Skip to main content
Erschienen in: Tumor Biology 1/2015

01.01.2015 | Review

SMAD4 and its role in pancreatic cancer

verfasst von: Xiang Xia, Weidong Wu, Chen Huang, Gang Cen, Tao Jiang, Jun Cao, Kejian Huang, Zhengjun Qiu

Erschienen in: Tumor Biology | Ausgabe 1/2015

Einloggen, um Zugang zu erhalten

Abstract

Transforming growth factor-β (TGF-β) regulates cell functions and has key roles in pancreatic cancer development. SMAD4, as one of the Smads family of signal transducer from TGF-β, mediates pancreatic cell proliferation and apoptosis and is specifically inactivated in half of advanced pancreatic cancers. In recent years, many advances concerning SMAD4 had tried to unravel the complex signaling mechanisms of TGF-β and its dual role of tumor-suppressive and tumor-promoting efforts in pancreatic cancer initiation and progression through SMAD4-dependent TGF-β signaling and SMAD4-independent TGF-β signaling pathways. Meanwhile, its potential prognostic value based on immunohistochemical expression in surgical sample was variably reported by several studies and short of a systematic analysis. This review aimed to discuss the structure, functions, and regulation of this principal protein and its effects in determining the progression and prognosis of pancreatic cancer.
Literatur
1.
Zurück zum Zitat Singh P, Srinivasan R, Wig JD. Major molecular markers in pancreatic ductal adenocarcinoma and their roles in screening, diagnosis, prognosis, and treatment. Pancreas. 2011;40:644–52.CrossRef Singh P, Srinivasan R, Wig JD. Major molecular markers in pancreatic ductal adenocarcinoma and their roles in screening, diagnosis, prognosis, and treatment. Pancreas. 2011;40:644–52.CrossRef
2.
Zurück zum Zitat Hilbig A, Oettle H. Transforming growth factor beta in pancreatic cancer. Curr Pharm Biotechnol. 2011;12:2158–64.CrossRef Hilbig A, Oettle H. Transforming growth factor beta in pancreatic cancer. Curr Pharm Biotechnol. 2011;12:2158–64.CrossRef
3.
Zurück zum Zitat Bilimoria KY, Bentrem DJ, Ko CY, Ritchey J, Stewart AK, et al. Validation of the 6th edition AJCC pancreatic cancer staging system: report from the National Cancer Database. Cancer. 2007;110:738–44.CrossRef Bilimoria KY, Bentrem DJ, Ko CY, Ritchey J, Stewart AK, et al. Validation of the 6th edition AJCC pancreatic cancer staging system: report from the National Cancer Database. Cancer. 2007;110:738–44.CrossRef
4.
Zurück zum Zitat Goggins M, Kern SE, Offerhaus JA, Hruban RH. Progress in cancer genetics: lessons from pancreatic cancer. Ann Oncol. 1999;10 Suppl 4:4–8.CrossRef Goggins M, Kern SE, Offerhaus JA, Hruban RH. Progress in cancer genetics: lessons from pancreatic cancer. Ann Oncol. 1999;10 Suppl 4:4–8.CrossRef
5.
Zurück zum Zitat Iacobuzio-Donahue CA, Song J, Parmiagiani G, Yeo CJ, Hruban RH, et al. Missense mutations of MADH4: characterization of the mutational hot spot and functional consequences in human tumors. Clin Cancer Res. 2004;10:1597–604.CrossRef Iacobuzio-Donahue CA, Song J, Parmiagiani G, Yeo CJ, Hruban RH, et al. Missense mutations of MADH4: characterization of the mutational hot spot and functional consequences in human tumors. Clin Cancer Res. 2004;10:1597–604.CrossRef
6.
Zurück zum Zitat Kang Y, Ling J, Suzuki R, Roife D, Chopin-Laly X, et al. SMAD4 regulates cell motility through transcription of N-cadherin in human pancreatic ductal epithelium. PLoS One. 2014;9:e107948.CrossRef Kang Y, Ling J, Suzuki R, Roife D, Chopin-Laly X, et al. SMAD4 regulates cell motility through transcription of N-cadherin in human pancreatic ductal epithelium. PLoS One. 2014;9:e107948.CrossRef
7.
Zurück zum Zitat Saiki Y, Horii A. Molecular pathology of pancreatic cancer. Pathol Int. 2014;64:10–9.CrossRef Saiki Y, Horii A. Molecular pathology of pancreatic cancer. Pathol Int. 2014;64:10–9.CrossRef
8.
Zurück zum Zitat Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet. 2001;29:117–29.CrossRef Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet. 2001;29:117–29.CrossRef
9.
Zurück zum Zitat Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425:577–84.CrossRef Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425:577–84.CrossRef
10.
Zurück zum Zitat Principe DR, Doll JA, Bauer J, Jung B, Munshi HG, et al. (2014) TGF-beta: duality of function between tumor prevention and carcinogenesis. J Natl Cancer Inst 106: djt369. Principe DR, Doll JA, Bauer J, Jung B, Munshi HG, et al. (2014) TGF-beta: duality of function between tumor prevention and carcinogenesis. J Natl Cancer Inst 106: djt369.
