowenstein CJ. MiR-34, SIRT1 and p53. Cell Cycle. 2009;8(5):712–5.PubMed Yamakuchi M, Lowenstein CJ. MiR-34, SIRT1 and p53. Cell Cycle. 2009;8(5):712–5.PubMed
110.
Zurück zum Zitat Tripathi V et al. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet. 2013;9(3):e1003368.PubMedPubMedCentral Tripathi V et al. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet. 2013;9(3):e1003368.PubMedPubMedCentral
111.
Zurück zum Zitat Zhang X et al. Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res. 2010;70(6):2350–8.PubMedPubMedCentral Zhang X et al. Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res. 2010;70(6):2350–8.PubMedPubMedCentral
112.
Zurück zum Zitat Mahmoudi S et al. Wrap53, a natural p53 antisense transcript required for p53 induction upon DNA damage. Mol Cell. 2009;33(4):462–71.PubMed Mahmoudi S et al. Wrap53, a natural p53 antisense transcript required for p53 induction upon DNA damage. Mol Cell. 2009;33(4):462–71.PubMed
113.
Zurück zum Zitat Kim H et al. The rapid destabilization of p53 mRNA in immortal chicken embryo fibroblast cells. Oncogene. 2001;20(37):5118–23.PubMed Kim H et al. The rapid destabilization of p53 mRNA in immortal chicken embryo fibroblast cells. Oncogene. 2001;20(37):5118–23.PubMed
114.
Zurück zum Zitat Zhang A, Xu M, Mo Y-Y. Role of the lncRNA−p53 regulatory network in cancer. J Mol Cell Biol. 2014. p. mju013. Zhang A, Xu M, Mo Y-Y. Role of the lncRNA−p53 regulatory network in cancer. J Mol Cell Biol. 2014. p. mju013.
115.
Zurück zum Zitat Huarte M et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142(3):409–19.PubMedPubMedCentral Huarte M et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142(3):409–19.PubMedPubMedCentral
117.
Zurück zum Zitat Hung T et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet. 2011;43(7):621–9.PubMedPubMedCentral Hung T et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet. 2011;43(7):621–9.PubMedPubMedCentral
118.
119.
Zurück zum Zitat Dugimont T, et al. The H19 TATA-less promoter is efficiently repressed by wild-type tumor suppressor gene product p53. Oncogene. 1998;16(18). Dugimont T, et al. The H19 TATA-less promoter is efficiently repressed by wild-type tumor suppressor gene product p53. Oncogene. 1998;16(18).
120.
Zurück zum Zitat Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol. 2004;5(5):343–54.PubMed Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol. 2004;5(5):343–54.PubMed
121.
Zurück zum Zitat Kaelin Jr WG, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008;30(4):393–402.PubMed Kaelin Jr WG, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell. 2008;30(4):393–402.PubMed
122.
Zurück zum Zitat Ivan M et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292(5516):464–8.PubMed Ivan M et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292(5516):464–8.PubMed
123.
Zurück zum Zitat Jaakkola P et al. Targeting of HIF-α to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292(5516):468–72.PubMed Jaakkola P et al. Targeting of HIF-α to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292(5516):468–72.PubMed
124.
Zurück zum Zitat Maxwell PH et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271–5.PubMed Maxwell PH et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271–5.PubMed
125.
Zurück zum Zitat Fukuda R et al. Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem. 2002;277(41):38205–11.PubMed Fukuda R et al. Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem. 2002;277(41):38205–11.PubMed
126.
Zurück zum Zitat Fukuda R, Kelly B, Semenza GL. Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1. Cancer Res. 2003;63(9):2330–4.PubMed Fukuda R, Kelly B, Semenza GL. Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1. Cancer Res. 2003;63(9):2330–4.PubMed
127.
Zurück zum Zitat Kim J-W et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3(3):177–85.PubMed Kim J-W et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3(3):177–85.PubMed
128.
