Skip to main content
Erschienen in: Neurotherapeutics 3/2015

01.07.2015 | Review

Phelan–McDermid Syndrome and SHANK3: Implications for Treatment

verfasst von: Jesse L. Costales, Alexander Kolevzon

Erschienen in: Neurotherapeutics | Ausgabe 3/2015

Einloggen, um Zugang zu erhalten

Abstract

Phelan–McDermid syndrome (PMS), also called 22q13.3 deletion syndrome, is a neurodevelopmental disorder characterized by global developmental delay, intellectual disability, severe speech delays, poor motor tone and function, and autism spectrum disorder (ASD). Although the overall prevalence of PMS is unknown, there have been at least 1200 cases reported worldwide, according to the Phelan–McDermid Syndrome Foundation. PMS is now considered to be a relatively common cause of ASD and intellectual disability, accounting for between 0.5 % and 2.0 % of cases. The cause of PMS has been isolated to loss of function of one copy of SHANK3, which codes for a master scaffolding protein found in the postsynaptic density of excitatory synapses. Reduced expression of SH3 and multiple ankyrin repeat domains 3 (SHANK3) leads to reduced numbers of dendrites, and impaired synaptic transmission and plasticity. Recent mouse and human neuronal models of PMS have led to important opportunities to develop novel therapeutics, and at least 2 clinical trials are underway, one in the USA, and one in the Netherlands. The SHANK3 pathway may also be relevant to other forms of ASD, and many of the single-gene causes of ASD identified to date appear to converge on several common molecular pathways that underlie synaptic neurotransmission. As a result, treatments developed for PMS may also affect other forms of ASD.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Watt JL, Olson IA, Johnston AW, Ross HS, Couzin DA, Stephen GS. A familial pericentric inversion of chromosome 22 with a recombinant subject illustrating a ‘pure’ partial monosomy syndrome. J Med Genet 1985;22:283–287.PubMedCentralPubMed Watt JL, Olson IA, Johnston AW, Ross HS, Couzin DA, Stephen GS. A familial pericentric inversion of chromosome 22 with a recombinant subject illustrating a ‘pure’ partial monosomy syndrome. J Med Genet 1985;22:283–287.PubMedCentralPubMed
2.
Zurück zum Zitat Anderlid BM, Schoumans J, Anneren G, et al. FISH-mapping of a 100-kb terminal 22q13 deletion. Hum Genet 2002;110:439–443.PubMed Anderlid BM, Schoumans J, Anneren G, et al. FISH-mapping of a 100-kb terminal 22q13 deletion. Hum Genet 2002;110:439–443.PubMed
3.
Zurück zum Zitat Dunham I, Shimizu N, Roe BA, et al. The DNA sequence of human chromosome 22. Nature 1999;402:489–495.PubMed Dunham I, Shimizu N, Roe BA, et al. The DNA sequence of human chromosome 22. Nature 1999;402:489–495.PubMed
4.
Zurück zum Zitat Florke S, Phi-van L, Muller-Esterl W, Scheuber HP, Engel W. Acrosin in the spermiohistogenesis of mammals. Differentiation 1983;24:250–256.PubMed Florke S, Phi-van L, Muller-Esterl W, Scheuber HP, Engel W. Acrosin in the spermiohistogenesis of mammals. Differentiation 1983;24:250–256.PubMed
5.
Zurück zum Zitat Kramer M, Backhaus O, Rosenstiel P, et al. Analysis of relative gene dosage and expression differences of the paralogs RABL2A and RABL2B by pyrosequencing. Gene 2010;455:1–7.PubMed Kramer M, Backhaus O, Rosenstiel P, et al. Analysis of relative gene dosage and expression differences of the paralogs RABL2A and RABL2B by pyrosequencing. Gene 2010;455:1–7.PubMed
6.
Zurück zum Zitat Boeckers TM, Winter C, Smalla KH, et al. Proline-rich synapse-associated proteins ProSAP1 and ProSAP2 interact with synaptic proteins of the SAPAP/GKAP family. Biochem Biophys Res Commun 1999;264:247–252.PubMed Boeckers TM, Winter C, Smalla KH, et al. Proline-rich synapse-associated proteins ProSAP1 and ProSAP2 interact with synaptic proteins of the SAPAP/GKAP family. Biochem Biophys Res Commun 1999;264:247–252.PubMed
7.
Zurück zum Zitat Naisbitt S, Kim E, Tu JC, et al. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 1999;23:569–582.PubMed Naisbitt S, Kim E, Tu JC, et al. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 1999;23:569–582.PubMed
8.
Zurück zum Zitat Bonaglia MC, Giorda R, Borgatti R, et al. Disruption of the ProSAP2 gene in a t(12;22)(q24.1;q13.3) is associated with the 22q13.3 deletion syndrome. Am J Hum Genet 2001;69:261–268.PubMedCentralPubMed Bonaglia MC, Giorda R, Borgatti R, et al. Disruption of the ProSAP2 gene in a t(12;22)(q24.1;q13.3) is associated with the 22q13.3 deletion syndrome. Am J Hum Genet 2001;69:261–268.PubMedCentralPubMed
9.
Zurück zum Zitat Wilson HL, Wong AC, Shaw SR, et al. Molecular characterisation of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms. J Med Genet 2003;40:575–584.PubMedCentralPubMed Wilson HL, Wong AC, Shaw SR, et al. Molecular characterisation of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms. J Med Genet 2003;40:575–584.PubMedCentralPubMed
10.
Zurück zum Zitat Soorya L, Kolevzon A, Zweifach J, et al. Prospective investigation of autism and genotype-phenotype correlations in 22q13 deletion syndrome and SHANK3 deficiency. Mol Autism 2013;4:18.PubMedCentralPubMed Soorya L, Kolevzon A, Zweifach J, et al. Prospective investigation of autism and genotype-phenotype correlations in 22q13 deletion syndrome and SHANK3 deficiency. Mol Autism 2013;4:18.PubMedCentralPubMed
11.