11.
Zurück zum Zitat Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 1996;271:350–3.CrossRef Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 1996;271:350–3.CrossRef
12.
Zurück zum Zitat Sekelsky JJ, Newfeld SJ, Raftery LA, Chartoff EH, Gelbart WM. Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics. 1995;139:1347–58.CrossRef Sekelsky JJ, Newfeld SJ, Raftery LA, Chartoff EH, Gelbart WM. Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics. 1995;139:1347–58.CrossRef
13.
Zurück zum Zitat Derynck R, Gelbart WM, Harland RM, Heldin CH, Kern SE, et al. Nomenclature: vertebrate mediators of TGFbeta family signals. Cell. 1996;87:173.CrossRef Derynck R, Gelbart WM, Harland RM, Heldin CH, Kern SE, et al. Nomenclature: vertebrate mediators of TGFbeta family signals. Cell. 1996;87:173.CrossRef
14.
Zurück zum Zitat Singh P, Wig JD, Srinivasan R. The Smad family and its role in pancreatic cancer. Indian J Cancer. 2011;48:351–60.CrossRef Singh P, Wig JD, Srinivasan R. The Smad family and its role in pancreatic cancer. Indian J Cancer. 2011;48:351–60.CrossRef
15.
Zurück zum Zitat Wu G, Chen YG, Ozdamar B, Gyuricza CA, Chong PA, et al. Structural basis of Smad2 recognition by the Smad anchor for receptor activation. Science. 2000;287:92–7.CrossRef Wu G, Chen YG, Ozdamar B, Gyuricza CA, Chong PA, et al. Structural basis of Smad2 recognition by the Smad anchor for receptor activation. Science. 2000;287:92–7.CrossRef
16.
Zurück zum Zitat Massague J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 2000;19:1745–54.CrossRef Massague J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 2000;19:1745–54.CrossRef
17.
Zurück zum Zitat Shi Y, Hata A, Lo RS, Massague J, Pavletich NP. A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature. 1997;388:87–93.CrossRef Shi Y, Hata A, Lo RS, Massague J, Pavletich NP. A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature. 1997;388:87–93.CrossRef
18.
Zurück zum Zitat Watanabe M, Masuyama N, Fukuda M, Nishida E. Regulation of intracellular dynamics of Smad4 by its leucine-rich nuclear export signal. EMBO Rep. 2000;1:176–82.CrossRef Watanabe M, Masuyama N, Fukuda M, Nishida E. Regulation of intracellular dynamics of Smad4 by its leucine-rich nuclear export signal. EMBO Rep. 2000;1:176–82.CrossRef
19.
Zurück zum Zitat Kurisaki A, Kose S, Yoneda Y, Heldin CH, Moustakas A. Transforming growth factor-beta induces nuclear import of Smad3 in an importin-beta1 and Ran-dependent manner. Mol Biol Cell. 2001;12:1079–91.CrossRef Kurisaki A, Kose S, Yoneda Y, Heldin CH, Moustakas A. Transforming growth factor-beta induces nuclear import of Smad3 in an importin-beta1 and Ran-dependent manner. Mol Biol Cell. 2001;12:1079–91.CrossRef
20.
Zurück zum Zitat Pierreux CE, Nicolas FJ, Hill CS. Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus. Mol Cell Biol. 2000;20:9041–54.CrossRef Pierreux CE, Nicolas FJ, Hill CS. Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus. Mol Cell Biol. 2000;20:9041–54.CrossRef
21.
Zurück zum Zitat Inman GJ, Nicolas FJ, Hill CS. Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity. Mol Cell. 2002;10:283–94.CrossRef Inman GJ, Nicolas FJ, Hill CS. Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity. Mol Cell. 2002;10:283–94.CrossRef
22.
Zurück zum Zitat Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685–700.CrossRef Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685–700.CrossRef
23.
Zurück zum Zitat Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001;411:342–8.CrossRef Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001;411:342–8.CrossRef
24.
Zurück zum Zitat Lecanda J, Ganapathy V, D′Aquino-Ardalan C, Evans B, Cadacio C, et al. TGFbeta prevents proteasomal degradation of the cyclin-dependent kinase inhibitor p27kip1 for cell cycle arrest. Cell Cycle. 2009;8:742–56.CrossRef Lecanda J, Ganapathy V, D′Aquino-Ardalan C, Evans B, Cadacio C, et al. TGFbeta prevents proteasomal degradation of the cyclin-dependent kinase inhibitor p27kip1 for cell cycle arrest. Cell Cycle. 2009;8:742–56.CrossRef
25.
Zurück zum Zitat Massague J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell. 2000;103:295–309.CrossRef Massague J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell. 2000;103:295–309.CrossRef
26.
Zurück zum Zitat Bauer J, Sporn JC, Cabral J, Gomez J, Jung B. Effects of activin and TGFbeta on p21 in colon cancer. PLoS One. 2012;7:e39381.CrossRef Bauer J, Sporn JC, Cabral J, Gomez J, Jung B. Effects of activin and TGFbeta on p21 in colon cancer. PLoS One. 2012;7:e39381.CrossRef
27.
