Skip to main content
Erschienen in: Neurotherapeutics 4/2013

01.10.2013 | Review

Epigenetics of Alzheimer’s Disease and Frontotemporal Dementia

verfasst von: Chendhore S. Veerappan, Sama Sleiman, Giovanni Coppola

Erschienen in: Neurotherapeutics | Ausgabe 4/2013

Einloggen, um Zugang zu erhalten

Abstract

This article will review the recent advances in the understanding of the role of epigenetic modifications and the promise of future epigenetic therapy in neurodegenerative dementias, including Alzheimer’s disease and frontotemporal dementia.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011;7:263–269.PubMed McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011;7:263–269.PubMed
2.
Zurück zum Zitat Ratnavalli E, Brayne C, Dawson K, Hodges JR. The prevalence of frontotemporal dementia. Neurology 2002;58:1615–1621.PubMed Ratnavalli E, Brayne C, Dawson K, Hodges JR. The prevalence of frontotemporal dementia. Neurology 2002;58:1615–1621.PubMed
3.
Zurück zum Zitat Rocca WA, Petersen RC, Knopman DS, et al. Trends in the incidence and prevalence of Alzheimer’s disease, dementia, and cognitive impairment in the United States. Alzheimers Dement 2011;7:80–93.PubMed Rocca WA, Petersen RC, Knopman DS, et al. Trends in the incidence and prevalence of Alzheimer’s disease, dementia, and cognitive impairment in the United States. Alzheimers Dement 2011;7:80–93.PubMed
4.
Zurück zum Zitat Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 2010;9:702–716.PubMed Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 2010;9:702–716.PubMed
5.
Zurück zum Zitat Boxer AL, Gold M, Huey E, et al. Frontotemporal degeneration, the next therapeutic frontier: Molecules and animal models for frontotemporal degeneration drug development. Alzheimers Dement 2012;9:188–176. Boxer AL, Gold M, Huey E, et al. Frontotemporal degeneration, the next therapeutic frontier: Molecules and animal models for frontotemporal degeneration drug development. Alzheimers Dement 2012;9:188–176.
6.
Zurück zum Zitat Klucken J, McLean PJ, Gomez-Tortosa E, Ingelsson M, Hyman BT. Neuritic alterations and neural system dysfunction in Alzheimer’s disease and dementia with Lewy bodies. Neurochem Res 2003;28:1683–1691.PubMed Klucken J, McLean PJ, Gomez-Tortosa E, Ingelsson M, Hyman BT. Neuritic alterations and neural system dysfunction in Alzheimer’s disease and dementia with Lewy bodies. Neurochem Res 2003;28:1683–1691.PubMed
7.
Zurück zum Zitat Vassar R. BACE1: the beta-secretase enzyme in Alzheimer’s disease. J Mol Neurosci 2004;23:105–114.PubMed Vassar R. BACE1: the beta-secretase enzyme in Alzheimer’s disease. J Mol Neurosci 2004;23:105–114.PubMed
8.
Zurück zum Zitat Xia W. Role of presenilin in gamma-secretase cleavage of amyloid precursor protein. Exp Gerontol 2000;35:453–460.PubMed Xia W. Role of presenilin in gamma-secretase cleavage of amyloid precursor protein. Exp Gerontol 2000;35:453–460.PubMed
9.
Zurück zum Zitat Bentahir M, Nyabi O, Verhamme J, et al. Presenilin clinical mutations can affect gamma-secretase activity by different mechanisms. J Neurochem 2006;96:732–742.PubMed Bentahir M, Nyabi O, Verhamme J, et al. Presenilin clinical mutations can affect gamma-secretase activity by different mechanisms. J Neurochem 2006;96:732–742.PubMed
10.
Zurück zum Zitat Findeis MA. The role of amyloid beta peptide 42 in Alzheimer’s disease. Pharmacol Ther 2007;116:266–286.PubMed Findeis MA. The role of amyloid beta peptide 42 in Alzheimer’s disease. Pharmacol Ther 2007;116:266–286.PubMed
11.
Zurück zum Zitat Niemitz E. TREM2 and Alzheimer’s disease. Nat Genet 2012;45:11–11. Niemitz E. TREM2 and Alzheimer’s disease. Nat Genet 2012;45:11–11.
12.
Zurück zum Zitat Van Der Flier WM, Pijnenburg YA, Fox NC, Scheltens P. Early-onset versus late-onset Alzheimer’s disease: the case of the missing APOE epsilon 4 allele. Lancet 2011;10:280–288 Van Der Flier WM, Pijnenburg YA, Fox NC, Scheltens P. Early-onset versus late-onset Alzheimer’s disease: the case of the missing APOE epsilon 4 allele. Lancet 2011;10:280–288
13.
Zurück zum Zitat Campion D, Dumanchin C, Hannequin D, et al. Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Genet 1999;65:664–670.PubMed Campion D, Dumanchin C, Hannequin D, et al. Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Genet 1999;65:664–670.PubMed
14.
Zurück zum Zitat Lambert J-C, Amouyel P. Genetic heterogeneity of Alzheimer’s disease: complexity and advances. Psychoneuroendocrinology 2007;32(Suppl. 1):S62-70.PubMed Lambert J-C, Amouyel P. Genetic heterogeneity of Alzheimer’s disease: complexity and advances. Psychoneuroendocrinology 2007;32(Suppl. 1):S62-70.PubMed
15.
Zurück zum Zitat Mayeux R, Stern Y, Spanton S. Heterogeneity in dementia of the Alzheimer type: Evidence of subgroups. Neurology 1985;35:453–453.PubMed Mayeux R, Stern Y, Spanton S. Heterogeneity in dementia of the Alzheimer type: Evidence of subgroups. Neurology 1985;35:453–453.PubMed
16.
Zurück zum Zitat Gold G, Blouin J-L, Herrmann FR, et al. Specific BACE1 genotypes provide additional risk for late-onset Alzheimer disease in APOE epsilon 4 carriers. Am J Med Genet B Neuropsychiatr Genet 2003;119B:44–47.PubMed Gold G, Blouin J-L, Herrmann FR, et al. Specific BACE1 genotypes provide additional risk for late-onset Alzheimer disease in APOE epsilon 4 carriers. Am J Med Genet B Neuropsychiatr Genet 2003;119B:44–47.PubMed
17.
Zurück zum Zitat Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology 2011;76:1006–1014.PubMed Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology 2011;76:1006–1014.PubMed
18.
Zurück zum Zitat Seelaar H, Rohrer JD, Pijnenburg YAL, Fox NC, Van Swieten JC. Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review. J Neurol Neurosurg Psychiatry 2011;82:476–486.PubMed Seelaar H, Rohrer JD, Pijnenburg YAL, Fox NC, Van Swieten JC. Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review. J Neurol Neurosurg Psychiatry 2011;82:476–486.PubMed
19.
