Skip to main content
Erschienen in: Tumor Biology 2/2015

01.02.2015 | Review

RANK pathway in giant cell tumor of bone: pathogenesis and therapeutic aspects

verfasst von: Pan-Feng Wu, Ju-yu Tang, Kang-hua Li

Erschienen in: Tumor Biology | Ausgabe 2/2015

Einloggen, um Zugang zu erhalten

Abstract

Giant cell tumor is a relatively uncommon but painful tumor of bone, which can metastasize to the lungs. The RANK pathway is often reported to be involved in the pathogenesis of giant cell tumor of bone (GCTB). This pathway is a key signaling pathway of bone remodeling that plays a critical role in differentiation of precursors into multinucleated osteoclasts, and activation of osteoclasts leading to bone resorption. Dysregulation of RANK ligand (RANKL)-RANK-osteoprotegerin (OPG) signaling cascade induces the imbalance between bone formation and bone resorption, which leads to the changes in bone mass, increases osteoclast-mediated bone destruction, bone metastasis, and the progression of existing skeletal tumors. Recent evidences have shown that targeting the components of RANKL-RANK-OPG signaling pathway is a promising approach in the treatment of GCTB. This review study has focused on the association of RANKL-RANK-OPG pathway in the pathogenesis and progression of GCTB as well as discussed the possible therapeutic strategies by targeting this pathway.
Literatur
1.
Zurück zum Zitat Jaffe HL, Lichtenstein L, Partis RB. Giant cell tumour of bone: its pathological appearance, grading, supposed variants and treatment. Arch Path. 1940;30:993–1031. Jaffe HL, Lichtenstein L, Partis RB. Giant cell tumour of bone: its pathological appearance, grading, supposed variants and treatment. Arch Path. 1940;30:993–1031.
2.
Zurück zum Zitat Lehner B, Kunz P, Saehr H, Fellenberg J. Epigenetic silencing of genes and microRNAs within the imprinted Dlk1-Dio3 region at human chromosome 14.32 in giant cell tumor of bone. BMC Cancer. 2014;14:495.CrossRefPubMedPubMedCentral Lehner B, Kunz P, Saehr H, Fellenberg J. Epigenetic silencing of genes and microRNAs within the imprinted Dlk1-Dio3 region at human chromosome 14.32 in giant cell tumor of bone. BMC Cancer. 2014;14:495.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Deng Z, Ding Y, Yang F, Ding Y, Niu X. Metachronous multicentric giant cell tumor of bone with retroperitoneal metastasis. Chin Med J (Engl). 2014;127:2713–5. Deng Z, Ding Y, Yang F, Ding Y, Niu X. Metachronous multicentric giant cell tumor of bone with retroperitoneal metastasis. Chin Med J (Engl). 2014;127:2713–5.
4.
Zurück zum Zitat Huang L, Xu J, Wood DJ, Zheng MH. Gene expression of osteoprotegerin ligand, osteoprotegerin, and receptor activator of NF-kappaB in giant cell tumor of bone: possible involvement in tumor cell-induced osteoclast-like cell formation. Am J Pathol. 2000;156:761–7.CrossRefPubMedPubMedCentral Huang L, Xu J, Wood DJ, Zheng MH. Gene expression of osteoprotegerin ligand, osteoprotegerin, and receptor activator of NF-kappaB in giant cell tumor of bone: possible involvement in tumor cell-induced osteoclast-like cell formation. Am J Pathol. 2000;156:761–7.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Wülling M, Engels C, Jesse N, Werner M, Delling G, Kaiser E. The nature of giant cell tumor of bone. J Cancer Res Clin Oncol. 2001;127:467–74.CrossRefPubMed Wülling M, Engels C, Jesse N, Werner M, Delling G, Kaiser E. The nature of giant cell tumor of bone. J Cancer Res Clin Oncol. 2001;127:467–74.CrossRefPubMed
6.