Zurück zum Zitat Alvarez C, Bass BL. Role of transforming growth factor-beta in growth and injury response of the pancreatic duct epithelium in vitro. J Gastrointest Surg. 1999;3:178–84.CrossRef Alvarez C, Bass BL. Role of transforming growth factor-beta in growth and injury response of the pancreatic duct epithelium in vitro. J Gastrointest Surg. 1999;3:178–84.CrossRef
28.
Zurück zum Zitat Tachibana I, Imoto M, Adjei PN, Gores GJ, Subramaniam M, et al. Overexpression of the TGFbeta-regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells. J Clin Invest. 1997;99:2365–74.CrossRef Tachibana I, Imoto M, Adjei PN, Gores GJ, Subramaniam M, et al. Overexpression of the TGFbeta-regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells. J Clin Invest. 1997;99:2365–74.CrossRef
29.
Zurück zum Zitat Biswas S, Criswell TL, Wang SE, Arteaga CL. Inhibition of transforming growth factor-beta signaling in human cancer: targeting a tumor suppressor network as a therapeutic strategy. Clin Cancer Res. 2006;12:4142–6.CrossRef Biswas S, Criswell TL, Wang SE, Arteaga CL. Inhibition of transforming growth factor-beta signaling in human cancer: targeting a tumor suppressor network as a therapeutic strategy. Clin Cancer Res. 2006;12:4142–6.CrossRef
30.
Zurück zum Zitat Jakowlew SB. Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev. 2006;25:435–57.CrossRef Jakowlew SB. Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev. 2006;25:435–57.CrossRef
31.
Zurück zum Zitat Wagner M, Kleeff J, Lopez ME, Bockman I, Massaque J, et al. Transfection of the type I TGF-beta receptor restores TGF-beta responsiveness in pancreatic cancer. Int J Cancer. 1998;78:255–60.CrossRef Wagner M, Kleeff J, Lopez ME, Bockman I, Massaque J, et al. Transfection of the type I TGF-beta receptor restores TGF-beta responsiveness in pancreatic cancer. Int J Cancer. 1998;78:255–60.CrossRef
32.
Zurück zum Zitat Furukawa T, Sunamura M, Horii A. Molecular mechanisms of pancreatic carcinogenesis. Cancer Sci. 2006;97:1–7.CrossRef Furukawa T, Sunamura M, Horii A. Molecular mechanisms of pancreatic carcinogenesis. Cancer Sci. 2006;97:1–7.CrossRef
33.
Zurück zum Zitat Xu J, Attisano L. Mutations in the tumor suppressors Smad2 and Smad4 inactivate transforming growth factor beta signaling by targeting Smads to the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A. 2000;97:4820–5.CrossRef Xu J, Attisano L. Mutations in the tumor suppressors Smad2 and Smad4 inactivate transforming growth factor beta signaling by targeting Smads to the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A. 2000;97:4820–5.CrossRef
34.
Zurück zum Zitat Duda DG, Sunamura M, Lefter LP, Furukawa T, Yokoyama T, et al. Restoration of SMAD4 by gene therapy reverses the invasive phenotype in pancreatic adenocarcinoma cells. Oncogene. 2003;22:6857–64.CrossRef Duda DG, Sunamura M, Lefter LP, Furukawa T, Yokoyama T, et al. Restoration of SMAD4 by gene therapy reverses the invasive phenotype in pancreatic adenocarcinoma cells. Oncogene. 2003;22:6857–64.CrossRef
35.
Zurück zum Zitat Yasutome M, Gunn J, Korc M. Restoration of Smad4 in BxPC3 pancreatic cancer cells attenuates proliferation without altering angiogenesis. Clin Exp Metastasis. 2005;22:461–73.CrossRef Yasutome M, Gunn J, Korc M. Restoration of Smad4 in BxPC3 pancreatic cancer cells attenuates proliferation without altering angiogenesis. Clin Exp Metastasis. 2005;22:461–73.CrossRef
36.
Zurück zum Zitat Shen W, Tao GQ, Li DC, Zhu XG, Bai X, et al. Inhibition of pancreatic carcinoma cell growth in vitro by DPC4 gene transfection. World J Gastroenterol. 2008;14:6254–60.CrossRef Shen W, Tao GQ, Li DC, Zhu XG, Bai X, et al. Inhibition of pancreatic carcinoma cell growth in vitro by DPC4 gene transfection. World J Gastroenterol. 2008;14:6254–60.CrossRef
37.
Zurück zum Zitat Derynck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, et al. Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells. Nature. 1985;316:701–5.CrossRef Derynck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, et al. Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells. Nature. 1985;316:701–5.CrossRef
38.
Zurück zum Zitat Levy L, Hill CS. Smad4 dependency defines two classes of transforming growth factor {beta} (TGF-{beta}) target genes and distinguishes TGF-{beta}-induced epithelial-mesenchymal transition from its antiproliferative and migratory responses. Mol Cell Biol. 2005;25:8108–25.CrossRef Levy L, Hill CS. Smad4 dependency defines two classes of transforming growth factor {beta} (TGF-{beta}) target genes and distinguishes TGF-{beta}-induced epithelial-mesenchymal transition from its antiproliferative and migratory responses. Mol Cell Biol. 2005;25:8108–25.CrossRef
39.