Zurück zum Zitat Durand CM, Betancur C, Boeckers TM, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 2007;39:25–27.PubMedCentralPubMed Durand CM, Betancur C, Boeckers TM, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 2007;39:25–27.PubMedCentralPubMed
12.
Zurück zum Zitat Moessner R, Marshall CR, Sutcliffe JS, et al. Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet 2007;81:1289–1297.PubMedCentralPubMed Moessner R, Marshall CR, Sutcliffe JS, et al. Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet 2007;81:1289–1297.PubMedCentralPubMed
13.
Zurück zum Zitat Gauthier J, Spiegelman D, Piton A, et al. Novel de novo SHANK3 mutation in autistic patients. Am J Med Genet B Neuropsychiatr Genet 2009;150B:421–424.PubMed Gauthier J, Spiegelman D, Piton A, et al. Novel de novo SHANK3 mutation in autistic patients. Am J Med Genet B Neuropsychiatr Genet 2009;150B:421–424.PubMed
14.
Zurück zum Zitat Boccuto L, Lauri M, Sarasua SM, et al. Prevalence of SHANK3 variants in patients with different subtypes of autism spectrum disorders. Eur J Hum Genet 2013;21:310–316.PubMedCentralPubMed Boccuto L, Lauri M, Sarasua SM, et al. Prevalence of SHANK3 variants in patients with different subtypes of autism spectrum disorders. Eur J Hum Genet 2013;21:310–316.PubMedCentralPubMed
15.
Zurück zum Zitat Aghajanian GK, Bloom FE. The formation of synaptic junctions in developing rat brain: a quantitative electron microscopic study. Brain Res 1967;6:716–727.PubMed Aghajanian GK, Bloom FE. The formation of synaptic junctions in developing rat brain: a quantitative electron microscopic study. Brain Res 1967;6:716–727.PubMed
16.
Zurück zum Zitat Uchino S, Wada H, Honda S, et al. Direct interaction of post-synaptic density-95/Dlg/ZO-1 domain-containing synaptic molecule Shank3 with GluR1 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor. J Neurochem 2006;97:1203–1214.PubMed Uchino S, Wada H, Honda S, et al. Direct interaction of post-synaptic density-95/Dlg/ZO-1 domain-containing synaptic molecule Shank3 with GluR1 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor. J Neurochem 2006;97:1203–1214.PubMed
17.
Zurück zum Zitat Uchino S, Waga C. SHANK3 as an autism spectrum disorder-associated gene. Brain Dev 2013;35:106–110.PubMed Uchino S, Waga C. SHANK3 as an autism spectrum disorder-associated gene. Brain Dev 2013;35:106–110.PubMed
18.
Zurück zum Zitat Bockers TM, Segger-Junius M, Iglauer P, et al. Differential expression and dendritic transcript localization of Shank family members: identification of a dendritic targeting element in the 3’ untranslated region of Shank1 mRNA. Mol Cell Neurosci 2004;26:182–190.PubMed Bockers TM, Segger-Junius M, Iglauer P, et al. Differential expression and dendritic transcript localization of Shank family members: identification of a dendritic targeting element in the 3’ untranslated region of Shank1 mRNA. Mol Cell Neurosci 2004;26:182–190.PubMed
19.
Zurück zum Zitat Raab M, Boeckers TM, Neuhuber WL. Proline-rich synapse-associated protein-1 and 2 (ProSAP1/Shank2 and ProSAP2/Shank3)-scaffolding proteins are also present in postsynaptic specializations of the peripheral nervous system. Neuroscience 2010;171:421–433.PubMed Raab M, Boeckers TM, Neuhuber WL. Proline-rich synapse-associated protein-1 and 2 (ProSAP1/Shank2 and ProSAP2/Shank3)-scaffolding proteins are also present in postsynaptic specializations of the peripheral nervous system. Neuroscience 2010;171:421–433.PubMed
20.
Zurück zum Zitat Ehlers MD. Synapse structure: glutamate receptors connected by the shanks. Curr Biol 1999;9:R848-R850.PubMed Ehlers MD. Synapse structure: glutamate receptors connected by the shanks. Curr Biol 1999;9:R848-R850.PubMed
21.
Zurück zum Zitat Sheng M, Kim E. The Shank family of scaffold proteins. J Cell Sci 2000;113:1851–1856.PubMed Sheng M, Kim E. The Shank family of scaffold proteins. J Cell Sci 2000;113:1851–1856.PubMed
22.
Zurück zum Zitat Gundelfinger ED, Boeckers TM, Baron MK, Bowie JU. A role for zinc in postsynaptic density asSAMbly and plasticity? Trends Biochem Sci 2006;31:366–373.PubMed Gundelfinger ED, Boeckers TM, Baron MK, Bowie JU. A role for zinc in postsynaptic density asSAMbly and plasticity? Trends Biochem Sci 2006;31:366–373.PubMed
23.
Zurück zum Zitat Kreienkamp HJ. Scaffolding proteins at the postsynaptic density: shank as the architectural framework. Handb Exp Pharmacol 2008:365–380. Kreienkamp HJ. Scaffolding proteins at the postsynaptic density: shank as the architectural framework. Handb Exp Pharmacol 2008:365–380.
24.
Zurück zum Zitat Grabrucker AM, Schmeisser MJ, Schoen M, Boeckers TM. Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies. Trends Cell Biol 2011;21:594–603.PubMed Grabrucker AM, Schmeisser MJ, Schoen M, Boeckers TM. Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies. Trends Cell Biol 2011;21:594–603.PubMed
25.