Zurück zum Zitat Majounie E, Renton AE, Mok K, et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 2012;11:323–330.PubMed Majounie E, Renton AE, Mok K, et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 2012;11:323–330.PubMed
20.
Zurück zum Zitat Urwin H, Ghazi-Noori S, Collinge J, Isaacs A. The role of CHMP2B in frontotemporal dementia. Biochem Soc Trans 2009;37:208–212.PubMed Urwin H, Ghazi-Noori S, Collinge J, Isaacs A. The role of CHMP2B in frontotemporal dementia. Biochem Soc Trans 2009;37:208–212.PubMed
21.
Zurück zum Zitat Isaacs AM, Johannsen P, Holm I, Nielsen JE. Frontotemporal dementia caused by CHMP2B mutations. Curr Alzheimer Res 2011;8:246–251.PubMed Isaacs AM, Johannsen P, Holm I, Nielsen JE. Frontotemporal dementia caused by CHMP2B mutations. Curr Alzheimer Res 2011;8:246–251.PubMed
22.
Zurück zum Zitat Bettens K, Sleegers K, Van Broeckhoven C. Genetic insights in Alzheimer’s disease. Lancet Neurol 2013;12:92–104.PubMed Bettens K, Sleegers K, Van Broeckhoven C. Genetic insights in Alzheimer’s disease. Lancet Neurol 2013;12:92–104.PubMed
23.
Zurück zum Zitat Rademakers R, Mackenzie IRA. Recent advances in the molecular basis of frontotemporal dementia. Nat Rev Neurol 2013;8:423–434. Rademakers R, Mackenzie IRA. Recent advances in the molecular basis of frontotemporal dementia. Nat Rev Neurol 2013;8:423–434.
24.
Zurück zum Zitat Ambegaokar SS, Jackson GR. Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation. Hum Mol Genet 2011;20:4947–4977.PubMed Ambegaokar SS, Jackson GR. Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation. Hum Mol Genet 2011;20:4947–4977.PubMed
25.
Zurück zum Zitat Dupont C, Armant DR, Brenner CA. Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med 2009;27:351–357.PubMed Dupont C, Armant DR, Brenner CA. Epigenetics: definition, mechanisms and clinical perspective. Semin Reprod Med 2009;27:351–357.PubMed
26.
Zurück zum Zitat Griffith JS, Mahler HR. DNA Ticketing theory of memory. Nature 1969;223:580–582.PubMed Griffith JS, Mahler HR. DNA Ticketing theory of memory. Nature 1969;223:580–582.PubMed
27.
Zurück zum Zitat Kouzarides T. Chromatin modifications and their function. Cell 2007;128:693–705.PubMed Kouzarides T. Chromatin modifications and their function. Cell 2007;128:693–705.PubMed
28.
Zurück zum Zitat Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000;403:41–45.PubMed Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000;403:41–45.PubMed
29.
Zurück zum Zitat Rando OJ. Combinatorial complexity in chromatin structure and function: revisiting the histone code. Curr Opin Genet Develop 2012;22:148–155. Rando OJ. Combinatorial complexity in chromatin structure and function: revisiting the histone code. Curr Opin Genet Develop 2012;22:148–155.
30.
Zurück zum Zitat Tweedie-Cullen RY, Brunner AM, Grossmann J, et al. Identification of combinatorial patterns of post-translational modifications on individual histones in the mouse brain. PloS One 2012;7:e36980.PubMed Tweedie-Cullen RY, Brunner AM, Grossmann J, et al. Identification of combinatorial patterns of post-translational modifications on individual histones in the mouse brain. PloS One 2012;7:e36980.PubMed
31.
Zurück zum Zitat Costa FF. Non-coding RNAs, epigenetics and complexity. Gene 2008;410:9–17.PubMed Costa FF. Non-coding RNAs, epigenetics and complexity. Gene 2008;410:9–17.PubMed
32.
Zurück zum Zitat Champagne FA. Epigenetics and developmental plasticity across species. Develop Psychobiol 2013;55:33–41. Champagne FA. Epigenetics and developmental plasticity across species. Develop Psychobiol 2013;55:33–41.
33.
Zurück zum Zitat Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet 1999;21:163–167.PubMed Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet 1999;21:163–167.PubMed
34.
Zurück zum Zitat Rodenhiser D, Mann M. Epigenetics and human disease: translating basic biology into clinical applications. CMAJ 2006;174:341–348.PubMed Rodenhiser D, Mann M. Epigenetics and human disease: translating basic biology into clinical applications. CMAJ 2006;174:341–348.PubMed
35.
Zurück zum Zitat Liu L, Van Groen T, Kadish I, Tollefsbol TO. DNA methylation impacts on learning and memory in aging. Neurobiol Aging 2009;30:549–560.PubMed Liu L, Van Groen T, Kadish I, Tollefsbol TO. DNA methylation impacts on learning and memory in aging. Neurobiol Aging 2009;30:549–560.PubMed
36.
Zurück zum Zitat Peleg S, Sananbenesi F, Zovoilis A, et al. (2010). Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328:753–756.PubMed Peleg S, Sananbenesi F, Zovoilis A, et al. (2010). Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328:753–756.PubMed
37.
Zurück zum Zitat Rando TA. Epigenetics and aging. Exp Gerontol 2010;45:253–254.PubMed Rando TA. Epigenetics and aging. Exp Gerontol 2010;45:253–254.PubMed
38.
Zurück zum Zitat Alarcón JM, Malleret G, Touzani K, et al. Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 2004;42:947–959.PubMed Alarcón JM, Malleret G, Touzani K, et al. Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 2004;42:947–959.PubMed
39.
Zurück zum Zitat Jiang Y, Langley B, Lubin FD, et al. Epigenetics in the nervous system. J Neurosci 2008;28:11753–11759.PubMed Jiang Y, Langley B, Lubin FD, et al. Epigenetics in the nervous system. J Neurosci 2008;28:11753–11759.PubMed
40.
Zurück zum Zitat Levenson JM, Sweatt JD. Epigenetic mechanisms in memory formation. Nat Rev Neurosci 2005;6:108–118.PubMed Levenson JM, Sweatt JD. Epigenetic mechanisms in memory formation. Nat Rev Neurosci 2005;6:108–118.PubMed
41.
Zurück zum Zitat Hsieh J, Gage FH. Chromatin remodeling in neural development and plasticity. Curr Opin Cell Biol 2005;17:664–671.PubMed Hsieh J, Gage FH. Chromatin remodeling in neural development and plasticity. Curr Opin Cell Biol 2005;17:664–671.PubMed
42.
Zurück zum Zitat Hirabayashi Y, Gotoh Y. Epigenetic control of neural precursor cell fate during development. Nat Rev Neurosci 2010;11:377–388.PubMed Hirabayashi Y, Gotoh Y. Epigenetic control of neural precursor cell fate during development. Nat Rev Neurosci 2010;11:377–388.PubMed
43.