Zurück zum Zitat Moustakas A, Heldin CH. Non-Smad TGF-beta signals. J Cell Sci. 2005;118:3573–84.CrossRef Moustakas A, Heldin CH. Non-Smad TGF-beta signals. J Cell Sci. 2005;118:3573–84.CrossRef
40.
Zurück zum Zitat Chow JY, Quach KT, Cabrera BL, Cabral JA, Beck SE, et al. RAS/ERK modulates TGFbeta-regulated PTEN expression in human pancreatic adenocarcinoma cells. Carcinogenesis. 2007;28:2321–7.CrossRef Chow JY, Quach KT, Cabrera BL, Cabral JA, Beck SE, et al. RAS/ERK modulates TGFbeta-regulated PTEN expression in human pancreatic adenocarcinoma cells. Carcinogenesis. 2007;28:2321–7.CrossRef
41.
Zurück zum Zitat Chow JY, Ban M, Wu HL, Nguyen F, Huang M, et al. TGF-beta downregulates PTEN via activation of NF-kappaB in pancreatic cancer cells. Am J Physiol Gastrointest Liver Physiol. 2010;298:G275–82.CrossRef Chow JY, Ban M, Wu HL, Nguyen F, Huang M, et al. TGF-beta downregulates PTEN via activation of NF-kappaB in pancreatic cancer cells. Am J Physiol Gastrointest Liver Physiol. 2010;298:G275–82.CrossRef
42.
Zurück zum Zitat Li H, Huang C, Huang K, Wu W, Jiang T, et al. STAT3 knockdown reduces pancreatic cancer cell invasiveness and matrix metalloproteinase-7 expression in nude mice. PLoS One. 2011;6:e25941.CrossRef Li H, Huang C, Huang K, Wu W, Jiang T, et al. STAT3 knockdown reduces pancreatic cancer cell invasiveness and matrix metalloproteinase-7 expression in nude mice. PLoS One. 2011;6:e25941.CrossRef
43.
Zurück zum Zitat Yang G, Huang C, Cao J, Huang KJ, Jiang T, et al. Lentivirus-mediated shRNA interference targeting STAT3 inhibits human pancreatic cancer cell invasion. World J Gastroenterol. 2009;15:3757–66.CrossRef Yang G, Huang C, Cao J, Huang KJ, Jiang T, et al. Lentivirus-mediated shRNA interference targeting STAT3 inhibits human pancreatic cancer cell invasion. World J Gastroenterol. 2009;15:3757–66.CrossRef
44.
Zurück zum Zitat Huang C, Jiang T, Zhu L, Liu J, Cao J, et al. STAT3-targeting RNA interference inhibits pancreatic cancer angiogenesis in vitro and in vivo. Int J Oncol. 2011;38:1637–44. Huang C, Jiang T, Zhu L, Liu J, Cao J, et al. STAT3-targeting RNA interference inhibits pancreatic cancer angiogenesis in vitro and in vivo. Int J Oncol. 2011;38:1637–44.
45.
Zurück zum Zitat Zhao S, Venkatasubbarao K, Lazor JW, Sperry J, Jin C, et al. Inhibition of STAT3 Tyr705 phosphorylation by Smad4 suppresses transforming growth factor beta-mediated invasion and metastasis in pancreatic cancer cells. Cancer Res. 2008;68:4221–8.CrossRef Zhao S, Venkatasubbarao K, Lazor JW, Sperry J, Jin C, et al. Inhibition of STAT3 Tyr705 phosphorylation by Smad4 suppresses transforming growth factor beta-mediated invasion and metastasis in pancreatic cancer cells. Cancer Res. 2008;68:4221–8.CrossRef
46.
Zurück zum Zitat Zhao S, Ammanamanchi S, Brattain M, Cao L, Thangasamy A, et al. Smad4-dependent TGF-beta signaling suppresses RON receptor tyrosine kinase-dependent motility and invasion of pancreatic cancer cells. J Biol Chem. 2008;283:11293–301.CrossRef Zhao S, Ammanamanchi S, Brattain M, Cao L, Thangasamy A, et al. Smad4-dependent TGF-beta signaling suppresses RON receptor tyrosine kinase-dependent motility and invasion of pancreatic cancer cells. J Biol Chem. 2008;283:11293–301.CrossRef
47.
Zurück zum Zitat Vincent DF, Yan KP, Treilleux I, Gay F, Arfi V, et al. Inactivation of TIF1gamma cooperates with Kras to induce cystic tumors of the pancreas. PLoS Genet. 2009;5:e1000575.CrossRef Vincent DF, Yan KP, Treilleux I, Gay F, Arfi V, et al. Inactivation of TIF1gamma cooperates with Kras to induce cystic tumors of the pancreas. PLoS Genet. 2009;5:e1000575.CrossRef
48.