Zurück zum Zitat Song T et al. MiR-138 suppresses expression of hypoxia-inducible factor 1alpha (HIF-1alpha) in clear cell renal cell carcinoma 786-O cells. Asian Pac J Cancer Prev. 2011;12(5):1307–11.PubMed Song T et al. MiR-138 suppresses expression of hypoxia-inducible factor 1alpha (HIF-1alpha) in clear cell renal cell carcinoma 786-O cells. Asian Pac J Cancer Prev. 2011;12(5):1307–11.PubMed
129.
Zurück zum Zitat Rane S et al. Downregulation of miR-199a derepresses hypoxia-inducible factor-1α and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res. 2009;104(7):879–86.PubMedPubMedCentral Rane S et al. Downregulation of miR-199a derepresses hypoxia-inducible factor-1α and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res. 2009;104(7):879–86.PubMedPubMedCentral
130.
Zurück zum Zitat Chandra D, Singh KK. Genetic insights into OXPHOS defect and its role in cancer. Biochim Biophys Acta (BBA) Bioenerg. 2011;1807(6):620–5. Chandra D, Singh KK. Genetic insights into OXPHOS defect and its role in cancer. Biochim Biophys Acta (BBA) Bioenerg. 2011;1807(6):620–5.
131.
132.
Zurück zum Zitat Bian Z et al. Identification of mouse liver mitochondria-associated miRNAs and their potential biological functions. Cell Res. 2010;20(9):1076–8.PubMed Bian Z et al. Identification of mouse liver mitochondria-associated miRNAs and their potential biological functions. Cell Res. 2010;20(9):1076–8.PubMed
133.
Zurück zum Zitat Lakomy R et al. MiR‐195, miR‐196b, miR‐181c, miR‐21 expression levels and O‐6‐methylguanine‐DNA methyltransferase methylation status are associated with clinical outcome in glioblastoma patients. Cancer Sci. 2011;102(12):2186–90.PubMed Lakomy R et al. MiR‐195, miR‐196b, miR‐181c, miR‐21 expression levels and O‐6‐methylguanine‐DNA methyltransferase methylation status are associated with clinical outcome in glioblastoma patients. Cancer Sci. 2011;102(12):2186–90.PubMed
134.
Zurück zum Zitat Scapoli L et al. MicroRNA expression profiling of oral carcinoma identifies new markers of tumor progression. Int J Immunopathol Pharmacol. 2009;23(4):1229–34. Scapoli L et al. MicroRNA expression profiling of oral carcinoma identifies new markers of tumor progression. Int J Immunopathol Pharmacol. 2009;23(4):1229–34.
135.
Zurück zum Zitat Huang X et al. Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell. 2009;35(6):856–67.PubMedPubMedCentral Huang X et al. Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell. 2009;35(6):856–67.PubMedPubMedCentral
136.
Zurück zum Zitat Chan SY et al. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab. 2009;10(4):273–84.PubMedPubMedCentral Chan SY et al. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab. 2009;10(4):273–84.PubMedPubMedCentral
137.
Zurück zum Zitat Zhang X et al. MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell. 2014;158(3):607–19.PubMedPubMedCentral Zhang X et al. MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell. 2014;158(3):607–19.PubMedPubMedCentral
138.
Zurück zum Zitat Michelakis E, Webster L, Mackey J. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer. 2008;99(7):989–94.PubMedPubMedCentral Michelakis E, Webster L, Mackey J. Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer. 2008;99(7):989–94.PubMedPubMedCentral
139.
Zurück zum Zitat Keller K, Strube M, Mueckler M. Functional expression of the human HepG2 and rat adipocyte glucose transporters in Xenopus oocytes. Comparison of kinetic parameters. J Biol Chem. 1989;264(32):18884–9.PubMed Keller K, Strube M, Mueckler M. Functional expression of the human HepG2 and rat adipocyte glucose transporters in Xenopus oocytes. Comparison of kinetic parameters. J Biol Chem. 1989;264(32):18884–9.PubMed
140.
Zurück zum Zitat Horie T et al. MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes. Biochem Biophys Res Commun. 2009;389(2):315–20.PubMed Horie T et al. MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes. Biochem Biophys Res Commun. 2009;389(2):315–20.PubMed
141.