Zurück zum Zitat Numata S, Ye T, Hyde TM, et al. DNA methylation signatures in development and aging of the human prefrontal cortex. Am J Hum Genet 2012;90:260–272.PubMed Numata S, Ye T, Hyde TM, et al. DNA methylation signatures in development and aging of the human prefrontal cortex. Am J Hum Genet 2012;90:260–272.PubMed
44.
Zurück zum Zitat Siegmund KD, Connor CM, Campan M, et al. DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PloS One 2007;2:e895.PubMed Siegmund KD, Connor CM, Campan M, et al. DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PloS One 2007;2:e895.PubMed
45.
Zurück zum Zitat Szulwach KE, Li X, Li Y, et al. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci 2011;14:1607–1616.PubMed Szulwach KE, Li X, Li Y, et al. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci 2011;14:1607–1616.PubMed
46.
Zurück zum Zitat Peter CJ, Akbarian S. Balancing histone methylation activities in psychiatric disorders. Trends Mol Med 2011;17:372–379.PubMed Peter CJ, Akbarian S. Balancing histone methylation activities in psychiatric disorders. Trends Mol Med 2011;17:372–379.PubMed
47.
Zurück zum Zitat Tsankova N, Renthal W, Kumar A, Nestler EJ. Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 2007;8:355–367.PubMed Tsankova N, Renthal W, Kumar A, Nestler EJ. Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 2007;8:355–367.PubMed
48.
Zurück zum Zitat Clayton-Smith J, Watson P, Ramsden S, Black G. Somatic mutation in MECP2 as a non-fatal neurodevelopmental disorder in males. Lancet 2000;356:830–832.PubMed Clayton-Smith J, Watson P, Ramsden S, Black G. Somatic mutation in MECP2 as a non-fatal neurodevelopmental disorder in males. Lancet 2000;356:830–832.PubMed
49.
Zurück zum Zitat Meloni I, Bruttini M, Longo I, et al. A mutation in the rett syndrome gene, MECP2, causes X-linked mental retardation and progressive spasticity in males. Am J Hum Genet 2000;67:982–985.PubMed Meloni I, Bruttini M, Longo I, et al. A mutation in the rett syndrome gene, MECP2, causes X-linked mental retardation and progressive spasticity in males. Am J Hum Genet 2000;67:982–985.PubMed
50.
Zurück zum Zitat Klein CJ, Botuyan M-V, Wu Y, et al. Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat Genet 2011;43: 595–600.PubMed Klein CJ, Botuyan M-V, Wu Y, et al. Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat Genet 2011;43: 595–600.PubMed
51.
Zurück zum Zitat De Greef JC, Wang J, Balog J, et al. Mutations in ZBTB24 are associated with immunodeficiency, centromeric instability, and facial anomalies syndrome type 2. Am J Hum Genet 2011;88:796–804.PubMed De Greef JC, Wang J, Balog J, et al. Mutations in ZBTB24 are associated with immunodeficiency, centromeric instability, and facial anomalies syndrome type 2. Am J Hum Genet 2011;88:796–804.PubMed
52.
Zurück zum Zitat Xu GL, Bestor TH, Bourc’his D, et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 1999;402:187–191.PubMed Xu GL, Bestor TH, Bourc’his D, et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 1999;402:187–191.PubMed
53.
Zurück zum Zitat Covington HE, Maze I, Sun H, et al. A role for repressive histone methylation in cocaine-induced vulnerability to stress. Neuron 2011;71:656–670.PubMed Covington HE, Maze I, Sun H, et al. A role for repressive histone methylation in cocaine-induced vulnerability to stress. Neuron 2011;71:656–670.PubMed
54.
Zurück zum Zitat Lim DA, Huang Y-C, Swigut T, et al. Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature 2009;458:529–533.PubMed Lim DA, Huang Y-C, Swigut T, et al. Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature 2009;458:529–533.PubMed
55.
Zurück zum Zitat Pereira JD, Sansom SN, Smith J, Dobenecker M-W, Tarakhovsky A, Livesey FJ. Ezh2, the histone methyltransferase of PRC2, regulates the balance between self-renewal and differentiation in the cerebral cortex. Proc Natl Acad Sci U S A 2010;107:15957–15962.PubMed Pereira JD, Sansom SN, Smith J, Dobenecker M-W, Tarakhovsky A, Livesey FJ. Ezh2, the histone methyltransferase of PRC2, regulates the balance between self-renewal and differentiation in the cerebral cortex. Proc Natl Acad Sci U S A 2010;107:15957–15962.PubMed
56.
Zurück zum Zitat Adegbola A, Gao H, Sommer S, Browning M. A novel mutation in JARID1C/SMCX in a patient with autism spectrum disorder (ASD). Am J Med Genet A 2008;146A:505–511.PubMed Adegbola A, Gao H, Sommer S, Browning M. A novel mutation in JARID1C/SMCX in a patient with autism spectrum disorder (ASD). Am J Med Genet A 2008;146A:505–511.PubMed
57.
Zurück zum Zitat Burgold T, Spreafico F, De Santa F, et al. The histone H3 lysine 27-specific demethylase Jmjd3 is required for neural commitment. PloS One 2008;3:e3034.PubMed Burgold T, Spreafico F, De Santa F, et al. The histone H3 lysine 27-specific demethylase Jmjd3 is required for neural commitment. PloS One 2008;3:e3034.PubMed
58.
Zurück zum Zitat Tahiliani M, Mei P, Fang R, et al. The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. Nature 2007;447:601–605.PubMed Tahiliani M, Mei P, Fang R, et al. The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. Nature 2007;447:601–605.PubMed
59.
Zurück zum Zitat Gräff J, Tsai L-H. Histone acetylation: molecular mnemonics on the chromatin. Nat Rev Neurosci 2013;14:97–111.PubMed Gräff J, Tsai L-H. Histone acetylation: molecular mnemonics on the chromatin. Nat Rev Neurosci 2013;14:97–111.PubMed
60.
Zurück zum Zitat Qureshi IA, Mehler MF. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci 2012;13:528–541.PubMed Qureshi IA, Mehler MF. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci 2012;13:528–541.PubMed
61.
Zurück zum Zitat Niland CN, Merry CR, Khalil AM. Emerging roles forlong non-coding RNAs in cancer and neurological disorders. Front Genet 2012;3:25.PubMed Niland CN, Merry CR, Khalil AM. Emerging roles forlong non-coding RNAs in cancer and neurological disorders. Front Genet 2012;3:25.PubMed
62.
Zurück zum Zitat Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A 2008;105:716–721.PubMed Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A 2008;105:716–721.PubMed
63.
Zurück zum Zitat Spadaro PA, Bredy TW. Emerging role of non-coding RNA in neural plasticity, cognitive function, and neuropsychiatric disorders. Front Genet 2012;3:132.PubMed Spadaro PA, Bredy TW. Emerging role of non-coding RNA in neural plasticity, cognitive function, and neuropsychiatric disorders. Front Genet 2012;3:132.PubMed
64.