Zurück zum Zitat Mohamed A, Ishikawa K, Omi E, Honda K, Suzuki S, Sato T, et al. Giant cell tumor of the temporal bone invading into the pterygoid muscle through the temporomandibular joint. J Neurol Surg Rep. 2014;75:e136–40.CrossRefPubMedPubMedCentral Mohamed A, Ishikawa K, Omi E, Honda K, Suzuki S, Sato T, et al. Giant cell tumor of the temporal bone invading into the pterygoid muscle through the temporomandibular joint. J Neurol Surg Rep. 2014;75:e136–40.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Uslu GH, Canyilmaz E, Yöney A, Aydin S, Sahbaz A, Sari A. Giant cell tumor of the occipital bone: a case report and review of the literature. Oncol Lett. 2014;8:151–4.PubMedPubMedCentral Uslu GH, Canyilmaz E, Yöney A, Aydin S, Sahbaz A, Sari A. Giant cell tumor of the occipital bone: a case report and review of the literature. Oncol Lett. 2014;8:151–4.PubMedPubMedCentral
8.
Zurück zum Zitat Sun S, Zhang Q, Zhao CS, Cai J. Long-term outcomes of ultrasonic scalpel treatment in giant cell tumor of long bones. Oncol Lett. 2014;8:145–50.PubMedPubMedCentral Sun S, Zhang Q, Zhao CS, Cai J. Long-term outcomes of ultrasonic scalpel treatment in giant cell tumor of long bones. Oncol Lett. 2014;8:145–50.PubMedPubMedCentral
9.
Zurück zum Zitat Moskovszky L, Szuhai K, Krenács T, Hogendoorn PC, Szendroi M, Benassi MS, et al. Genomic instability in giant cell tumor of bone. A study of 52 cases using DNA ploidy, relocalization FISH, and array-CGH analysis. Genes Chromosomes Cancer. 2009;48:468–79.CrossRefPubMed Moskovszky L, Szuhai K, Krenács T, Hogendoorn PC, Szendroi M, Benassi MS, et al. Genomic instability in giant cell tumor of bone. A study of 52 cases using DNA ploidy, relocalization FISH, and array-CGH analysis. Genes Chromosomes Cancer. 2009;48:468–79.CrossRefPubMed
10.
Zurück zum Zitat Moskovszky L, Dezsö K, Athanasou N, Szendröi M, Kopper L, Kliskey K, et al. Centrosome abnormalities in giant cell tumour of bone: possible association with chromosomal instability. Mod Pathol. 2010;23:359–66.CrossRefPubMed Moskovszky L, Dezsö K, Athanasou N, Szendröi M, Kopper L, Kliskey K, et al. Centrosome abnormalities in giant cell tumour of bone: possible association with chromosomal instability. Mod Pathol. 2010;23:359–66.CrossRefPubMed
11.
Zurück zum Zitat Skubitz KM. Giant cell tumor of bone: current treatment options. Curr Treat Options Oncol. 2014;15:507–18.CrossRefPubMed Skubitz KM. Giant cell tumor of bone: current treatment options. Curr Treat Options Oncol. 2014;15:507–18.CrossRefPubMed
12.
Zurück zum Zitat Hakozaki M, Tajino T, Yamada H, Hasegawa O, Tasaki K, Watanabe K, et al. Radiological and pathological characteristics of giant cell tumor of bone treated with denosumab. Diagn Pathol. 2014;7:9–111. Hakozaki M, Tajino T, Yamada H, Hasegawa O, Tasaki K, Watanabe K, et al. Radiological and pathological characteristics of giant cell tumor of bone treated with denosumab. Diagn Pathol. 2014;7:9–111.
13.
Zurück zum Zitat Teixeira LE, Vilela JC, Miranda RH, Gomes AH, Costa FA, de Faria VC. Giant cell tumors of bone: nonsurgical factors associated with local recurrence. Acta Orthop Traumatol Turc. 2014;48:136–40.CrossRefPubMed Teixeira LE, Vilela JC, Miranda RH, Gomes AH, Costa FA, de Faria VC. Giant cell tumors of bone: nonsurgical factors associated with local recurrence. Acta Orthop Traumatol Turc. 2014;48:136–40.CrossRefPubMed
14.
15.
Zurück zum Zitat Leibbrandt A, Penninger JM. RANK/RANKL: regulators of immune responses and bone physiology. Ann N Y Acad Sci. 2008;1143:123–50.CrossRefPubMed Leibbrandt A, Penninger JM. RANK/RANKL: regulators of immune responses and bone physiology. Ann N Y Acad Sci. 2008;1143:123–50.CrossRefPubMed
16.