Zurück zum Zitat Bonaglia MC, Giorda R, Beri S, et al. Molecular mechanisms generating and stabilizing terminal 22q13 deletions in 44 subjects with Phelan/McDermid syndrome. PLoS Genet 2011;7:e1002173.PubMedCentralPubMed Bonaglia MC, Giorda R, Beri S, et al. Molecular mechanisms generating and stabilizing terminal 22q13 deletions in 44 subjects with Phelan/McDermid syndrome. PLoS Genet 2011;7:e1002173.PubMedCentralPubMed
26.
Zurück zum Zitat Dhar SU, del Gaudio D, German JR, et al. 22q13.3 deletion syndrome: clinical and molecular analysis using array CGH. Am J Med Genet A 2010;152A:573–581.PubMedCentralPubMed Dhar SU, del Gaudio D, German JR, et al. 22q13.3 deletion syndrome: clinical and molecular analysis using array CGH. Am J Med Genet A 2010;152A:573–581.PubMedCentralPubMed
27.
Zurück zum Zitat Gong X, Jiang YW, Zhang X, et al. High proportion of 22q13 deletions and SHANK3 mutations in Chinese patients with intellectual disability. PLoS One 2012;7:e34739.PubMedCentralPubMed Gong X, Jiang YW, Zhang X, et al. High proportion of 22q13 deletions and SHANK3 mutations in Chinese patients with intellectual disability. PLoS One 2012;7:e34739.PubMedCentralPubMed
28.
Zurück zum Zitat Hamdan FF, Gauthier J, Araki Y, et al. Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability. Am J Hum Genet 2011;88:306–316.PubMedCentralPubMed Hamdan FF, Gauthier J, Araki Y, et al. Excess of de novo deleterious mutations in genes associated with glutamatergic systems in nonsyndromic intellectual disability. Am J Hum Genet 2011;88:306–316.PubMedCentralPubMed
29.
Zurück zum Zitat Wang X, McCoy PA, Rodriguiz RM, et al. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet 2011;20:3093–3108.PubMedCentralPubMed Wang X, McCoy PA, Rodriguiz RM, et al. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet 2011;20:3093–3108.PubMedCentralPubMed
30.
Zurück zum Zitat Schmeisser MJ, Ey E, Wegener S, et al. Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature 2012;486:256–260.PubMed Schmeisser MJ, Ey E, Wegener S, et al. Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature 2012;486:256–260.PubMed
31.
Zurück zum Zitat Peca J, Feliciano C, Ting JT, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 2011;472:437–442.PubMedCentralPubMed Peca J, Feliciano C, Ting JT, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 2011;472:437–442.PubMedCentralPubMed
32.
Zurück zum Zitat Roussignol G, Ango F, Romorini S, et al. Shank expression is sufficient to induce functional dendritic spine synapses in aspiny neurons. J Neurosci 2005;25:3560–3570.PubMed Roussignol G, Ango F, Romorini S, et al. Shank expression is sufficient to induce functional dendritic spine synapses in aspiny neurons. J Neurosci 2005;25:3560–3570.PubMed
33.
Zurück zum Zitat Tu JC, Xiao B, Naisbitt S, et al. Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 1999;23:583–592.PubMed Tu JC, Xiao B, Naisbitt S, et al. Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 1999;23:583–592.PubMed
34.
Zurück zum Zitat Bozdagi O, Sakurai T, Papapetrou D, et al. Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol Autism 2010;1:15.PubMedCentralPubMed Bozdagi O, Sakurai T, Papapetrou D, et al. Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol Autism 2010;1:15.PubMedCentralPubMed
35.
Zurück zum Zitat Shcheglovitov A, Shcheglovitova O, Yazawa M, et al. SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients. Nature 2013;503:267–271.PubMed Shcheglovitov A, Shcheglovitova O, Yazawa M, et al. SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients. Nature 2013;503:267–271.PubMed
36.
Zurück zum Zitat Miller DT, Adam MP, Aradhya S, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 2010;86:749–764.PubMedCentralPubMed Miller DT, Adam MP, Aradhya S, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 2010;86:749–764.PubMedCentralPubMed
37.
Zurück zum Zitat Betancur C, Buxbaum JD. SHANK3 haploinsufficiency: a “common” but underdiagnosed highly penetrant monogenic cause of autism spectrum disorders. Mol Autism 2013;4:17.PubMedCentralPubMed Betancur C, Buxbaum JD. SHANK3 haploinsufficiency: a “common” but underdiagnosed highly penetrant monogenic cause of autism spectrum disorders. Mol Autism 2013;4:17.PubMedCentralPubMed
38.
Zurück zum Zitat Leblond CS, Nava C, Polge A, et al. Meta-analysis of SHANK mutations in autism spectrum disorders: a gradient of severity in cognitive impairments. PLoS Genet 2014;10:e1004580.PubMedCentralPubMed Leblond CS, Nava C, Polge A, et al. Meta-analysis of SHANK mutations in autism spectrum disorders: a gradient of severity in cognitive impairments. PLoS Genet 2014;10:e1004580.PubMedCentralPubMed
39.
Zurück zum Zitat Cooper GM, Coe BP, Girirajan S, et al. A copy number variation morbidity map of developmental delay. Nat Genet 2011;43:838–846.PubMedCentralPubMed Cooper GM, Coe BP, Girirajan S, et al. A copy number variation morbidity map of developmental delay. Nat Genet 2011;43:838–846.PubMedCentralPubMed
41.
Zurück zum Zitat Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 2002;30:e57.PubMedCentralPubMed Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 2002;30:e57.PubMedCentralPubMed
42.
Zurück zum Zitat Peters DG, Yatsenko SA, Surti U, Rajkovic A. Recent advances of genomic testing in perinatal medicine. Semin Perinatol 2015;39:44–54.PubMed Peters DG, Yatsenko SA, Surti U, Rajkovic A. Recent advances of genomic testing in perinatal medicine. Semin Perinatol 2015;39:44–54.PubMed
43.