Zurück zum Zitat Ng S-Y, Lin L, Soh BS, Stanton LW. Long noncoding RNAs in development and disease of the central nervous system. Trends Genet 2013;29:461–468.PubMed Ng S-Y, Lin L, Soh BS, Stanton LW. Long noncoding RNAs in development and disease of the central nervous system. Trends Genet 2013;29:461–468.PubMed
65.
Zurück zum Zitat Telese F, Gamliel A, Skowronska-Krawczyk D, Garcia-Bassets I, Rosenfeld MG. “Seq-ing” insights into the epigenetics of neuronal gene regulation. Neuron 2013;77:606–623.PubMed Telese F, Gamliel A, Skowronska-Krawczyk D, Garcia-Bassets I, Rosenfeld MG. “Seq-ing” insights into the epigenetics of neuronal gene regulation. Neuron 2013;77:606–623.PubMed
66.
Zurück zum Zitat Tushir JS, Akbarian S. Chromatin-bound RNA and the neurobiology of psychiatric disease. Neuroscience 2013 Jul 3 [Epub ahead of print]. Tushir JS, Akbarian S. Chromatin-bound RNA and the neurobiology of psychiatric disease. Neuroscience 2013 Jul 3 [Epub ahead of print].
67.
Zurück zum Zitat Chan TA. Epigenetic therapy: use of agents targeting deacetylation and methylation in cancer management. Onco Targets Ther 2013;6:223–232.PubMed Chan TA. Epigenetic therapy: use of agents targeting deacetylation and methylation in cancer management. Onco Targets Ther 2013;6:223–232.PubMed
68.
Zurück zum Zitat Mack GS. To selectivity and beyond. Nat Biotechnol 2010;28:1259–1266.PubMed Mack GS. To selectivity and beyond. Nat Biotechnol 2010;28:1259–1266.PubMed
69.
Zurück zum Zitat Barrachina M, Ferrer I. DNA methylation of Alzheimer disease and tauopathy-related genes in postmortem brain. J Neuropathol Exp Neurol 2009;68:880–891.PubMed Barrachina M, Ferrer I. DNA methylation of Alzheimer disease and tauopathy-related genes in postmortem brain. J Neuropathol Exp Neurol 2009;68:880–891.PubMed
70.
Zurück zum Zitat Brohede J, Rinde M, Winblad B, Graff C. A DNA methylation study of the amyloid precursor protein gene in several brain regions from patients with familial Alzheimer disease. J Neurogenet 2010;24:179–181.PubMed Brohede J, Rinde M, Winblad B, Graff C. A DNA methylation study of the amyloid precursor protein gene in several brain regions from patients with familial Alzheimer disease. J Neurogenet 2010;24:179–181.PubMed
71.
Zurück zum Zitat Bakulski KM, Dolinoy DC, Sartor MA, et al. Genome-wide DNA methylation differences between late-onset Alzheimer’s disease and cognitively normal controls in human frontal cortex. J Alzheimers Dis 2012;29:571–588.PubMed Bakulski KM, Dolinoy DC, Sartor MA, et al. Genome-wide DNA methylation differences between late-onset Alzheimer’s disease and cognitively normal controls in human frontal cortex. J Alzheimers Dis 2012;29:571–588.PubMed
72.
Zurück zum Zitat Bollati V, Galimberti D, Pergoli L, et al. DNA methylation in repetitive elements and Alzheimer disease. Brain Behav Immun 2011;25:1078–1083.PubMed Bollati V, Galimberti D, Pergoli L, et al. DNA methylation in repetitive elements and Alzheimer disease. Brain Behav Immun 2011;25:1078–1083.PubMed
73.
Zurück zum Zitat Iwata N, Tsubuki S, Takaki Y, et al. Metabolic regulation of brain Abeta by neprilysin. Science 2001;292:1550–1552.PubMed Iwata N, Tsubuki S, Takaki Y, et al. Metabolic regulation of brain Abeta by neprilysin. Science 2001;292:1550–1552.PubMed
74.
Zurück zum Zitat Chen K-L, Wang SS-S, Yang Y-Y, Yuan R-Y, Chen R-M, Hu C-J. The epigenetic effects of amyloid-beta(1–40) on global DNA and neprilysin genes in murine cerebral endothelial cells. Biochem Biophys Res Commun 2009;378:57–61.PubMed Chen K-L, Wang SS-S, Yang Y-Y, Yuan R-Y, Chen R-M, Hu C-J. The epigenetic effects of amyloid-beta(1–40) on global DNA and neprilysin genes in murine cerebral endothelial cells. Biochem Biophys Res Commun 2009;378:57–61.PubMed
75.
Zurück zum Zitat Galimberti D, D’Addario C, Dell’osso B, et al. Progranulin gene (GRN) promoter methylation is increased in patients with sporadic frontotemporal lobar degeneration. Neurol Sci 2013;34:899–903.PubMed Galimberti D, D’Addario C, Dell’osso B, et al. Progranulin gene (GRN) promoter methylation is increased in patients with sporadic frontotemporal lobar degeneration. Neurol Sci 2013;34:899–903.PubMed
76.
Zurück zum Zitat Xi Z, Zinman L, Moreno D, Schymick J, et al. Hypermethylation of the CpG Island Near the G4C2 Repeat in ALS with a C9orf72 Expansion. Am J Hum Genet 2013 May 22 [Epub ahead of print]. Xi Z, Zinman L, Moreno D, Schymick J, et al. Hypermethylation of the CpG Island Near the G4C2 Repeat in ALS with a C9orf72 Expansion. Am J Hum Genet 2013 May 22 [Epub ahead of print].
77.
Zurück zum Zitat Chan A, Shea TB. Folate deprivation increases presenilin expression, gamma-secretase activity, and Abeta levels in murine brain: potentiation by ApoE deficiency and alleviation by dietary S-adenosyl methionine. J Neurochem 2007;102:753–760.PubMed Chan A, Shea TB. Folate deprivation increases presenilin expression, gamma-secretase activity, and Abeta levels in murine brain: potentiation by ApoE deficiency and alleviation by dietary S-adenosyl methionine. J Neurochem 2007;102:753–760.PubMed
78.
Zurück zum Zitat Fuso A, Seminara L, Cavallaro RA, D’Anselmi F, Scarpa S. S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Mol Cell Neurosci 2005;28:195–204.PubMed Fuso A, Seminara L, Cavallaro RA, D’Anselmi F, Scarpa S. S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Mol Cell Neurosci 2005;28:195–204.PubMed
79.
Zurück zum Zitat Fuso A, Nicolia V, Cavallaro RA, et al. B-vitamin deprivation induces hyperhomocysteinemia and brain S-adenosylhomocysteine, depletes brain S-adenosylmethionine, and enhances PS1 and BACE expression and amyloid-beta deposition in mice. Mol Cell Neurosci 2008;37:731–746.PubMed Fuso A, Nicolia V, Cavallaro RA, et al. B-vitamin deprivation induces hyperhomocysteinemia and brain S-adenosylhomocysteine, depletes brain S-adenosylmethionine, and enhances PS1 and BACE expression and amyloid-beta deposition in mice. Mol Cell Neurosci 2008;37:731–746.PubMed
80.