Zurück zum Zitat Jules J, Ashley JW, Feng X. Selective targeting of RANK signaling pathways as new therapeutic strategies for osteoporosis. Expert Opin Ther Targets. 2010;14:923–34.CrossRefPubMedPubMedCentral Jules J, Ashley JW, Feng X. Selective targeting of RANK signaling pathways as new therapeutic strategies for osteoporosis. Expert Opin Ther Targets. 2010;14:923–34.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Dong SS, Liu XG, Chen Y, Guo Y, Wang L, Zhao J, et al. Association analyses of RANK/RANKL/OPG gene polymorphisms with femoral neck compression strength index variation in Caucasians. Calcif Tissue Int. 2009;85:104–12.CrossRefPubMedPubMedCentral Dong SS, Liu XG, Chen Y, Guo Y, Wang L, Zhao J, et al. Association analyses of RANK/RANKL/OPG gene polymorphisms with femoral neck compression strength index variation in Caucasians. Calcif Tissue Int. 2009;85:104–12.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Dougall WC. Molecular pathways: osteoclast-dependent and osteoclast-independent roles of the RANK/RANKL/OPG pathway in tumorigenesis and metastasis. Clin Cancer Res. 2012;18:326–35.CrossRefPubMed Dougall WC. Molecular pathways: osteoclast-dependent and osteoclast-independent roles of the RANK/RANKL/OPG pathway in tumorigenesis and metastasis. Clin Cancer Res. 2012;18:326–35.CrossRefPubMed
20.
Zurück zum Zitat Raju R, Balakrishnan L, Nanjappa V, Bhattacharjee M, Getnet D, Muthusamy B, et al. A comprehensive manually curated reaction map of RANK/RANKL-signaling pathway. Database (Oxford). 2011;2011:bar021. Raju R, Balakrishnan L, Nanjappa V, Bhattacharjee M, Getnet D, Muthusamy B, et al. A comprehensive manually curated reaction map of RANK/RANKL-signaling pathway. Database (Oxford). 2011;2011:bar021.
21.
Zurück zum Zitat Kim HH, Shin HS, Kwak HJ, Ahn KY, Kim JH, Lee HJ, et al. RANKL regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. FASEB J. 2003;17:2163–5.PubMed Kim HH, Shin HS, Kwak HJ, Ahn KY, Kim JH, Lee HJ, et al. RANKL regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. FASEB J. 2003;17:2163–5.PubMed
22.
Zurück zum Zitat Leibbrandt A, Penninger JM. RANK(L) as a key target for controlling bone loss. Adv Exp Med Biol. 2009;647:130–45.CrossRefPubMed Leibbrandt A, Penninger JM. RANK(L) as a key target for controlling bone loss. Adv Exp Med Biol. 2009;647:130–45.CrossRefPubMed
24.
Zurück zum Zitat Tanaka S. Signaling axis in osteoclast biology and therapeutic targeting in the RANK/RANKL/OPG system. Am J Nephrol. 2007;27:466–78.CrossRefPubMed Tanaka S. Signaling axis in osteoclast biology and therapeutic targeting in the RANK/RANKL/OPG system. Am J Nephrol. 2007;27:466–78.CrossRefPubMed
25.
Zurück zum Zitat Delgado-Calle J, Riancho JA. The role of DNA methylation in common skeletal disorders. Biology (Basel). 2012;1:698–713. Delgado-Calle J, Riancho JA. The role of DNA methylation in common skeletal disorders. Biology (Basel). 2012;1:698–713.
26.
Zurück zum Zitat Dougall WC, Chaisson M. The RANK/RANKL/OPG triad in cancer-induced bone diseases. Cancer Metastasis Rev. 2006;25:541–9.CrossRefPubMed Dougall WC, Chaisson M. The RANK/RANKL/OPG triad in cancer-induced bone diseases. Cancer Metastasis Rev. 2006;25:541–9.CrossRefPubMed
27.