Zurück zum Zitat Phelan K, McDermid HE. The 22q13.3 deletion syndrome (Phelan–McDermid syndrome). Mol Syndromol 2012;2:186–201.PubMedCentralPubMed Phelan K, McDermid HE. The 22q13.3 deletion syndrome (Phelan–McDermid syndrome). Mol Syndromol 2012;2:186–201.PubMedCentralPubMed
44.
Zurück zum Zitat Sykes NH, Toma C, Wilson N, et al. Copy number variation and association analysis of SHANK3 as a candidate gene for autism in the IMGSAC collection. Eur J Hum Genet 2009;17:1347–1353.PubMedCentralPubMed Sykes NH, Toma C, Wilson N, et al. Copy number variation and association analysis of SHANK3 as a candidate gene for autism in the IMGSAC collection. Eur J Hum Genet 2009;17:1347–1353.PubMedCentralPubMed
45.
Zurück zum Zitat Manning MA, Cassidy SB, Clericuzio C, et al. Terminal 22q deletion syndrome: a newly recognized cause of speech and language disability in the autism spectrum. Pediatrics 2004;114:451–457.PubMed Manning MA, Cassidy SB, Clericuzio C, et al. Terminal 22q deletion syndrome: a newly recognized cause of speech and language disability in the autism spectrum. Pediatrics 2004;114:451–457.PubMed
46.
Zurück zum Zitat Phelan MC, Rogers RC, Saul RA, et al. 22q13 deletion syndrome. Am J Med Genet 2001;101:91–99.PubMed Phelan MC, Rogers RC, Saul RA, et al. 22q13 deletion syndrome. Am J Med Genet 2001;101:91–99.PubMed
47.
Zurück zum Zitat Lord C, Rutter M, Le Couteur A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 1994;24:659–685.PubMed Lord C, Rutter M, Le Couteur A. Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 1994;24:659–685.PubMed
48.
Zurück zum Zitat Lord C, Risi S, Lambrecht L, et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 2000;30:205–223.PubMed Lord C, Risi S, Lambrecht L, et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 2000;30:205–223.PubMed
49.
Zurück zum Zitat American Psychiatric Association. Diagnostic and statistical manual of mental disorders, Revised Fourth Edition. American Psychiatric Association, Washington, DC, 2000. American Psychiatric Association. Diagnostic and statistical manual of mental disorders, Revised Fourth Edition. American Psychiatric Association, Washington, DC, 2000.
50.
Zurück zum Zitat Verhoeven WM, Egger JI, Willemsen MH, de Leijer GJ, Kleefstra T. Phelan–McDermid syndrome in two adult brothers: atypical bipolar disorder as its psychopathological phenotype? Neuropsychiatr Dis Treat 2012;8:175–179.PubMedCentralPubMed Verhoeven WM, Egger JI, Willemsen MH, de Leijer GJ, Kleefstra T. Phelan–McDermid syndrome in two adult brothers: atypical bipolar disorder as its psychopathological phenotype? Neuropsychiatr Dis Treat 2012;8:175–179.PubMedCentralPubMed
51.
Zurück zum Zitat Kolevzon A, Angarita B, Bush L, et al. Phelan–McDermid syndrome: a review of the literature and practice parameters for medical assessment and monitoring. J Neurodev Disord 2014;6:39.PubMedCentralPubMed Kolevzon A, Angarita B, Bush L, et al. Phelan–McDermid syndrome: a review of the literature and practice parameters for medical assessment and monitoring. J Neurodev Disord 2014;6:39.PubMedCentralPubMed
52.
Zurück zum Zitat Cusmano-Ozog K, Manning MA, Hoyme HE. 22q13.3 deletion syndrome: a recognizable malformation syndrome associated with marked speech and language delay. Am J Med Genet C Semin Med Genet 2007;145C:393–398.PubMed Cusmano-Ozog K, Manning MA, Hoyme HE. 22q13.3 deletion syndrome: a recognizable malformation syndrome associated with marked speech and language delay. Am J Med Genet C Semin Med Genet 2007;145C:393–398.PubMed
53.
Zurück zum Zitat Prasad C, Prasad AN, Chodirker BN, et al. Genetic evaluation of pervasive developmental disorders: the terminal 22q13 deletion syndrome may represent a recognizable phenotype. Clin Genet 2000;57:103–109.PubMed Prasad C, Prasad AN, Chodirker BN, et al. Genetic evaluation of pervasive developmental disorders: the terminal 22q13 deletion syndrome may represent a recognizable phenotype. Clin Genet 2000;57:103–109.PubMed
54.
Zurück zum Zitat Sarasua SM, Boccuto L, Sharp JL, et al. Clinical and genomic evaluation of 201 patients with Phelan-McDermid syndrome. Hum Genet 2014;133:847–859.PubMed Sarasua SM, Boccuto L, Sharp JL, et al. Clinical and genomic evaluation of 201 patients with Phelan-McDermid syndrome. Hum Genet 2014;133:847–859.PubMed
55.
Zurück zum Zitat Philippe A, Boddaert N, Vaivre-Douret L, et al. Neurobehavioral profile and brain imaging study of the 22q13.3 deletion syndrome in childhood. Pediatrics 2008;122:e376-e382.PubMed Philippe A, Boddaert N, Vaivre-Douret L, et al. Neurobehavioral profile and brain imaging study of the 22q13.3 deletion syndrome in childhood. Pediatrics 2008;122:e376-e382.PubMed
56.