Zurück zum Zitat Lin H-C, Hsieh H-M, Chen Y-H, Hu M-L. S-Adenosylhomocysteine increases beta-amyloid formation in BV-2 microglial cells by increased expressions of beta-amyloid precursor protein and presenilin 1 and by hypomethylation of these gene promoters. Neurotoxicology 2009;30:622–627.PubMed Lin H-C, Hsieh H-M, Chen Y-H, Hu M-L. S-Adenosylhomocysteine increases beta-amyloid formation in BV-2 microglial cells by increased expressions of beta-amyloid precursor protein and presenilin 1 and by hypomethylation of these gene promoters. Neurotoxicology 2009;30:622–627.PubMed
81.
Zurück zum Zitat Scarpa S, Fuso A, D’Anselmi F, Cavallaro RA. Presenilin 1 gene silencing by S-adenosylmethionine: a treatment for Alzheimer disease? FEBS Lett 2003;541:145–148.PubMed Scarpa S, Fuso A, D’Anselmi F, Cavallaro RA. Presenilin 1 gene silencing by S-adenosylmethionine: a treatment for Alzheimer disease? FEBS Lett 2003;541:145–148.PubMed
82.
Zurück zum Zitat Bihaqi SW, Zawia NH. Alzheimer’s disease biomarkers and epigenetic intermediates following exposure to Pb in vitro. Curr Alzheimer Res 2012;9:555–562.PubMed Bihaqi SW, Zawia NH. Alzheimer’s disease biomarkers and epigenetic intermediates following exposure to Pb in vitro. Curr Alzheimer Res 2012;9:555–562.PubMed
83.
Zurück zum Zitat Li Y-Y, Chen T, Wan Y, Xu S. Lead exposure in pheochromocytoma cells induces persistent changes in amyloid precursor protein gene methylation patterns. Environ Toxicol 2012;27:495–502.PubMed Li Y-Y, Chen T, Wan Y, Xu S. Lead exposure in pheochromocytoma cells induces persistent changes in amyloid precursor protein gene methylation patterns. Environ Toxicol 2012;27:495–502.PubMed
84.
Zurück zum Zitat Guo X, Wu X, Ren L, Liu G, Li L. Epigenetic mechanisms of amyloid-β production in anisomycin-treated SH-SY5Y cells. Neuroscience 2011;194:272–281.PubMed Guo X, Wu X, Ren L, Liu G, Li L. Epigenetic mechanisms of amyloid-β production in anisomycin-treated SH-SY5Y cells. Neuroscience 2011;194:272–281.PubMed
85.
Zurück zum Zitat Rao JS, Keleshian VL, Klein S, Rapoport SI. Epigenetic modifications in frontal cortex from Alzheimer ’ s disease and bipolar disorder patients. Transl Psychiatry 2012;2:1–7. Rao JS, Keleshian VL, Klein S, Rapoport SI. Epigenetic modifications in frontal cortex from Alzheimer ’ s disease and bipolar disorder patients. Transl Psychiatry 2012;2:1–7.
86.
Zurück zum Zitat Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009;324:930–935.PubMed Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009;324:930–935.PubMed
87.
Zurück zum Zitat Mastroeni D, McKee A, Grover A, Rogers J, Coleman PD. Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer’s disease. PloS One 2009;4:e6617.PubMed Mastroeni D, McKee A, Grover A, Rogers J, Coleman PD. Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer’s disease. PloS One 2009;4:e6617.PubMed
88.
Zurück zum Zitat Sandi C, Al-Mahdawi S, Pook MA. Epigenetics in Friedreich’s ataxia: challenges and opportunities for therapy. Genet Res Int 2013;852080. Sandi C, Al-Mahdawi S, Pook MA. Epigenetics in Friedreich’s ataxia: challenges and opportunities for therapy. Genet Res Int 2013;852080.
89.
Zurück zum Zitat Chiurazzi P, Pomponi MG, Willemsen R, Oostra BA, Neri G. In vitro reactivation of the FMR1 gene involved in fragile X syndrome. Hum Mol Genet 1998;7:109–113.PubMed Chiurazzi P, Pomponi MG, Willemsen R, Oostra BA, Neri G. In vitro reactivation of the FMR1 gene involved in fragile X syndrome. Hum Mol Genet 1998;7:109–113.PubMed
90.
Zurück zum Zitat Chiurazzi P, Grazia Pomponi M, Pietrobono R, Bakker CE, Neri G, Oostra BA. Synergistic effect of histone hyperacetylation and DNA demethylation in the reactivation of the FMR1 gene. Hum Mol Genet 1999;8:2317–2323.PubMed Chiurazzi P, Grazia Pomponi M, Pietrobono R, Bakker CE, Neri G, Oostra BA. Synergistic effect of histone hyperacetylation and DNA demethylation in the reactivation of the FMR1 gene. Hum Mol Genet 1999;8:2317–2323.PubMed
91.
Zurück zum Zitat Rice JC, Briggs SD, Ueberheide B, et al. Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell 2003;12:1591–1598.PubMed Rice JC, Briggs SD, Ueberheide B, et al. Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell 2003;12:1591–1598.PubMed
92.
Zurück zum Zitat Gräff J, Tsai L-H. The potential of HDAC inhibitors as cognitive enhancers. Annu Rev Pharmacol Toxicol 2013;53:311–330.PubMed Gräff J, Tsai L-H. The potential of HDAC inhibitors as cognitive enhancers. Annu Rev Pharmacol Toxicol 2013;53:311–330.PubMed
93.
Zurück zum Zitat Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 2009;10:32–42.PubMed Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 2009;10:32–42.PubMed
94.
Zurück zum Zitat Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Develop 1998;12:599–606.PubMed Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Develop 1998;12:599–606.PubMed
95.
Zurück zum Zitat Kubicek S, Gilbert JC, Fomina-Yadlin D, et al. Chromatin-targeting small molecules cause class-specific transcriptional changes in pancreatic endocrine cells. Proce Natl Acad Sci U S A 2012;109:5364–5369. Kubicek S, Gilbert JC, Fomina-Yadlin D, et al. Chromatin-targeting small molecules cause class-specific transcriptional changes in pancreatic endocrine cells. Proce Natl Acad Sci U S A 2012;109:5364–5369.
96.
Zurück zum Zitat Koolen DA, Kramer JM, Neveling K, et al. Mutations in the chromatin modifier gene KANSL1 cause the 17q21.31 microdeletion syndrome. Nat Genet 2012;44:639–641.PubMed Koolen DA, Kramer JM, Neveling K, et al. Mutations in the chromatin modifier gene KANSL1 cause the 17q21.31 microdeletion syndrome. Nat Genet 2012;44:639–641.PubMed
97.
