Skip to main content
Erschienen in: CNS Drugs 2/2013

01.02.2013 | Leading Article

Orexin (Hypocretin) Receptor Agonists and Antagonists for Treatment of Sleep Disorders

Rationale for Development and Current Status

verfasst von: Michihiro Mieda, Takeshi Sakurai

Erschienen in: CNS Drugs | Ausgabe 2/2013

Einloggen, um Zugang zu erhalten

Abstract

Orexin A and orexin B are hypothalamic neuropeptides initially identified as endogenous ligands for two orphan G-protein coupled receptors (GPCRs). They play critical roles in the maintenance of wakefulness by regulating function of monoaminergic and cholinergic neurons that are implicated in the regulation of wakefulness. Loss of orexin neurons in humans is associated with narcolepsy, a sleep disorder characterized by excessive daytime sleepiness and cataplexy, further suggesting the particular importance of orexin in the maintenance of the wakefulness state. These findings have encouraged pharmaceutical companies to develop drugs targeting orexin receptors as novel medications of sleep disorders, such as narcolepsy and insomnia. Indeed, phase III clinical trials were completed last year of suvorexant, a non-selective (dual) antagonist for orexin receptors, for the treatment of primary insomnia, and demonstrate promising results. The New Drug Application (NDA) for suvorexant has been submitted to the US FDA. Thus, the discovery of a critical role played by the orexin system in the regulation of sleep/wakefulness has opened the door of a new era for sleep medicine.
Literatur
1.
Zurück zum Zitat Sakurai T, Mieda M. Connectomics of orexin-producing neurons: interface of systems of emotion, energy homeostasis and arousal. Trends Pharmacol Sci. 2011;32(8):451–62.PubMedCrossRef Sakurai T, Mieda M. Connectomics of orexin-producing neurons: interface of systems of emotion, energy homeostasis and arousal. Trends Pharmacol Sci. 2011;32(8):451–62.PubMedCrossRef
2.
Zurück zum Zitat Sakurai T, Amemiya A, Ishii M, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92(4):573–85.PubMedCrossRef Sakurai T, Amemiya A, Ishii M, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92(4):573–85.PubMedCrossRef
3.
Zurück zum Zitat de Lecea L, Kilduff TS, Peyron C, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA. 1998;95(1):322–7.PubMedCrossRef de Lecea L, Kilduff TS, Peyron C, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA. 1998;95(1):322–7.PubMedCrossRef
4.
Zurück zum Zitat Date Y, Ueta Y, Yamashita H, et al. Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc Natl Acad Sci USA. 1999;96(2):748–53.PubMedCrossRef Date Y, Ueta Y, Yamashita H, et al. Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc Natl Acad Sci USA. 1999;96(2):748–53.PubMedCrossRef
5.
Zurück zum Zitat Nambu T, Sakurai T, Mizukami K, et al. Distribution of orexin neurons in the adult rat brain. Brain Res. 1999;827(1–2):243–60.PubMedCrossRef Nambu T, Sakurai T, Mizukami K, et al. Distribution of orexin neurons in the adult rat brain. Brain Res. 1999;827(1–2):243–60.PubMedCrossRef
6.
Zurück zum Zitat Peyron C, Tighe DK, van den Pol AN, et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci. 1998;18(23):9996–10015.PubMed Peyron C, Tighe DK, van den Pol AN, et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci. 1998;18(23):9996–10015.PubMed
7.
Zurück zum Zitat van den Pol AN. Hypothalamic hypocretin (orexin): robust innervation of the spinal cord. J Neurosci. 1999;19(8):3171–82.PubMed van den Pol AN. Hypothalamic hypocretin (orexin): robust innervation of the spinal cord. J Neurosci. 1999;19(8):3171–82.PubMed
8.