Zurück zum Zitat Denayer A, Van Esch H, de Ravel T, et al. Neuropsychopathology in 7 patients with the 22q13 deletion syndrome: presence of bipolar disorder and progressive loss of skills. Mol Syndromol 2012;3:14–20.PubMedCentralPubMed Denayer A, Van Esch H, de Ravel T, et al. Neuropsychopathology in 7 patients with the 22q13 deletion syndrome: presence of bipolar disorder and progressive loss of skills. Mol Syndromol 2012;3:14–20.PubMedCentralPubMed
57.
Zurück zum Zitat Vucurovic K, Landais E, Delahaigue C, et al. Bipolar affective disorder and early dementia onset in a male patient with SHANK3 deletion. Eur J Med Genet 2012;55:625–629.PubMed Vucurovic K, Landais E, Delahaigue C, et al. Bipolar affective disorder and early dementia onset in a male patient with SHANK3 deletion. Eur J Med Genet 2012;55:625–629.PubMed
58.
Zurück zum Zitat Jeffries AR, Curran S, Elmslie F, et al. Molecular and phenotypic characterization of ring chromosome 22. Am J Med Genet A 2005;137:139–147.PubMed Jeffries AR, Curran S, Elmslie F, et al. Molecular and phenotypic characterization of ring chromosome 22. Am J Med Genet A 2005;137:139–147.PubMed
59.
Zurück zum Zitat Luciani JJ, de Mas P, Depetris D, et al. Telomeric 22q13 deletions resulting from rings, simple deletions, and translocations: cytogenetic, molecular, and clinical analyses of 32 new observations. J Med Genet 2003;40:690–696.PubMedCentralPubMed Luciani JJ, de Mas P, Depetris D, et al. Telomeric 22q13 deletions resulting from rings, simple deletions, and translocations: cytogenetic, molecular, and clinical analyses of 32 new observations. J Med Genet 2003;40:690–696.PubMedCentralPubMed
60.
Zurück zum Zitat Nesslinger NJ, Gorski JL, Kurczynski TW, et al. Clinical, cytogenetic, and molecular characterization of seven patients with deletions of chromosome 22q13.3. Am J Hum Genet 1994;54:464–472.PubMedCentralPubMed Nesslinger NJ, Gorski JL, Kurczynski TW, et al. Clinical, cytogenetic, and molecular characterization of seven patients with deletions of chromosome 22q13.3. Am J Hum Genet 1994;54:464–472.PubMedCentralPubMed
61.
Zurück zum Zitat Sarasua SM, Dwivedi A, Boccuto L, et al. 22q13.2q13.32 genomic regions associated with severity of speech delay, developmental delay, and physical features in Phelan–McDermid syndrome. Genet Med 2014;16:318–328.PubMed Sarasua SM, Dwivedi A, Boccuto L, et al. 22q13.2q13.32 genomic regions associated with severity of speech delay, developmental delay, and physical features in Phelan–McDermid syndrome. Genet Med 2014;16:318–328.PubMed
62.
Zurück zum Zitat Aldinger KA, Kogan J, Kimonis V, et al. Cerebellar and posterior fossa malformations in patients with autism-associated chromosome 22q13 terminal deletion. Am J Med Genet A 2013;161A:131–136.PubMed Aldinger KA, Kogan J, Kimonis V, et al. Cerebellar and posterior fossa malformations in patients with autism-associated chromosome 22q13 terminal deletion. Am J Med Genet A 2013;161A:131–136.PubMed
63.
Zurück zum Zitat Phelan K, Betancur C. Clinical utility gene card for: deletion 22q13 syndrome. Eur J Hum Genet 2011;19. Phelan K, Betancur C. Clinical utility gene card for: deletion 22q13 syndrome. Eur J Hum Genet 2011;19.
64.
Zurück zum Zitat Barakat AJ, Pearl PL, Acosta MT, Runkle BP. 22q13 deletion syndrome with central diabetes insipidus: a previously unreported association. Clin Dysmorphol 2004;13:191–194.PubMed Barakat AJ, Pearl PL, Acosta MT, Runkle BP. 22q13 deletion syndrome with central diabetes insipidus: a previously unreported association. Clin Dysmorphol 2004;13:191–194.PubMed
65.
Zurück zum Zitat Rollins JD, Sarasua SM, Phelan K, DuPont BR, Rogers RC, Collins JS. Growth in Phelan–McDermid syndrome. Am J Med Genet A 2011;155A:2324–2326.PubMed Rollins JD, Sarasua SM, Phelan K, DuPont BR, Rogers RC, Collins JS. Growth in Phelan–McDermid syndrome. Am J Med Genet A 2011;155A:2324–2326.PubMed
66.
Zurück zum Zitat Koolen DA, Reardon W, Rosser EM, et al. Molecular characterisation of patients with subtelomeric 22q abnormalities using chromosome specific array-based comparative genomic hybridisation. Eur J Hum Genet 2005;13:1019–1024.PubMed Koolen DA, Reardon W, Rosser EM, et al. Molecular characterisation of patients with subtelomeric 22q abnormalities using chromosome specific array-based comparative genomic hybridisation. Eur J Hum Genet 2005;13:1019–1024.PubMed
67.
Zurück zum Zitat Betancur C. Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res 2011;1380:42–77.PubMed Betancur C. Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res 2011;1380:42–77.PubMed
68.
Zurück zum Zitat Sakai Y, Shaw CA, Dawson BC, et al. Protein interactome reveals converging molecular pathways among autism disorders. Sci Transl Med 2011;3:86ra49.PubMedCentralPubMed Sakai Y, Shaw CA, Dawson BC, et al. Protein interactome reveals converging molecular pathways among autism disorders. Sci Transl Med 2011;3:86ra49.PubMedCentralPubMed
69.
Zurück zum Zitat Darnell JC. Defects in translational regulation contributing to human cognitive and behavioral disease. Curr Opin Genet Dev 2011;21:465–473.PubMedCentralPubMed Darnell JC. Defects in translational regulation contributing to human cognitive and behavioral disease. Curr Opin Genet Dev 2011;21:465–473.PubMedCentralPubMed
70.