Zurück zum Zitat Ligr M, Wu X, Daniels G, Zhang D, Wang H, et al. Imbalanced expression of Tif1gamma inhibits pancreatic ductal epithelial cell growth. Am J Cancer Res. 2014;4:196–210. Ligr M, Wu X, Daniels G, Zhang D, Wang H, et al. Imbalanced expression of Tif1gamma inhibits pancreatic ductal epithelial cell growth. Am J Cancer Res. 2014;4:196–210.
49.
Zurück zum Zitat Vincent DF, Gout J, Chuvin N, Arfi V, Pommier RM, et al. Tif1gamma suppresses murine pancreatic tumoral transformation by a Smad4-independent pathway. Am J Pathol. 2012;180:2214–21.CrossRef Vincent DF, Gout J, Chuvin N, Arfi V, Pommier RM, et al. Tif1gamma suppresses murine pancreatic tumoral transformation by a Smad4-independent pathway. Am J Pathol. 2012;180:2214–21.CrossRef
50.
Zurück zum Zitat Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.CrossRef Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.CrossRef
51.
Zurück zum Zitat Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9:265–73.CrossRef Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9:265–73.CrossRef
52.
Zurück zum Zitat Krantz SB, Shields MA, Dangi-Garimella S, Munshi HG, Bentrem DJ. Contribution of epithelial-to-mesenchymal transition and cancer stem cells to pancreatic cancer progression. J Surg Res. 2012;173:105–12.CrossRef Krantz SB, Shields MA, Dangi-Garimella S, Munshi HG, Bentrem DJ. Contribution of epithelial-to-mesenchymal transition and cancer stem cells to pancreatic cancer progression. J Surg Res. 2012;173:105–12.CrossRef
53.
Zurück zum Zitat Ikushima H, Miyazono K. TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer. 2010;10:415–24.CrossRef Ikushima H, Miyazono K. TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer. 2010;10:415–24.CrossRef
54.
Zurück zum Zitat Lamouille S, Derynck R. Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J Cell Biol. 2007;178:437–51.CrossRef Lamouille S, Derynck R. Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J Cell Biol. 2007;178:437–51.CrossRef
55.
Zurück zum Zitat Lamouille S, Connolly E, Smyth JW, Akhurst RJ, Derynck R. TGF-beta-induced activation of mTOR complex 2 drives epithelial-mesenchymal transition and cell invasion. J Cell Sci. 2012;125:1259–73.CrossRef Lamouille S, Connolly E, Smyth JW, Akhurst RJ, Derynck R. TGF-beta-induced activation of mTOR complex 2 drives epithelial-mesenchymal transition and cell invasion. J Cell Sci. 2012;125:1259–73.CrossRef
56.
Zurück zum Zitat Bardeesy N, Cheng KH, Berger JH, Chu GC, Pahler J, et al. Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev. 2006;20:3130–46.CrossRef Bardeesy N, Cheng KH, Berger JH, Chu GC, Pahler J, et al. Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev. 2006;20:3130–46.CrossRef
57.
Zurück zum Zitat Vincent T, Neve EP, Johnson JR, Kukalev A, Rojo F, et al. A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition. Nat Cell Biol. 2009;11:943–50.CrossRef Vincent T, Neve EP, Johnson JR, Kukalev A, Rojo F, et al. A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition. Nat Cell Biol. 2009;11:943–50.CrossRef
58.
Zurück zum Zitat Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 2008;68:7846–54.CrossRef Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 2008;68:7846–54.CrossRef
59.
Zurück zum Zitat Katsuno Y, Lamouille S, Derynck R. TGF-beta signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol. 2013;25:76–84.CrossRef Katsuno Y, Lamouille S, Derynck R. TGF-beta signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol. 2013;25:76–84.CrossRef
60.
Zurück zum Zitat Deer EL, Gonzalez-Hernandez J, Coursen JD, Shea JE, Ngatia J, et al. Phenotype and genotype of pancreatic cancer cell lines. Pancreas. 2010;39:425–35.CrossRef Deer EL, Gonzalez-Hernandez J, Coursen JD, Shea JE, Ngatia J, et al. Phenotype and genotype of pancreatic cancer cell lines. Pancreas. 2010;39:425–35.CrossRef
61.
Zurück zum Zitat Loukopoulos P, Kanetaka K, Takamura M, Shibata T, Sakamoto M, et al. Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas. 2004;29:193–203.CrossRef Loukopoulos P, Kanetaka K, Takamura M, Shibata T, Sakamoto M, et al. Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas. 2004;29:193–203.CrossRef
62.
Zurück zum Zitat Sun C, Yamato T, Furukawa T, Ohnishi Y, Kijima H, et al. Characterization of the mutations of the K-ras, p53, p16, and SMAD4 genes in 15 human pancreatic cancer cell lines. Oncol Rep. 2001;8:89–92. Sun C, Yamato T, Furukawa T, Ohnishi Y, Kijima H, et al. Characterization of the mutations of the K-ras, p53, p16, and SMAD4 genes in 15 human pancreatic cancer cell lines. Oncol Rep. 2001;8:89–92.
63.