Zurück zum Zitat Kerimoglu C, Agis-Balboa RC, Kranz A, et al. Histone-methyltransferase MLL2 (KMT2B) is required for memory formation in mice. J Neurosci  2013;33:3452–3464.PubMed Kerimoglu C, Agis-Balboa RC, Kranz A, et al. Histone-methyltransferase MLL2 (KMT2B) is required for memory formation in mice. J Neurosci  2013;33:3452–3464.PubMed
98.
Zurück zum Zitat Korzus E, Rosenfeld MG, Mayford M. CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 2004;42:961–972.PubMed Korzus E, Rosenfeld MG, Mayford M. CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 2004;42:961–972.PubMed
99.
Zurück zum Zitat Broide RS, Redwine JM, Aftahi N, Young W, Bloom FE, Winrow CJ. Distribution of histone deacetylases 1–11 in the rat brain. J Mol Neurosci 2007;31:47–58.PubMed Broide RS, Redwine JM, Aftahi N, Young W, Bloom FE, Winrow CJ. Distribution of histone deacetylases 1–11 in the rat brain. J Mol Neurosci 2007;31:47–58.PubMed
100.
Zurück zum Zitat McQuown SC, Barrett RM, Matheos DP, et al. HDAC3 is a critical negative regulator of long-term memory formation. J Neurosci 2011;31:764–774.PubMed McQuown SC, Barrett RM, Matheos DP, et al. HDAC3 is a critical negative regulator of long-term memory formation. J Neurosci 2011;31:764–774.PubMed
101.
Zurück zum Zitat Nelson ED, Bal M, Kavalali ET, Monteggia LM. Selective impact of MeCP2 and associated histone deacetylases on the dynamics of evoked excitatory neurotransmission. J Neurophysiol 2011;106:193–201.PubMed Nelson ED, Bal M, Kavalali ET, Monteggia LM. Selective impact of MeCP2 and associated histone deacetylases on the dynamics of evoked excitatory neurotransmission. J Neurophysiol 2011;106:193–201.PubMed
102.
Zurück zum Zitat Guan J-S, Haggarty SJ, Giacometti E, et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 2009;459:55–60.PubMed Guan J-S, Haggarty SJ, Giacometti E, et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 2009;459:55–60.PubMed
103.
Zurück zum Zitat Levenson JM, O’Riordan KJ, Brown KD, Trinh MA, Molfese DL, Sweatt JD. Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem 2004;279:40545–40559.PubMed Levenson JM, O’Riordan KJ, Brown KD, Trinh MA, Molfese DL, Sweatt JD. Regulation of histone acetylation during memory formation in the hippocampus. J Biol Chem 2004;279:40545–40559.PubMed
104.
Zurück zum Zitat Gräff J, Rei D, Guan J-S, et al. An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 2012;483:222–226.PubMed Gräff J, Rei D, Guan J-S, et al. An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 2012;483:222–226.PubMed
105.
Zurück zum Zitat Haggarty SJ, Tsai L-H. Probing the role of HDACs and mechanisms of chromatin-mediated neuroplasticity. Neurobiol Learn Mem 2011;96:41–52.PubMed Haggarty SJ, Tsai L-H. Probing the role of HDACs and mechanisms of chromatin-mediated neuroplasticity. Neurobiol Learn Mem 2011;96:41–52.PubMed
106.
Zurück zum Zitat Ding H, Dolan PJ, Johnson GVW. Histone deacetylase 6 interacts with the microtubule-associated protein tau. J Neurochem 2008;106:2119–2130.PubMed Ding H, Dolan PJ, Johnson GVW. Histone deacetylase 6 interacts with the microtubule-associated protein tau. J Neurochem 2008;106:2119–2130.PubMed
107.
Zurück zum Zitat Govindarajan N, Rao P, Burkhardt S, et al. Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer’s disease. EMBO Mol Med 2013;5:52–63.PubMed Govindarajan N, Rao P, Burkhardt S, et al. Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer’s disease. EMBO Mol Med 2013;5:52–63.PubMed
108.
Zurück zum Zitat Kim M-S, Akhtar MW, Adachi M, et al. An essential role for histone deacetylase 4 in synaptic plasticity and memory formation. J Neurosci 2012;32: 10879–10886.PubMed Kim M-S, Akhtar MW, Adachi M, et al. An essential role for histone deacetylase 4 in synaptic plasticity and memory formation. J Neurosci 2012;32: 10879–10886.PubMed
109.
Zurück zum Zitat Harrison IF, Dexter DT. Epigenetic targeting of histone deacetylase: Therapeutic potential in Parkinson’s disease? Pharmacol Ther 2013 May 24 [Epub ahead of print]. Harrison IF, Dexter DT. Epigenetic targeting of histone deacetylase: Therapeutic potential in Parkinson’s disease? Pharmacol Ther 2013 May 24 [Epub ahead of print].
110.
Zurück zum Zitat Bradner JE, West N, Grachan ML, et al. Chemical phylogenetics of histone deacetylases. Nat Chem Biol 2010;6:238–243.PubMed Bradner JE, West N, Grachan ML, et al. Chemical phylogenetics of histone deacetylases. Nat Chem Biol 2010;6:238–243.PubMed
111.
Zurück zum Zitat Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai L-H. Recovery of learning and memory is associated with chromatin remodelling. Nature 2007;447:178–182.PubMed Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai L-H. Recovery of learning and memory is associated with chromatin remodelling. Nature 2007;447:178–182.PubMed
112.
Zurück zum Zitat Morris MJ, Mahgoub M, Na ES, Pranav H, Monteggia LM. Loss of histone deacetylase 2 improves working memory and accelerates extinction learning. J Neurosci 2013;33:6401–6411.PubMed Morris MJ, Mahgoub M, Na ES, Pranav H, Monteggia LM. Loss of histone deacetylase 2 improves working memory and accelerates extinction learning. J Neurosci 2013;33:6401–6411.PubMed
113.
Zurück zum Zitat Kim D, Frank CL, Dobbin MM, et al. Deregulation of HDAC1 by p25/Cdk5 in neurotoxicity. Neuron 2008;60:803–817.PubMed Kim D, Frank CL, Dobbin MM, et al. Deregulation of HDAC1 by p25/Cdk5 in neurotoxicity. Neuron 2008;60:803–817.PubMed
114.
Zurück zum Zitat Cenik B, Sephton CF, Dewey CM, et al. Suberoylanilide hydroxamic acid (vorinostat) up-regulates progranulin transcription: rational therapeutic approach to frontotemporal dementia. J Biol Chem 2011;286:16101–16108.PubMed Cenik B, Sephton CF, Dewey CM, et al. Suberoylanilide hydroxamic acid (vorinostat) up-regulates progranulin transcription: rational therapeutic approach to frontotemporal dementia. J Biol Chem 2011;286:16101–16108.PubMed
115.
Zurück zum Zitat Min S-W, Cho S-H, Zhou Y, et al. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 2010;67:953–966.PubMed Min S-W, Cho S-H, Zhou Y, et al. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 2010;67:953–966.PubMed
116.