Zurück zum Zitat Bourgeron T. A synaptic trek to autism. Curr Opin Neurobiol 2009;19:231–234.PubMed Bourgeron T. A synaptic trek to autism. Curr Opin Neurobiol 2009;19:231–234.PubMed
71.
Zurück zum Zitat Hoeffer CA, Klann E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci 2010;33:67–75.PubMedCentralPubMed Hoeffer CA, Klann E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci 2010;33:67–75.PubMedCentralPubMed
72.
Zurück zum Zitat Darnell JC, Van Driesche SJ, Zhang C, et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 2011;146:247–261.PubMedCentralPubMed Darnell JC, Van Driesche SJ, Zhang C, et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 2011;146:247–261.PubMedCentralPubMed
73.
Zurück zum Zitat Comery TA, Harris JB, Willems PJ, et al. Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci U S A 1997;94:5401–5404.PubMedCentralPubMed Comery TA, Harris JB, Willems PJ, et al. Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci U S A 1997;94:5401–5404.PubMedCentralPubMed
74.
Zurück zum Zitat Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999;23:185–188.PubMed Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999;23:185–188.PubMed
75.
Zurück zum Zitat Meikle L, Talos DM, Onda H, et al. A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J Neurosci 2007;27:5546–5558.PubMed Meikle L, Talos DM, Onda H, et al. A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J Neurosci 2007;27:5546–5558.PubMed
76.
Zurück zum Zitat Zbuk KM, Eng C. Cancer phenomics: RET and PTEN as illustrative models. Nat Rev Cancer 2007;7:35–45.PubMed Zbuk KM, Eng C. Cancer phenomics: RET and PTEN as illustrative models. Nat Rev Cancer 2007;7:35–45.PubMed
77.
Zurück zum Zitat Schmidt H, Kern W, Giese R, Hallschmid M, Enders A. Intranasal insulin to improve developmental delay in children with 22q13 deletion syndrome: an exploratory clinical trial. J Med Genet 2009;46:217–222.PubMed Schmidt H, Kern W, Giese R, Hallschmid M, Enders A. Intranasal insulin to improve developmental delay in children with 22q13 deletion syndrome: an exploratory clinical trial. J Med Genet 2009;46:217–222.PubMed
78.
Zurück zum Zitat Reger DL, Foley EA, Watson RP, et al. Monofluoride bridged, binuclear metallacycles of first row transition metals supported by third generation bis(1-pyrazolyl)methane ligands: unusual magnetic properties. Inorg Chem 2009;48:10658–10669.PubMed Reger DL, Foley EA, Watson RP, et al. Monofluoride bridged, binuclear metallacycles of first row transition metals supported by third generation bis(1-pyrazolyl)methane ligands: unusual magnetic properties. Inorg Chem 2009;48:10658–10669.PubMed
79.
Zurück zum Zitat Van den Heuvel ER, Zwanenburg RJ, Van Ravenswaaij-Arts CM. A stepped wedge design for testing an effect of intranasal insulin on cognitive development of children with Phelan–McDermid syndrome: A comparison of different designs. Stat Methods Med Res 2014 Nov 19 [Epub ahead of print]. Van den Heuvel ER, Zwanenburg RJ, Van Ravenswaaij-Arts CM. A stepped wedge design for testing an effect of intranasal insulin on cognitive development of children with Phelan–McDermid syndrome: A comparison of different designs. Stat Methods Med Res 2014 Nov 19 [Epub ahead of print].
80.
Zurück zum Zitat Pasini A, D’Agati E, Casarelli L, Curatolo P. Dose-dependent effect of risperidone treatment in a case of 22q13.3 deletion syndrome. Brain Dev 2010;32:425–427.PubMed Pasini A, D’Agati E, Casarelli L, Curatolo P. Dose-dependent effect of risperidone treatment in a case of 22q13.3 deletion syndrome. Brain Dev 2010;32:425–427.PubMed
81.
Zurück zum Zitat Guy M. ECDEU Assessment manual for psychopharmacology. US Department of Health, and Welfare, Washington, DC, Publication ADM, 1976, pp. 534–537. Guy M. ECDEU Assessment manual for psychopharmacology. US Department of Health, and Welfare, Washington, DC, Publication ADM, 1976, pp. 534–537.
82.
Zurück zum Zitat Choi YK, Gardner MP, Tarazi FI. Effects of risperidone on glutamate receptor subtypes in developing rat brain. Eur Neuropsychopharmacol 2009;19:77–84.PubMedCentralPubMed Choi YK, Gardner MP, Tarazi FI. Effects of risperidone on glutamate receptor subtypes in developing rat brain. Eur Neuropsychopharmacol 2009;19:77–84.PubMedCentralPubMed
83.
Zurück zum Zitat D’Mello SR, Borodezt K, Soltoff SP. Insulin-like growth factor and potassium depolarization maintain neuronal survival by distinct pathways: possible involvement of PI 3-kinase in IGF-1 signaling. J Neurosci 1997;17:1548–1560.PubMed D’Mello SR, Borodezt K, Soltoff SP. Insulin-like growth factor and potassium depolarization maintain neuronal survival by distinct pathways: possible involvement of PI 3-kinase in IGF-1 signaling. J Neurosci 1997;17:1548–1560.PubMed
84.
Zurück zum Zitat Baker J, Liu JP, Robertson EJ, Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 1993;75:73–82.PubMed Baker J, Liu JP, Robertson EJ, Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 1993;75:73–82.PubMed
85.
Zurück zum Zitat Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 1993;75:59–72.PubMed Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 1993;75:59–72.PubMed
86.