Zurück zum Zitat Kohli SS, Kohli VS. Role of RANKL-RANK/osteoprotegerin molecular complex in bone remodeling and its immunopathologic implications. Indian J Endocrinol Metab. 2011;15:175–81.CrossRefPubMedPubMedCentral Kohli SS, Kohli VS. Role of RANKL-RANK/osteoprotegerin molecular complex in bone remodeling and its immunopathologic implications. Indian J Endocrinol Metab. 2011;15:175–81.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Lewin J, Thomas D. Denosumab: a new treatment option for giant cell tumor of bone. Drugs Today (Barc). 2013;49:693–700.CrossRef Lewin J, Thomas D. Denosumab: a new treatment option for giant cell tumor of bone. Drugs Today (Barc). 2013;49:693–700.CrossRef
29.
Zurück zum Zitat Xu SF, Adams B, Yu XC, Xu M. Denosumab and giant cell tumour of bone—a review and future management considerations. Curr Oncol. 2013;20:e442–7.CrossRefPubMedPubMedCentral Xu SF, Adams B, Yu XC, Xu M. Denosumab and giant cell tumour of bone—a review and future management considerations. Curr Oncol. 2013;20:e442–7.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Roux S, Amazit L, Meduri G, Guiochon-Mantel A, Milgrom E, Mariette X. RANK (receptor activator of nuclear factor kappa B) and RANK ligand are expressed in giant cell tumors of bone. Am J Clin Pathol. 2002;117:210–6.CrossRefPubMed Roux S, Amazit L, Meduri G, Guiochon-Mantel A, Milgrom E, Mariette X. RANK (receptor activator of nuclear factor kappa B) and RANK ligand are expressed in giant cell tumors of bone. Am J Clin Pathol. 2002;117:210–6.CrossRefPubMed
31.
Zurück zum Zitat Atkins GJ, Bouralexis S, Haynes DR, Graves SE, Geary SM, Evdokiou A, et al. Osteoprotegerin inhibits osteoclast formation and bone resorbing activity in giant cell tumors of bone. Bone. 2001;28:370–7.CrossRefPubMed Atkins GJ, Bouralexis S, Haynes DR, Graves SE, Geary SM, Evdokiou A, et al. Osteoprotegerin inhibits osteoclast formation and bone resorbing activity in giant cell tumors of bone. Bone. 2001;28:370–7.CrossRefPubMed
32.
Zurück zum Zitat Lau YS, Sabokbar A, Gibbons CL, Giele H, Athanasou N. Phenotypic and molecular studies of giant-cell tumors of bone and soft tissue. Hum Pathol. 2005;36:945–54.CrossRefPubMed Lau YS, Sabokbar A, Gibbons CL, Giele H, Athanasou N. Phenotypic and molecular studies of giant-cell tumors of bone and soft tissue. Hum Pathol. 2005;36:945–54.CrossRefPubMed
33.
34.
Zurück zum Zitat Muresan MM, Olivier P, Leclère J, Sirveaux F, Brunaud L, Klein M, et al. Bone metastases from differentiated thyroid carcinoma. Endocr Relat Cancer. 2008;15:37–49.CrossRefPubMed Muresan MM, Olivier P, Leclère J, Sirveaux F, Brunaud L, Klein M, et al. Bone metastases from differentiated thyroid carcinoma. Endocr Relat Cancer. 2008;15:37–49.CrossRefPubMed
35.
Zurück zum Zitat Kim Y, Nizami S, Goto H, Lee FY. Modern interpretation of giant cell tumor of bone: predominantly osteoclastogenic stromal tumor. Clin Orthop Surg. 2012;4:107–16.CrossRefPubMedPubMedCentral Kim Y, Nizami S, Goto H, Lee FY. Modern interpretation of giant cell tumor of bone: predominantly osteoclastogenic stromal tumor. Clin Orthop Surg. 2012;4:107–16.CrossRefPubMedPubMedCentral
36.
37.
Zurück zum Zitat Federman N, Brien EW, Narasimhan V, Dry SM, Sodhi M, Chawla SP. Giant cell tumor of bone in childhood: clinical aspects and novel therapeutic targets. Paediatr Drugs. 2014;16:21–8.CrossRefPubMed Federman N, Brien EW, Narasimhan V, Dry SM, Sodhi M, Chawla SP. Giant cell tumor of bone in childhood: clinical aspects and novel therapeutic targets. Paediatr Drugs. 2014;16:21–8.CrossRefPubMed
38.