Zurück zum Zitat Chen Y-H et al. miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes. 2013;62(7):2278–86.PubMedPubMedCentral Chen Y-H et al. miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes. 2013;62(7):2278–86.PubMedPubMedCentral
142.
Zurück zum Zitat Chow T-fF et al. The miR-17-92 cluster is over expressed in and has an oncogenic effect on renal cell carcinoma. J Urol. 2010;183(2):743–51.PubMed Chow T-fF et al. The miR-17-92 cluster is over expressed in and has an oncogenic effect on renal cell carcinoma. J Urol. 2010;183(2):743–51.PubMed
143.
144.
Zurück zum Zitat Peschiaroli A et al. miR-143 regulates hexokinase 2 expression in cancer cells. Oncogene. 2013;32(6):797–802.PubMed Peschiaroli A et al. miR-143 regulates hexokinase 2 expression in cancer cells. Oncogene. 2013;32(6):797–802.PubMed
145.
Zurück zum Zitat Park YY et al. Tat‐activating regulatory DNA‐binding protein regulates glycolysis in hepatocellular carcinoma by regulating the platelet isoform of phosphofructokinase through microRNA 520. Hepatology. 2013;58(1):182–91.PubMedPubMedCentral Park YY et al. Tat‐activating regulatory DNA‐binding protein regulates glycolysis in hepatocellular carcinoma by regulating the platelet isoform of phosphofructokinase through microRNA 520. Hepatology. 2013;58(1):182–91.PubMedPubMedCentral
146.
Zurück zum Zitat Kefas B et al. Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells. Neuro Oncol. 2010;12(11):1102–12.PubMedPubMedCentral Kefas B et al. Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells. Neuro Oncol. 2010;12(11):1102–12.PubMedPubMedCentral
148.
Zurück zum Zitat Coulouarn C et al. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene. 2009;28(40):3526–36.PubMedPubMedCentral Coulouarn C et al. Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene. 2009;28(40):3526–36.PubMedPubMedCentral
149.
Zurück zum Zitat Calin GA et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci. 2008;105(13):5166–71.PubMedPubMedCentral Calin GA et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci. 2008;105(13):5166–71.PubMedPubMedCentral
150.
Zurück zum Zitat Ding G et al. MiR-199a suppresses the hypoxia-induced proliferation of non-small cell lung cancer cells through targeting HIF1α. Mol Cell Biochem. 2013;384(1–2):173–80.PubMed Ding G et al. MiR-199a suppresses the hypoxia-induced proliferation of non-small cell lung cancer cells through targeting HIF1α. Mol Cell Biochem. 2013;384(1–2):173–80.PubMed
151.
Zurück zum Zitat Papandreou I et al. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006;3(3):187–97.PubMed Papandreou I et al. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006;3(3):187–97.PubMed
152.
Zurück zum Zitat Kim H-R et al. p53 regulates glucose metabolism by miR-34a. Biochem Biophys Res Commun. 2013;437(2):225–31.PubMed Kim H-R et al. p53 regulates glucose metabolism by miR-34a. Biochem Biophys Res Commun. 2013;437(2):225–31.PubMed
153.
Zurück zum Zitat Kaller M et al. Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis. Mol Cell Proteomics. 2011;10(8):M111. 010462.PubMedPubMedCentral Kaller M et al. Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis. Mol Cell Proteomics. 2011;10(8):M111. 010462.PubMedPubMedCentral
154.
Zurück zum Zitat Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell. 2008;13(6):472–82.PubMed Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell. 2008;13(6):472–82.PubMed
Metadaten
Titel
Warburg meets non-coding RNAs: the emerging role of ncRNA in regulating the glucose metabolism of cancer cells
verfasst von
Chenxiao Yu
Jiao Xue
Wei Zhu
Yang Jiao
Shuyu Zhang
Jianping Cao
Publikationsdatum
01.01.2015
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 1/2015
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-014-2875-z

Weitere Artikel der Ausgabe 1/2015

Tumor Biology 1/2015 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.