Zurück zum Zitat Aoki Y, Hosaka S, Tachibana N, Karasawa Y, Kawa S, et al. Reassessment of K-ras mutations at codon 12 by direct PCR and sequencing from tissue microdissection in human pancreatic adenocarcinomas. Pancreas. 2000;21:152–7.CrossRef Aoki Y, Hosaka S, Tachibana N, Karasawa Y, Kawa S, et al. Reassessment of K-ras mutations at codon 12 by direct PCR and sequencing from tissue microdissection in human pancreatic adenocarcinomas. Pancreas. 2000;21:152–7.CrossRef
64.
Zurück zum Zitat Chen WB, Lenschow W, Tiede K, Fischer JW, Kalthoff H, et al. Smad4/DPC4-dependent regulation of biglycan gene expression by transforming growth factor-beta in pancreatic tumor cells. J Biol Chem. 2002;277:36118–28.CrossRef Chen WB, Lenschow W, Tiede K, Fischer JW, Kalthoff H, et al. Smad4/DPC4-dependent regulation of biglycan gene expression by transforming growth factor-beta in pancreatic tumor cells. J Biol Chem. 2002;277:36118–28.CrossRef
65.
Zurück zum Zitat Schutte M, Hruban RH, Hedrick L, Cho KR, Nadasdy GM, et al. DPC4 gene in various tumor types. Cancer Res. 1996;56:2527–30. Schutte M, Hruban RH, Hedrick L, Cho KR, Nadasdy GM, et al. DPC4 gene in various tumor types. Cancer Res. 1996;56:2527–30.
66.
Zurück zum Zitat Moore PS, Sipos B, Orlandini S, Sorio C, Real FX, et al. Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4. Virchows Arch. 2001;439:798–802.CrossRef Moore PS, Sipos B, Orlandini S, Sorio C, Real FX, et al. Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4. Virchows Arch. 2001;439:798–802.CrossRef
67.
Zurück zum Zitat Maitra A, Adsay NV, Argani P, Iacobuzio-Donahue C, De Marzo A, et al. Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod Pathol. 2003;16:902–12.CrossRef Maitra A, Adsay NV, Argani P, Iacobuzio-Donahue C, De Marzo A, et al. Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod Pathol. 2003;16:902–12.CrossRef
68.
Zurück zum Zitat Hruban RH, Adsay NV, Albores-Saavedra J, Compton C, Garrett ES, et al. Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol. 2001;25:579–86.CrossRef Hruban RH, Adsay NV, Albores-Saavedra J, Compton C, Garrett ES, et al. Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol. 2001;25:579–86.CrossRef
69.
Zurück zum Zitat Kloppel G, Luttges J. The pathology of ductal-type pancreatic carcinomas and pancreatic intraepithelial neoplasia: insights for clinicians. Curr Gastroenterol Rep. 2004;6:111–8.CrossRef Kloppel G, Luttges J. The pathology of ductal-type pancreatic carcinomas and pancreatic intraepithelial neoplasia: insights for clinicians. Curr Gastroenterol Rep. 2004;6:111–8.CrossRef
70.
Zurück zum Zitat Longnecker DS, Adsay NV, Fernandez-del Castillo C, Hruban RH, Kasugai T, et al. Histopathological diagnosis of pancreatic intraepithelial neoplasia and intraductal papillary-mucinous neoplasms: interobserver agreement. Pancreas. 2005;31:344–9.CrossRef Longnecker DS, Adsay NV, Fernandez-del Castillo C, Hruban RH, Kasugai T, et al. Histopathological diagnosis of pancreatic intraepithelial neoplasia and intraductal papillary-mucinous neoplasms: interobserver agreement. Pancreas. 2005;31:344–9.CrossRef
71.
Zurück zum Zitat Wilentz RE, Iacobuzio-Donahue CA, Argani P, McCarthy DM, Parsons JL, et al. Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res. 2000;60:2002–6. Wilentz RE, Iacobuzio-Donahue CA, Argani P, McCarthy DM, Parsons JL, et al. Loss of expression of Dpc4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. Cancer Res. 2000;60:2002–6.
72.
Zurück zum Zitat Biankin AV, Biankin SA, Kench JG, Morey AL, Lee CS, et al. Aberrant p16(INK4A) and DPC4/Smad4 expression in intraductal papillary mucinous tumours of the pancreas is associated with invasive ductal adenocarcinoma. Gut. 2002;50:861–8.CrossRef Biankin AV, Biankin SA, Kench JG, Morey AL, Lee CS, et al. Aberrant p16(INK4A) and DPC4/Smad4 expression in intraductal papillary mucinous tumours of the pancreas is associated with invasive ductal adenocarcinoma. Gut. 2002;50:861–8.CrossRef
73.
Zurück zum Zitat Iacobuzio-Donahue CA, Klimstra DS, Adsay NV, Wilentz RE, Argani P, et al. Dpc-4 protein is expressed in virtually all human intraductal papillary mucinous neoplasms of the pancreas: comparison with conventional ductal adenocarcinomas. Am J Pathol. 2000;157:755–61.CrossRef Iacobuzio-Donahue CA, Klimstra DS, Adsay NV, Wilentz RE, Argani P, et al. Dpc-4 protein is expressed in virtually all human intraductal papillary mucinous neoplasms of the pancreas: comparison with conventional ductal adenocarcinomas. Am J Pathol. 2000;157:755–61.CrossRef
74.