Zurück zum Zitat Bozdagi O, Tavassoli T, Buxbaum JD. Insulin-like growth factor-1 rescues synaptic and motor deficits in a mouse model of autism and developmental delay. Mol Autism 2013;4:9.PubMedCentralPubMed Bozdagi O, Tavassoli T, Buxbaum JD. Insulin-like growth factor-1 rescues synaptic and motor deficits in a mouse model of autism and developmental delay. Mol Autism 2013;4:9.PubMedCentralPubMed
87.
Zurück zum Zitat Rosenbloom AL. The role of recombinant insulin-like growth factor I in the treatment of the short child. Curr Opin Pediatr 2007;19:458–464.PubMed Rosenbloom AL. The role of recombinant insulin-like growth factor I in the treatment of the short child. Curr Opin Pediatr 2007;19:458–464.PubMed
88.
Zurück zum Zitat Ravnan JB, Tepperberg JH, Papenhausen P, et al. Subtelomere FISH analysis of 11 688 cases: an evaluation of the frequency and pattern of subtelomere rearrangements in individuals with developmental disabilities. J Med Genet 2006;43:478–489.PubMedCentralPubMed Ravnan JB, Tepperberg JH, Papenhausen P, et al. Subtelomere FISH analysis of 11 688 cases: an evaluation of the frequency and pattern of subtelomere rearrangements in individuals with developmental disabilities. J Med Genet 2006;43:478–489.PubMedCentralPubMed
89.
Zurück zum Zitat Abraham WC, Bear MF. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci 1996;19:126–130.PubMed Abraham WC, Bear MF. Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci 1996;19:126–130.PubMed
91.
Zurück zum Zitat Khwaja OS, Ho E, Barnes KV, et al. Safety, pharmacokinetics, and preliminary assessment of efficacy of mecasermin (recombinant human IGF-1) for the treatment of Rett syndrome. Proc Natl Acad Sci U S A 2014;111:4596–4601.PubMedCentralPubMed Khwaja OS, Ho E, Barnes KV, et al. Safety, pharmacokinetics, and preliminary assessment of efficacy of mecasermin (recombinant human IGF-1) for the treatment of Rett syndrome. Proc Natl Acad Sci U S A 2014;111:4596–4601.PubMedCentralPubMed
92.
Zurück zum Zitat Mount RH, Charman T, Hastings RP, Reilly S, Cass H. The Rett Syndrome Behaviour Questionnaire (RSBQ): refining the behavioural phenotype of Rett syndrome. J Child Psychol Psychiatry 2002;43:1099–1110.PubMed Mount RH, Charman T, Hastings RP, Reilly S, Cass H. The Rett Syndrome Behaviour Questionnaire (RSBQ): refining the behavioural phenotype of Rett syndrome. J Child Psychol Psychiatry 2002;43:1099–1110.PubMed
93.
Zurück zum Zitat Esbensen AJ, Rojahn J, Aman MG, Ruedrich S. Reliability and validity of an assessment instrument for anxiety, depression, and mood among individuals with mental retardation. J Autism Dev Disord 2003;33:617–629.PubMed Esbensen AJ, Rojahn J, Aman MG, Ruedrich S. Reliability and validity of an assessment instrument for anxiety, depression, and mood among individuals with mental retardation. J Autism Dev Disord 2003;33:617–629.PubMed
94.
Zurück zum Zitat Sara VR, Carlsson-Skwirut C, Drakenberg K, et al. The biological role of truncated insulin-like growth factor-1 and the tripeptide GPE in the central nervous system. Ann N Y Acad Sci 1993;692:183–191.PubMed Sara VR, Carlsson-Skwirut C, Drakenberg K, et al. The biological role of truncated insulin-like growth factor-1 and the tripeptide GPE in the central nervous system. Ann N Y Acad Sci 1993;692:183–191.PubMed
95.
Zurück zum Zitat Guan J, Waldvogel HJ, Faull RL, Gluckman PD, Williams CE. The effects of the N-terminal tripeptide of insulin-like growth factor-1, glycine-proline-glutamate in different regions following hypoxic-ischemic brain injury in adult rats. Neuroscience 1999;89:649–659.PubMed Guan J, Waldvogel HJ, Faull RL, Gluckman PD, Williams CE. The effects of the N-terminal tripeptide of insulin-like growth factor-1, glycine-proline-glutamate in different regions following hypoxic-ischemic brain injury in adult rats. Neuroscience 1999;89:649–659.PubMed
96.
Zurück zum Zitat Corvin AP, Molinos I, Little G, et al. Insulin-like growth factor 1 (IGF1) and its active peptide (1–3)IGF1 enhance the expression of synaptic markers in neuronal circuits through different cellular mechanisms. Neurosci Lett 2012;520:51–56.PubMed Corvin AP, Molinos I, Little G, et al. Insulin-like growth factor 1 (IGF1) and its active peptide (1–3)IGF1 enhance the expression of synaptic markers in neuronal circuits through different cellular mechanisms. Neurosci Lett 2012;520:51–56.PubMed
97.
Zurück zum Zitat Guan J, Thomas GB, Lin H, et al. Neuroprotective effects of the N-terminal tripeptide of insulin-like growth factor-1, glycine-proline-glutamate (GPE) following intravenous infusion in hypoxic-ischemic adult rats. Neuropharmacology 2004;47:892–903.PubMed Guan J, Thomas GB, Lin H, et al. Neuroprotective effects of the N-terminal tripeptide of insulin-like growth factor-1, glycine-proline-glutamate (GPE) following intravenous infusion in hypoxic-ischemic adult rats. Neuropharmacology 2004;47:892–903.PubMed
98.
Zurück zum Zitat Wei HH, Lu XC, Shear DA, et al. NNZ-2566 treatment inhibits neuroinflammation and pro-inflammatory cytokine expression induced by experimental penetrating ballistic-like brain injury in rats. J Neuroinflammation 2009;6:19.PubMedCentralPubMed Wei HH, Lu XC, Shear DA, et al. NNZ-2566 treatment inhibits neuroinflammation and pro-inflammatory cytokine expression induced by experimental penetrating ballistic-like brain injury in rats. J Neuroinflammation 2009;6:19.PubMedCentralPubMed
100.