Zurück zum Zitat Krichevsky AM, Sonntag K-C, Isacson O, Kosik KS. Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 2006;24:857–864.PubMed Krichevsky AM, Sonntag K-C, Isacson O, Kosik KS. Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 2006;24:857–864.PubMed
117.
Zurück zum Zitat De Pietri Tonelli D, Pulvers JN, Haffner C, Murchison EP, Hannon GJ, Huttner WB. miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 2008;135:3911–3921PubMed De Pietri Tonelli D, Pulvers JN, Haffner C, Murchison EP, Hannon GJ, Huttner WB. miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 2008;135:3911–3921PubMed
118.
Zurück zum Zitat Coppedè F. Advances in the Genetics and Epigenetics of Neurodegenerative Diseases. Epigenet Neurodegener Dis 2013;1:2–30. Coppedè F. Advances in the Genetics and Epigenetics of Neurodegenerative Diseases. Epigenet Neurodegener Dis 2013;1:2–30.
119.
Zurück zum Zitat Hébert SS, Papadopoulou AS, Smith P, et al. Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Hum Mol Genet 2010;19:3959–3969.PubMed Hébert SS, Papadopoulou AS, Smith P, et al. Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Hum Mol Genet 2010;19:3959–3969.PubMed
120.
Zurück zum Zitat Cogswell JP, Ward J, Taylor IA, et al. Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 2008;14:27–41.PubMed Cogswell JP, Ward J, Taylor IA, et al. Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis 2008;14:27–41.PubMed
121.
Zurück zum Zitat Julien C, Tremblay C, Emond V, et al. Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol 2009;68:48–58.PubMed Julien C, Tremblay C, Emond V, et al. Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol 2009;68:48–58.PubMed
122.
Zurück zum Zitat Renoux AJ, Todd PK. Neurodegeneration the RNA way. Prog Neurobiol 2012;97:173–189.PubMed Renoux AJ, Todd PK. Neurodegeneration the RNA way. Prog Neurobiol 2012;97:173–189.PubMed
123.
Zurück zum Zitat Tan L, Yu J-T, Hu N, Tan L. Non-coding RNAs in Alzheimer’s disease. Mol Neurobiol 2013;47:382–393.PubMed Tan L, Yu J-T, Hu N, Tan L. Non-coding RNAs in Alzheimer’s disease. Mol Neurobiol 2013;47:382–393.PubMed
124.
Zurück zum Zitat Hébert SS, Horré K, Nicolaï L, et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A 2008;105:6415–6420.PubMed Hébert SS, Horré K, Nicolaï L, et al. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci U S A 2008;105:6415–6420.PubMed
125.
Zurück zum Zitat Yao J, Hennessey T, Flynt A, Lai E, Beal MF, Lin MT. MicroRNA-related cofilin abnormality in Alzheimer’s disease. PloS One 2010;5:e15546.PubMed Yao J, Hennessey T, Flynt A, Lai E, Beal MF, Lin MT. MicroRNA-related cofilin abnormality in Alzheimer’s disease. PloS One 2010;5:e15546.PubMed
126.
Zurück zum Zitat Boissonneault V, Plante I, Rivest S, Provost P. MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. J Biol Chem 2009;284:1971–1981.PubMed Boissonneault V, Plante I, Rivest S, Provost P. MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. J Biol Chem 2009;284:1971–1981.PubMed
127.
Zurück zum Zitat Wang W-X, Rajeev BW, Stromberg AJ, et al. The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 2008;28:1213–1223.PubMed Wang W-X, Rajeev BW, Stromberg AJ, et al. The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 2008;28:1213–1223.PubMed
128.
Zurück zum Zitat Hébert SS, Horré K, Nicolaï L, et al. MicroRNA regulation of Alzheimer’s Amyloid precursor protein expression. Neurobiol Dis 2009;33:422–428.PubMed Hébert SS, Horré K, Nicolaï L, et al. MicroRNA regulation of Alzheimer’s Amyloid precursor protein expression. Neurobiol Dis 2009;33:422–428.PubMed
129.
Zurück zum Zitat Long JM, Lahiri DK. MicroRNA-101 downregulates Alzheimer’s amyloid-β precursor protein levels in human cell cultures and is differentially expressed. Biochem Biophys Res Commun 2011;404:889–895.PubMed Long JM, Lahiri DK. MicroRNA-101 downregulates Alzheimer’s amyloid-β precursor protein levels in human cell cultures and is differentially expressed. Biochem Biophys Res Commun 2011;404:889–895.PubMed
130.
Zurück zum Zitat Faghihi MA, Modarresi F, Khalil AM, et al. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat Med 2008;14:723–730.PubMed Faghihi MA, Modarresi F, Khalil AM, et al. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat Med 2008;14:723–730.PubMed
131.
Zurück zum Zitat Saxena A, Carninci P. Long non-coding RNA modifies chromatin: epigenetic silencing by long non-coding RNAs. Bioessays  2011;33:830–839.PubMed Saxena A, Carninci P. Long non-coding RNA modifies chromatin: epigenetic silencing by long non-coding RNAs. Bioessays  2011;33:830–839.PubMed
132.
Zurück zum Zitat Fang M, Wang J, Zhang X, et al. The miR-124 regulates the expression of BACE1/β-secretase correlated with cell death in Alzheimer’s disease. Toxicol Lett 2012;209:94–105.PubMed Fang M, Wang J, Zhang X, et al. The miR-124 regulates the expression of BACE1/β-secretase correlated with cell death in Alzheimer’s disease. Toxicol Lett 2012;209:94–105.PubMed
133.
Zurück zum Zitat Perry MM, Williams AE, Tsitsiou E, Larner-Svensson HM, Lindsay MA. Divergent intracellular pathways regulate interleukin-1beta-induced miR-146a and miR-146b expression and chemokine release in human alveolar epithelial cells. FEBS Lett 2009;583:3349–3355.PubMed Perry MM, Williams AE, Tsitsiou E, Larner-Svensson HM, Lindsay MA. Divergent intracellular pathways regulate interleukin-1beta-induced miR-146a and miR-146b expression and chemokine release in human alveolar epithelial cells. FEBS Lett 2009;583:3349–3355.PubMed
134.
Zurück zum Zitat Taganov KD, Boldin MP, Chang K-J, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 2006;103:12481–12486.PubMed Taganov KD, Boldin MP, Chang K-J, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 2006;103:12481–12486.PubMed
135.
Zurück zum Zitat Tollervey JR, Curk T, Rogelj B, et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci 2011;14:452–458.PubMed Tollervey JR, Curk T, Rogelj B, et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci 2011;14:452–458.PubMed
136.
Zurück zum Zitat Kawahara Y, Mieda-Sato A. TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proc Natl Acad Sci U S A 2012;109:3347–3352.PubMed Kawahara Y, Mieda-Sato A. TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proc Natl Acad Sci U S A 2012;109:3347–3352.PubMed
137.