Zurück zum Zitat Ang ES, Pavlos NJ, Chim SM, Feng HT, Scaife RM, Steer JH, et al. Paclitaxel inhibits osteoclast formation and bone resorption via influencing mitotic cell cycle arrest and RANKL-induced activation of NF-κB and ERK. J Cell Biochem. 2012;113:946–55.CrossRefPubMed Ang ES, Pavlos NJ, Chim SM, Feng HT, Scaife RM, Steer JH, et al. Paclitaxel inhibits osteoclast formation and bone resorption via influencing mitotic cell cycle arrest and RANKL-induced activation of NF-κB and ERK. J Cell Biochem. 2012;113:946–55.CrossRefPubMed
39.
Zurück zum Zitat Bahtiar A, Matsumoto T, Nakamura T, Akiyama M, Yogo K, Ishida-Kitagawa N, et al. Identification of a novel L-serine analog that suppresses osteoclastogenesis in vitro and bone turnover in vivo. J Biol Chem. 2009;284:34157–66.CrossRefPubMedPubMedCentral Bahtiar A, Matsumoto T, Nakamura T, Akiyama M, Yogo K, Ishida-Kitagawa N, et al. Identification of a novel L-serine analog that suppresses osteoclastogenesis in vitro and bone turnover in vivo. J Biol Chem. 2009;284:34157–66.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Tang T, Zhang G, Lau CP, Zheng LZ, Xie XH, Wang XL, et al. Effect of water-soluble P-chitosan and S-chitosan on human primary osteoblasts and giant cell tumor of bone stromal cells. Biomed Mater. 2011;6:015004.CrossRefPubMed Tang T, Zhang G, Lau CP, Zheng LZ, Xie XH, Wang XL, et al. Effect of water-soluble P-chitosan and S-chitosan on human primary osteoblasts and giant cell tumor of bone stromal cells. Biomed Mater. 2011;6:015004.CrossRefPubMed
41.
Zurück zum Zitat Yu J, Choi S, Park ES, Shin B, Yu J, Lee SH, et al. D-chiro-inositol negatively regulates the formation of multinucleated osteoclasts by down-regulating NFATc1. J Clin Immunol. 2012;32:1360–71.CrossRefPubMed Yu J, Choi S, Park ES, Shin B, Yu J, Lee SH, et al. D-chiro-inositol negatively regulates the formation of multinucleated osteoclasts by down-regulating NFATc1. J Clin Immunol. 2012;32:1360–71.CrossRefPubMed
42.
Zurück zum Zitat Wisutsitthiwong C, Buranaruk C, Pudhom K, Palaga T. The plant limonoid 7-oxo-deacetoxygedunin inhibits RANKL-induced osteoclastogenesis by suppressing activation of the NF-κB and MAPK pathways. Biochem Biophys Res Commun. 2011;415:361–6.CrossRefPubMed Wisutsitthiwong C, Buranaruk C, Pudhom K, Palaga T. The plant limonoid 7-oxo-deacetoxygedunin inhibits RANKL-induced osteoclastogenesis by suppressing activation of the NF-κB and MAPK pathways. Biochem Biophys Res Commun. 2011;415:361–6.CrossRefPubMed
43.
Zurück zum Zitat Szymczak J, Bohdanowicz-Pawlak A. Osteoprotegerin, RANKL, and bone turnover in primary hyperparathyroidism: the effect of parathyroidectomy and treatment with alendronate. Horm Metab Res. 2013;45:759–64.CrossRefPubMed Szymczak J, Bohdanowicz-Pawlak A. Osteoprotegerin, RANKL, and bone turnover in primary hyperparathyroidism: the effect of parathyroidectomy and treatment with alendronate. Horm Metab Res. 2013;45:759–64.CrossRefPubMed
44.
Zurück zum Zitat Cheng YY, Huang L, Lee KM, Xu JK, Zheng MH, Kumta SM. Bisphosphonates induce apoptosis of stromal tumor cells in giant cell tumor of bone. Calcif Tissue Int. 2004;75:71–7.CrossRefPubMed Cheng YY, Huang L, Lee KM, Xu JK, Zheng MH, Kumta SM. Bisphosphonates induce apoptosis of stromal tumor cells in giant cell tumor of bone. Calcif Tissue Int. 2004;75:71–7.CrossRefPubMed
45.