Zurück zum Zitat FitzGerald PM, Jankovic J, Percy AK. Rett syndrome and associated movement disorders. Mov Disord 1990;5:195–202.PubMed FitzGerald PM, Jankovic J, Percy AK. Rett syndrome and associated movement disorders. Mov Disord 1990;5:195–202.PubMed
101.
Zurück zum Zitat Payakachat N, Tilford JM, Kovacs E, Kuhlthau K. Autism spectrum disorders: a review of measures for clinical, health services and cost-effectiveness applications. Expert Rev Pharmacoecon Outcomes Res 2012;12:485–503.PubMedCentralPubMed Payakachat N, Tilford JM, Kovacs E, Kuhlthau K. Autism spectrum disorders: a review of measures for clinical, health services and cost-effectiveness applications. Expert Rev Pharmacoecon Outcomes Res 2012;12:485–503.PubMedCentralPubMed
102.
Zurück zum Zitat International Human Genome Sequencing C. Finishing the euchromatic sequence of the human genome. Nature 2004;431:931–945. International Human Genome Sequencing C. Finishing the euchromatic sequence of the human genome. Nature 2004;431:931–945.
103.
Zurück zum Zitat Lim S, Naisbitt S, Yoon J, et al. Characterization of the Shank family of synaptic proteins. Multiple genes, alternative splicing, and differential expression in brain and development. J Biol Chem 1999;274:29510–29518.PubMed Lim S, Naisbitt S, Yoon J, et al. Characterization of the Shank family of synaptic proteins. Multiple genes, alternative splicing, and differential expression in brain and development. J Biol Chem 1999;274:29510–29518.PubMed
104.
Zurück zum Zitat Bockers TM, Mameza MG, Kreutz MR, et al. Synaptic scaffolding proteins in rat brain. Ankyrin repeats of the multidomain Shank protein family interact with the cytoskeletal protein alpha-fodrin. J Biol Chem 2001;276:40104–40112.PubMed Bockers TM, Mameza MG, Kreutz MR, et al. Synaptic scaffolding proteins in rat brain. Ankyrin repeats of the multidomain Shank protein family interact with the cytoskeletal protein alpha-fodrin. J Biol Chem 2001;276:40104–40112.PubMed
105.
Zurück zum Zitat Wyszynski M, Kim E, Dunah AW, et al. Interaction between GRIP and liprin-alpha/SYD2 is required for AMPA receptor targeting. Neuron 2002;34:39–52.PubMed Wyszynski M, Kim E, Dunah AW, et al. Interaction between GRIP and liprin-alpha/SYD2 is required for AMPA receptor targeting. Neuron 2002;34:39–52.PubMed
106.
Zurück zum Zitat Lu W, Ziff EB. PICK1 interacts with ABP/GRIP to regulate AMPA receptor trafficking. Neuron 2005;47:407–421.PubMed Lu W, Ziff EB. PICK1 interacts with ABP/GRIP to regulate AMPA receptor trafficking. Neuron 2005;47:407–421.PubMed
107.
Zurück zum Zitat Sala C, Piech V, Wilson NR, Passafaro M, Liu G, Sheng M. Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 2001;31:115–130.PubMed Sala C, Piech V, Wilson NR, Passafaro M, Liu G, Sheng M. Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 2001;31:115–130.PubMed
108.
Zurück zum Zitat Hayashi MK, Tang C, Verpelli C, et al. The postsynaptic density proteins Homer and Shank form a polymeric network structure. Cell 2009;137:159–171.PubMedCentralPubMed Hayashi MK, Tang C, Verpelli C, et al. The postsynaptic density proteins Homer and Shank form a polymeric network structure. Cell 2009;137:159–171.PubMedCentralPubMed
109.
Zurück zum Zitat Baron MK, Boeckers TM, Vaida B, et al. An architectural framework that may lie at the core of the postsynaptic density. Science 2006;311:531–535.PubMed Baron MK, Boeckers TM, Vaida B, et al. An architectural framework that may lie at the core of the postsynaptic density. Science 2006;311:531–535.PubMed
110.
Zurück zum Zitat Boeckers TM, Liedtke T, Spilker C, et al. C-terminal synaptic targeting elements for postsynaptic density proteins ProSAP1/Shank2 and ProSAP2/Shank3. J Neurochem 2005;92:519–524.PubMed Boeckers TM, Liedtke T, Spilker C, et al. C-terminal synaptic targeting elements for postsynaptic density proteins ProSAP1/Shank2 and ProSAP2/Shank3. J Neurochem 2005;92:519–524.PubMed
111.
Zurück zum Zitat Phelan K, Rogers RC. Phelan–McDermid Syndrome. 2005 May 11 [updated 2011 Aug 25]. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2014. Available at: http://www.ncbi.nlm.nih.gov/books/NBK1198/. Accessed March 26, 2015. Phelan K, Rogers RC. Phelan–McDermid Syndrome. 2005 May 11 [updated 2011 Aug 25]. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2014. Available at: http://​www.​ncbi.​nlm.​nih.​gov/​books/​NBK1198/​. Accessed March 26, 2015.
Metadaten
Titel
Phelan–McDermid Syndrome and SHANK3: Implications for Treatment
verfasst von
Jesse L. Costales
Alexander Kolevzon
Publikationsdatum
01.07.2015
Verlag
Springer US
Erschienen in
Neurotherapeutics / Ausgabe 3/2015
Print ISSN: 1933-7213
Elektronische ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-015-0352-z

Weitere Artikel der Ausgabe 3/2015

Neurotherapeutics 3/2015 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.