Zurück zum Zitat Lai CP-K, Breakefield XO. Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol 2012;3:228.PubMed Lai CP-K, Breakefield XO. Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol 2012;3:228.PubMed
138.
Zurück zum Zitat Modarresi F, Faghihi MA, Lopez-Toledano MA, et al. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat Biotechnol 2012;30:453–459.PubMed Modarresi F, Faghihi MA, Lopez-Toledano MA, et al. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat Biotechnol 2012;30:453–459.PubMed
139.
Zurück zum Zitat Pardridge WM. The blood–brain barrier: bottleneck in brain drug development. NeuroRx 2005;2:3–14.PubMed Pardridge WM. The blood–brain barrier: bottleneck in brain drug development. NeuroRx 2005;2:3–14.PubMed
140.
Zurück zum Zitat Hockly E, Richon VM, Woodman B, et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc Natl Acad Sci U S A 2003;100:2041–2046.PubMed Hockly E, Richon VM, Woodman B, et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc Natl Acad Sci U S A 2003;100:2041–2046.PubMed
141.
Zurück zum Zitat Kwa FAA, Balcerczyk A, Licciardi P, El-Osta A, Karagiannis TC. Chromatin modifying agents - the cutting edge of anticancer therapy. Drug Discov Today 2011;16:543–547.PubMed Kwa FAA, Balcerczyk A, Licciardi P, El-Osta A, Karagiannis TC. Chromatin modifying agents - the cutting edge of anticancer therapy. Drug Discov Today 2011;16:543–547.PubMed
142.
Zurück zum Zitat Rai M, Soragni E, Jenssen K, et al. HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PloS One 2008;3:e1958.PubMed Rai M, Soragni E, Jenssen K, et al. HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PloS One 2008;3:e1958.PubMed
143.
Zurück zum Zitat Cuadrado-Tejedor M, Oyarzabal J, Lucas MP, Franco R, García-Osta A. Epigenetic drugs in Alzheimer’s disease. BioMolecular Concepts 2013 Jul 27 [Epub ahead of print]. Cuadrado-Tejedor M, Oyarzabal J, Lucas MP, Franco R, García-Osta A. Epigenetic drugs in Alzheimer’s disease. BioMolecular Concepts 2013 Jul 27 [Epub ahead of print].
144.
Zurück zum Zitat Martinet N, Michel BY, Bertrand P, Benhida R. Small molecules DNA methyltransferases inhibitors. Med Chem Comm 2011;3:263. Martinet N, Michel BY, Bertrand P, Benhida R. Small molecules DNA methyltransferases inhibitors. Med Chem Comm 2011;3:263.
145.
Zurück zum Zitat Subramanian S, Bates SE, Wright JJ, Espinoza-Delgado I, Piekarz RL. Clinical toxicities of histone deacetylase inhibitors. Pharmaceuticals 2010;3:2751–2767. Subramanian S, Bates SE, Wright JJ, Espinoza-Delgado I, Piekarz RL. Clinical toxicities of histone deacetylase inhibitors. Pharmaceuticals 2010;3:2751–2767.
146.
Zurück zum Zitat Petruccelli LA, Dupéré-Richer D, Pettersson F, Retrouvey H, Skoulikas S, Miller WH. Vorinostat induces reactive oxygen species and DNA damage in acute myeloid leukemia cells. PloS One 2011;6:e20987.PubMed Petruccelli LA, Dupéré-Richer D, Pettersson F, Retrouvey H, Skoulikas S, Miller WH. Vorinostat induces reactive oxygen species and DNA damage in acute myeloid leukemia cells. PloS One 2011;6:e20987.PubMed
147.
Zurück zum Zitat Alzoubi KH, Khabour OF, Jaber AG, Al-Azzam SI, Mhaidat NM, Masadeh MM. Tempol prevents genotoxicity induced by vorinostat: role of oxidative DNA damage. Cytotechnology 2013 Jun 13 [Epub ahead of print]. Alzoubi KH, Khabour OF, Jaber AG, Al-Azzam SI, Mhaidat NM, Masadeh MM. Tempol prevents genotoxicity induced by vorinostat: role of oxidative DNA damage. Cytotechnology 2013 Jun 13 [Epub ahead of print].
148.
Zurück zum Zitat Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 2001;47:65–81.PubMed Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 2001;47:65–81.PubMed
149.
Zurück zum Zitat Kumar P, Wu H, McBride JL, et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature 2007;448:39–43.PubMed Kumar P, Wu H, McBride JL, et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature 2007;448:39–43.PubMed
150.
Zurück zum Zitat Pardridge WM. Intravenous, non-viral RNAi gene therapy of brain cancer. Exp Opin Biol Ther 2004;4:1103–1113. Pardridge WM. Intravenous, non-viral RNAi gene therapy of brain cancer. Exp Opin Biol Ther 2004;4:1103–1113.
151.
Zurück zum Zitat Masserini M. Nanoparticles for brain drug delivery. ISRN Biochemistry 2013; 1–18. Masserini M. Nanoparticles for brain drug delivery. ISRN Biochemistry 2013; 1–18.
152.
Zurück zum Zitat Pastori C, Wahlestedt C. Involvement of long noncoding RNAs in diseases affecting the central nervous system. RNA Biology 2012;9:860–870.PubMed Pastori C, Wahlestedt C. Involvement of long noncoding RNAs in diseases affecting the central nervous system. RNA Biology 2012;9:860–870.PubMed
153.
Zurück zum Zitat Miller CP, Singh MM, Rivera-Del Valle N, Manton CA, Chandra J. Therapeutic strategies to enhance the anticancer efficacy of histone deacetylase inhibitors. J Biomed Biotechnol 2011;514261. Miller CP, Singh MM, Rivera-Del Valle N, Manton CA, Chandra J. Therapeutic strategies to enhance the anticancer efficacy of histone deacetylase inhibitors. J Biomed Biotechnol 2011;514261.
154.
Zurück zum Zitat Bohacek J, Mansuy IM. Epigenetic inheritance of disease and disease risk. Neuropsychopharmacology 2013;38:220–236.PubMed Bohacek J, Mansuy IM. Epigenetic inheritance of disease and disease risk. Neuropsychopharmacology 2013;38:220–236.PubMed
155.
Zurück zum Zitat Hackett JA, Sengupta R, Zylicz JJ, et al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 2013;339:448–452.PubMed Hackett JA, Sengupta R, Zylicz JJ, et al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 2013;339:448–452.PubMed
Metadaten
Titel
Epigenetics of Alzheimer’s Disease and Frontotemporal Dementia
verfasst von
Chendhore S. Veerappan
Sama Sleiman
Giovanni Coppola
Publikationsdatum
01.10.2013
Verlag
Springer US
Erschienen in
Neurotherapeutics / Ausgabe 4/2013
Print ISSN: 1933-7213
Elektronische ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-013-0219-0

Weitere Artikel der Ausgabe 4/2013

Neurotherapeutics 4/2013 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.