Zurück zum Zitat Kilduff TS, Peyron C. The hypocretin/orexin ligand-receptor system: implications for sleep and sleep disorders. Trends Neurosci. 2000;23(8):359–65.PubMedCrossRef Kilduff TS, Peyron C. The hypocretin/orexin ligand-receptor system: implications for sleep and sleep disorders. Trends Neurosci. 2000;23(8):359–65.PubMedCrossRef
9.
Zurück zum Zitat Thannickal TC, Moore RY, Nienhuis R, et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron. 2000;27(3):469–74.PubMedCrossRef Thannickal TC, Moore RY, Nienhuis R, et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron. 2000;27(3):469–74.PubMedCrossRef
10.
Zurück zum Zitat Marcus JN, Aschkenasi CJ, Lee CE, et al. Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol. 2001;435(1):6–25.PubMedCrossRef Marcus JN, Aschkenasi CJ, Lee CE, et al. Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol. 2001;435(1):6–25.PubMedCrossRef
11.
Zurück zum Zitat Mieda M, Hasegawa E, Kisanuki YY, et al. Differential roles of orexin receptor-1 and -2 in the regulation of non-REM and REM sleep. J Neurosci. 2011;31(17):6518–26.PubMedCrossRef Mieda M, Hasegawa E, Kisanuki YY, et al. Differential roles of orexin receptor-1 and -2 in the regulation of non-REM and REM sleep. J Neurosci. 2011;31(17):6518–26.PubMedCrossRef
12.
Zurück zum Zitat Mignot E. Genetic and familial aspects of narcolepsy. Neurology. 1998;50(2 Suppl. 1):S16–22.PubMedCrossRef Mignot E. Genetic and familial aspects of narcolepsy. Neurology. 1998;50(2 Suppl. 1):S16–22.PubMedCrossRef
13.
Zurück zum Zitat Zeitzer JM, Nishino S, Mignot E. The neurobiology of hypocretins (orexins), narcolepsy and related therapeutic interventions. Trends Pharmacol Sci. 2006;27(7):368–74.PubMedCrossRef Zeitzer JM, Nishino S, Mignot E. The neurobiology of hypocretins (orexins), narcolepsy and related therapeutic interventions. Trends Pharmacol Sci. 2006;27(7):368–74.PubMedCrossRef
14.
Zurück zum Zitat Chemelli RM, Willie JT, Sinton CM, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;98(4):437–51.PubMedCrossRef Chemelli RM, Willie JT, Sinton CM, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;98(4):437–51.PubMedCrossRef
15.
Zurück zum Zitat Hara J, Beuckmann CT, Nambu T, et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron. 2001;30(2):345–54.PubMedCrossRef Hara J, Beuckmann CT, Nambu T, et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron. 2001;30(2):345–54.PubMedCrossRef
16.
Zurück zum Zitat Sakurai T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci. 2007;8(3):171–81.PubMedCrossRef Sakurai T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci. 2007;8(3):171–81.PubMedCrossRef
17.
Zurück zum Zitat Lin L, Faraco J, Li R, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell. 1999;98(3):365–76.PubMedCrossRef Lin L, Faraco J, Li R, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell. 1999;98(3):365–76.PubMedCrossRef
18.
Zurück zum Zitat Mignot E, Lammers GJ, Ripley B, et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch Neurol. 2002;59(10):1553–62.PubMedCrossRef Mignot E, Lammers GJ, Ripley B, et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch Neurol. 2002;59(10):1553–62.PubMedCrossRef
19.
Zurück zum Zitat Peyron C, Faraco J, Rogers W, et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med. 2000;6(9):991–7.PubMedCrossRef Peyron C, Faraco J, Rogers W, et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med. 2000;6(9):991–7.PubMedCrossRef
20.
Zurück zum Zitat Crocker A, Espana RA, Papadopoulou M, et al. Concomitant loss of dynorphin, NARP, and orexin in narcolepsy. Neurology. 2005;65(8):1184–8.PubMedCrossRef Crocker A, Espana RA, Papadopoulou M, et al. Concomitant loss of dynorphin, NARP, and orexin in narcolepsy. Neurology. 2005;65(8):1184–8.PubMedCrossRef
21.