Zurück zum Zitat Wilentz RE, Su GH, Dai JL, Sparks AB, Argani P, et al. Immunohistochemical labeling for dpc4 mirrors genetic status in pancreatic adenocarcinomas : a new marker of DPC4 inactivation. Am J Pathol. 2000;156:37–43.CrossRef Wilentz RE, Su GH, Dai JL, Sparks AB, Argani P, et al. Immunohistochemical labeling for dpc4 mirrors genetic status in pancreatic adenocarcinomas : a new marker of DPC4 inactivation. Am J Pathol. 2000;156:37–43.CrossRef
75.
Zurück zum Zitat Yonezawa S, Higashi M, Yamada N, Goto M. Precursor lesions of pancreatic cancer. Gut Live. 2008;2:137–54.CrossRef Yonezawa S, Higashi M, Yamada N, Goto M. Precursor lesions of pancreatic cancer. Gut Live. 2008;2:137–54.CrossRef
76.
Zurück zum Zitat Maitra A, Fukushima N, Takaori K, Hruban RH. Precursors to invasive pancreatic cancer. Adv Anat Pathol. 2005;12:81–91.CrossRef Maitra A, Fukushima N, Takaori K, Hruban RH. Precursors to invasive pancreatic cancer. Adv Anat Pathol. 2005;12:81–91.CrossRef
77.
Zurück zum Zitat Singh M, Maitra A. Precursor lesions of pancreatic cancer: molecular pathology and clinical implications. Pancreatology. 2007;7:9–19.CrossRef Singh M, Maitra A. Precursor lesions of pancreatic cancer: molecular pathology and clinical implications. Pancreatology. 2007;7:9–19.CrossRef
78.
Zurück zum Zitat Perez-Mancera PA, Guerra C, Barbacid M, Tuveson DA. What we have learned about pancreatic cancer from mouse models. Gastroenterology. 2012;142:1079–92.CrossRef Perez-Mancera PA, Guerra C, Barbacid M, Tuveson DA. What we have learned about pancreatic cancer from mouse models. Gastroenterology. 2012;142:1079–92.CrossRef
79.
Zurück zum Zitat Ijichi H, Chytil A, Gorska AE, Aakre ME, Fujitani Y, et al. Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression. Genes Dev. 2006;20:3147–60.CrossRef Ijichi H, Chytil A, Gorska AE, Aakre ME, Fujitani Y, et al. Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression. Genes Dev. 2006;20:3147–60.CrossRef
80.
Zurück zum Zitat Izeradjene K, Combs C, Best M, Gopinathan A, Wagner A, et al. Kras(G12D) and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell. 2007;11:229–43.CrossRef Izeradjene K, Combs C, Best M, Gopinathan A, Wagner A, et al. Kras(G12D) and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell. 2007;11:229–43.CrossRef
81.
Zurück zum Zitat Leung L, Radulovich N, Zhu CQ, Wang D, To C, et al. Loss of canonical Smad4 signaling promotes KRAS driven malignant transformation of human pancreatic duct epithelial cells and metastasis. PLoS One. 2013;8:e84366.CrossRef Leung L, Radulovich N, Zhu CQ, Wang D, To C, et al. Loss of canonical Smad4 signaling promotes KRAS driven malignant transformation of human pancreatic duct epithelial cells and metastasis. PLoS One. 2013;8:e84366.CrossRef
82.
Zurück zum Zitat Voorneveld PW, Stache V, Jacobs RJ, Smolders E, Sitters AI, et al. Reduced expression of bone morphogenetic protein receptor IA in pancreatic cancer is associated with a poor prognosis. Br J Cancer. 2013;109:1805–12.CrossRef Voorneveld PW, Stache V, Jacobs RJ, Smolders E, Sitters AI, et al. Reduced expression of bone morphogenetic protein receptor IA in pancreatic cancer is associated with a poor prognosis. Br J Cancer. 2013;109:1805–12.CrossRef
83.
Zurück zum Zitat Toga T, Nio Y, Hashimoto K, Higami T, Maruyama R. The dissociated expression of protein and messenger RNA of DPC4 in human invasive ductal carcinoma of the pancreas and their implication for patient outcome. Anticancer Res. 2004;24:1173–8. Toga T, Nio Y, Hashimoto K, Higami T, Maruyama R. The dissociated expression of protein and messenger RNA of DPC4 in human invasive ductal carcinoma of the pancreas and their implication for patient outcome. Anticancer Res. 2004;24:1173–8.
84.
Zurück zum Zitat Tascilar M, Skinner HG, Rosty C, Sohn T, Wilentz RE, et al. The SMAD4 protein and prognosis of pancreatic ductal adenocarcinoma. Clin Cancer Res. 2001;7:4115–21. Tascilar M, Skinner HG, Rosty C, Sohn T, Wilentz RE, et al. The SMAD4 protein and prognosis of pancreatic ductal adenocarcinoma. Clin Cancer Res. 2001;7:4115–21.
85.