Zurück zum Zitat Chang SS, Suratwala SJ, Jung KM, Doppelt JD, Zhang HZ, Blaine TA, et al. Bisphosphonates may reduce recurrence in giant cell tumor by inducing apoptosis. Clin Orthop Relat Res. 2004;426:103–9.CrossRef Chang SS, Suratwala SJ, Jung KM, Doppelt JD, Zhang HZ, Blaine TA, et al. Bisphosphonates may reduce recurrence in giant cell tumor by inducing apoptosis. Clin Orthop Relat Res. 2004;426:103–9.CrossRef
46.
Zurück zum Zitat Tse LF, Wong KC, Kumta SM, Huang L, Chow TC, Griffith JF. Bisphosphonates reduce local recurrence in extremity giant cell tumor of bone: a case–control study. Bone. 2008;42:68–73.CrossRefPubMed Tse LF, Wong KC, Kumta SM, Huang L, Chow TC, Griffith JF. Bisphosphonates reduce local recurrence in extremity giant cell tumor of bone: a case–control study. Bone. 2008;42:68–73.CrossRefPubMed
47.
Zurück zum Zitat Abe K, Yoshimura Y, Deyama Y, Kikuiri T, Hasegawa T, Tei K, et al. Effects of bisphosphonates on osteoclastogenesis in RAW264.7 cells. Int J Mol Med. 2012;29:1007–15.PubMed Abe K, Yoshimura Y, Deyama Y, Kikuiri T, Hasegawa T, Tei K, et al. Effects of bisphosphonates on osteoclastogenesis in RAW264.7 cells. Int J Mol Med. 2012;29:1007–15.PubMed
48.
Zurück zum Zitat Lau CP, Huang L, Tsui SK, Ng PK, Leung PY, Kumta SM. Pamidronate, farnesyl transferase, and geranylgeranyl transferase-I inhibitors affects cell proliferation, apoptosis, and OPG/RANKL mRNA expression in stromal cells of giant cell tumor of bone. J Orthop Res. 2011;29:403–13.CrossRefPubMed Lau CP, Huang L, Tsui SK, Ng PK, Leung PY, Kumta SM. Pamidronate, farnesyl transferase, and geranylgeranyl transferase-I inhibitors affects cell proliferation, apoptosis, and OPG/RANKL mRNA expression in stromal cells of giant cell tumor of bone. J Orthop Res. 2011;29:403–13.CrossRefPubMed
50.
Zurück zum Zitat Balke M, Campanacci L, Gebert C, Picci P, Gibbons M, Taylor R, et al. Bisphosphonate treatment of aggressive primary, recurrent and metastatic giant cell tumour of bone. BMC Cancer. 2010;10:462.CrossRefPubMedPubMedCentral Balke M, Campanacci L, Gebert C, Picci P, Gibbons M, Taylor R, et al. Bisphosphonate treatment of aggressive primary, recurrent and metastatic giant cell tumour of bone. BMC Cancer. 2010;10:462.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Lipton A, Balakumaran A. Denosumab for the treatment of cancer therapy-induced bone loss and prevention of skeletal-related events in patients with solid tumors. Expert Rev Clin Pharmacol. 2012;5:359–71.CrossRefPubMed Lipton A, Balakumaran A. Denosumab for the treatment of cancer therapy-induced bone loss and prevention of skeletal-related events in patients with solid tumors. Expert Rev Clin Pharmacol. 2012;5:359–71.CrossRefPubMed
52.
Zurück zum Zitat Branstetter DG, Nelson SD, Manivel JC, Blay JY, Chawla S, Thomas DM, et al. Denosumab induces tumor reduction and bone formation in patients with giant-cell tumor of bone. Clin Cancer Res. 2012;18:4415–24.CrossRefPubMed Branstetter DG, Nelson SD, Manivel JC, Blay JY, Chawla S, Thomas DM, et al. Denosumab induces tumor reduction and bone formation in patients with giant-cell tumor of bone. Clin Cancer Res. 2012;18:4415–24.CrossRefPubMed
53.