Zurück zum Zitat Singh P, Srinivasan R, Wig JD. SMAD4 genetic alterations predict a worse prognosis in patients with pancreatic ductal adenocarcinoma. Pancreas. 2012;41:541–6.CrossRef Singh P, Srinivasan R, Wig JD. SMAD4 genetic alterations predict a worse prognosis in patients with pancreatic ductal adenocarcinoma. Pancreas. 2012;41:541–6.CrossRef
86.
Zurück zum Zitat Hua Z, Zhang YC, Hu XM, Jia ZG. Loss of DPC4 expression and its correlation with clinicopathological parameters in pancreatic carcinoma. World J Gastroenterol. 2003;9:2764–7.CrossRef Hua Z, Zhang YC, Hu XM, Jia ZG. Loss of DPC4 expression and its correlation with clinicopathological parameters in pancreatic carcinoma. World J Gastroenterol. 2003;9:2764–7.CrossRef
87.
Zurück zum Zitat Khorana AA, Hu YC, Ryan CK, Komorowski RA, Hostetter G, et al. Vascular endothelial growth factor and DPC4 predict adjuvant therapy outcomes in resected pancreatic cancer. J Gastrointest Surg. 2005;9:903–11.CrossRef Khorana AA, Hu YC, Ryan CK, Komorowski RA, Hostetter G, et al. Vascular endothelial growth factor and DPC4 predict adjuvant therapy outcomes in resected pancreatic cancer. J Gastrointest Surg. 2005;9:903–11.CrossRef
88.
Zurück zum Zitat Biankin AV, Morey AL, Lee CS, Kench JG, Biankin SA, et al. DPC4/Smad4 expression and outcome in pancreatic ductal adenocarcinoma. J Clin Oncol. 2002;20:4531–42.CrossRef Biankin AV, Morey AL, Lee CS, Kench JG, Biankin SA, et al. DPC4/Smad4 expression and outcome in pancreatic ductal adenocarcinoma. J Clin Oncol. 2002;20:4531–42.CrossRef
89.
Zurück zum Zitat Blackford A, Serrano OK, Wolfgang CL, Parmigiani G, Jones S, et al. SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clin Cancer Res. 2009;15:4674–9.CrossRef Blackford A, Serrano OK, Wolfgang CL, Parmigiani G, Jones S, et al. SMAD4 gene mutations are associated with poor prognosis in pancreatic cancer. Clin Cancer Res. 2009;15:4674–9.CrossRef
90.
Zurück zum Zitat Iacobuzio-Donahue CA, Fu B, Yachida S, Luo M, Abe H, et al. DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J Clin Oncol. 2009;27:1806–13.CrossRef Iacobuzio-Donahue CA, Fu B, Yachida S, Luo M, Abe H, et al. DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J Clin Oncol. 2009;27:1806–13.CrossRef
91.
Zurück zum Zitat Maitra A, Molberg K, Albores-Saavedra J, Lindberg G. Loss of Dpc4 expression in colonic adenocarcinomas correlates with the presence of metastatic disease. Am J Pathol. 2000;157:1105–11.CrossRef Maitra A, Molberg K, Albores-Saavedra J, Lindberg G. Loss of Dpc4 expression in colonic adenocarcinomas correlates with the presence of metastatic disease. Am J Pathol. 2000;157:1105–11.CrossRef
92.
Zurück zum Zitat Sohn TA, Su GH, Ryu B, Yeo CJ, Kern SE. High-throughput drug screening of the DPC4 tumor-suppressor pathway in human pancreatic cancer cells. Ann Surg. 2001;233:696–703.CrossRef Sohn TA, Su GH, Ryu B, Yeo CJ, Kern SE. High-throughput drug screening of the DPC4 tumor-suppressor pathway in human pancreatic cancer cells. Ann Surg. 2001;233:696–703.CrossRef
93.
Zurück zum Zitat Wang H, Han H, Von Hoff DD. Identification of an agent selectively targeting DPC4 (deleted in pancreatic cancer locus 4)-deficient pancreatic cancer cells. Cancer Res. 2006;66:9722–30.CrossRef Wang H, Han H, Von Hoff DD. Identification of an agent selectively targeting DPC4 (deleted in pancreatic cancer locus 4)-deficient pancreatic cancer cells. Cancer Res. 2006;66:9722–30.CrossRef
94.
Zurück zum Zitat Wang H, Stephens B, Von Hoff DD, Han H. Identification and characterization of a novel anticancer agent with selectivity against deleted in pancreatic cancer locus 4 (DPC4)-deficient pancreatic and colon cancer cells. Pancreas. 2009;38:551–7.CrossRef Wang H, Stephens B, Von Hoff DD, Han H. Identification and characterization of a novel anticancer agent with selectivity against deleted in pancreatic cancer locus 4 (DPC4)-deficient pancreatic and colon cancer cells. Pancreas. 2009;38:551–7.CrossRef
Metadaten
Titel
SMAD4 and its role in pancreatic cancer
verfasst von
Xiang Xia
Weidong Wu
Chen Huang
Gang Cen
Tao Jiang
Jun Cao
Kejian Huang
Zhengjun Qiu
Publikationsdatum
01.01.2015
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 1/2015
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-014-2883-z

Weitere Artikel der Ausgabe 1/2015

Tumor Biology 1/2015 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.