Zurück zum Zitat Thomas D, Henshaw R, Skubitz K, Chawla S, Staddon A, Blay JY, et al. Denosumab in patients with giant-cell tumour of bone: an open-label, phase 2 study. Lancet Oncol. 2010;11:275–80.CrossRefPubMed Thomas D, Henshaw R, Skubitz K, Chawla S, Staddon A, Blay JY, et al. Denosumab in patients with giant-cell tumour of bone: an open-label, phase 2 study. Lancet Oncol. 2010;11:275–80.CrossRefPubMed
54.
Zurück zum Zitat Mak IW, Evaniew N, Popovic S, Tozer R, Ghert M. A translational study of the neoplastic cells of giant cell tumor of bone following neoadjuvant denosumab. J Bone Joint Surg Am. 2014;96:e127.CrossRefPubMed Mak IW, Evaniew N, Popovic S, Tozer R, Ghert M. A translational study of the neoplastic cells of giant cell tumor of bone following neoadjuvant denosumab. J Bone Joint Surg Am. 2014;96:e127.CrossRefPubMed
55.
Zurück zum Zitat Pauli C, Fuchs B, Pfirrmann C, Bridge JA, Hofer S, Bode B. Response of an aggressive periosteal aneurysmal bone cyst (ABC) of the radius to denosumab therapy. World J Surg Oncol. 2014;12:17.CrossRefPubMedPubMedCentral Pauli C, Fuchs B, Pfirrmann C, Bridge JA, Hofer S, Bode B. Response of an aggressive periosteal aneurysmal bone cyst (ABC) of the radius to denosumab therapy. World J Surg Oncol. 2014;12:17.CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Agarwal A, Larsen BT, Buadu LD, Dunn J, Crawford R, Daniel J, et al. Denosumab chemotherapy for recurrent giant-cell tumor of bone: a case report of neoadjuvant use enabling complete surgical resection. Case Rep Oncol Med. 2013;2013:496351.PubMedPubMedCentral Agarwal A, Larsen BT, Buadu LD, Dunn J, Crawford R, Daniel J, et al. Denosumab chemotherapy for recurrent giant-cell tumor of bone: a case report of neoadjuvant use enabling complete surgical resection. Case Rep Oncol Med. 2013;2013:496351.PubMedPubMedCentral
57.
Zurück zum Zitat Akaike K, Suehara Y, Takagi T, Kaneko K, Saito T. An eggshell-like mineralized recurrent lesion in the popliteal region after treatment of giant cell tumor of the bone with denosumab. Skeletal Radiol. 2014;43:1767–72.CrossRefPubMed Akaike K, Suehara Y, Takagi T, Kaneko K, Saito T. An eggshell-like mineralized recurrent lesion in the popliteal region after treatment of giant cell tumor of the bone with denosumab. Skeletal Radiol. 2014;43:1767–72.CrossRefPubMed
58.
Zurück zum Zitat Mattei TA, Ramos E, Rehman AA, Shaw A, Patel SR, Mendel E. Sustained long-term complete regression of a giant cell tumor of the spine after treatment with denosumab. Spine J. 2014;14:e15–21.CrossRefPubMed Mattei TA, Ramos E, Rehman AA, Shaw A, Patel SR, Mendel E. Sustained long-term complete regression of a giant cell tumor of the spine after treatment with denosumab. Spine J. 2014;14:e15–21.CrossRefPubMed
59.
Zurück zum Zitat Burkiewicz JS, Scarpace SL, Bruce SP. Denosumab in osteoporosis and oncology. Ann Pharmacother. 2009;43:1445–55.CrossRefPubMed Burkiewicz JS, Scarpace SL, Bruce SP. Denosumab in osteoporosis and oncology. Ann Pharmacother. 2009;43:1445–55.CrossRefPubMed
Metadaten
Titel
RANK pathway in giant cell tumor of bone: pathogenesis and therapeutic aspects
verfasst von
Pan-Feng Wu
Ju-yu Tang
Kang-hua Li
Publikationsdatum
01.02.2015
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 2/2015
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-3094-y

Weitere Artikel der Ausgabe 2/2015

Tumor Biology 2/2015 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.