Zurück zum Zitat Kadotani H, Faraco J, Mignot E. Genetic studies in the sleep disorder narcolepsy. Genome Res. 1998;8(5):427–34.PubMed Kadotani H, Faraco J, Mignot E. Genetic studies in the sleep disorder narcolepsy. Genome Res. 1998;8(5):427–34.PubMed
22.
Zurück zum Zitat Nishino S, Okuro M, Kotorii N, et al. Hypocretin/orexin and narcolepsy: new basic and clinical insights. Acta Physiol (Oxf). 2010;198(3):209–22.PubMedCrossRef Nishino S, Okuro M, Kotorii N, et al. Hypocretin/orexin and narcolepsy: new basic and clinical insights. Acta Physiol (Oxf). 2010;198(3):209–22.PubMedCrossRef
23.
Zurück zum Zitat Espana RA, Scammell TE. Sleep neurobiology from a clinical perspective. Sleep. 2011;34(7):845–58.PubMed Espana RA, Scammell TE. Sleep neurobiology from a clinical perspective. Sleep. 2011;34(7):845–58.PubMed
24.
Zurück zum Zitat Pace-Schott EF, Hobson JA. The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci. 2002;3(8):591–605.PubMed Pace-Schott EF, Hobson JA. The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci. 2002;3(8):591–605.PubMed
25.
Zurück zum Zitat Horvath TL, Peyron C, Diano S, et al. Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J Comp Neurol. 1999;415(2):145–59.PubMedCrossRef Horvath TL, Peyron C, Diano S, et al. Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J Comp Neurol. 1999;415(2):145–59.PubMedCrossRef
26.
Zurück zum Zitat Yamanaka A, Tsujino N, Funahashi H, et al. Orexins activate histaminergic neurons via the orexin 2 receptor. Biochem Biophys Res Commun. 2002;290(4):1237–45.PubMedCrossRef Yamanaka A, Tsujino N, Funahashi H, et al. Orexins activate histaminergic neurons via the orexin 2 receptor. Biochem Biophys Res Commun. 2002;290(4):1237–45.PubMedCrossRef
27.
Zurück zum Zitat Hagan JJ, Leslie RA, Patel S, et al. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc Natl Acad Sci USA. 1999;96(19):10911–6.PubMedCrossRef Hagan JJ, Leslie RA, Patel S, et al. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc Natl Acad Sci USA. 1999;96(19):10911–6.PubMedCrossRef
28.
Zurück zum Zitat Adamantidis AR, Zhang F, Aravanis AM, et al. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature. 2007;450(7168):420–4.PubMedCrossRef Adamantidis AR, Zhang F, Aravanis AM, et al. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature. 2007;450(7168):420–4.PubMedCrossRef
29.
Zurück zum Zitat Bourgin P, Huitron-Resendiz S, Spier AD, et al. Hypocretin-1 modulates rapid eye movement sleep through activation of locus coeruleus neurons. J Neurosci. 2000;20(20):7760–5.PubMed Bourgin P, Huitron-Resendiz S, Spier AD, et al. Hypocretin-1 modulates rapid eye movement sleep through activation of locus coeruleus neurons. J Neurosci. 2000;20(20):7760–5.PubMed
30.
Zurück zum Zitat Huang ZL, Qu WM, Li WD, et al. Arousal effect of orexin A depends on activation of the histaminergic system. Proc Natl Acad Sci USA. 2001;98(17):9965–70.PubMedCrossRef Huang ZL, Qu WM, Li WD, et al. Arousal effect of orexin A depends on activation of the histaminergic system. Proc Natl Acad Sci USA. 2001;98(17):9965–70.PubMedCrossRef
31.
Zurück zum Zitat Espana RA, Baldo BA, Kelley AE, et al. Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action. Neuroscience. 2001;106(4):699–715.PubMedCrossRef Espana RA, Baldo BA, Kelley AE, et al. Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action. Neuroscience. 2001;106(4):699–715.PubMedCrossRef
32.
Zurück zum Zitat Xi MC, Morales FR, Chase MH. Effects on sleep and wakefulness of the injection of hypocretin-1 (orexin-A) into the laterodorsal tegmental nucleus of the cat. Brain Res. 2001;901(1–2):259–64.PubMedCrossRef Xi MC, Morales FR, Chase MH. Effects on sleep and wakefulness of the injection of hypocretin-1 (orexin-A) into the laterodorsal tegmental nucleus of the cat. Brain Res. 2001;901(1–2):259–64.PubMedCrossRef
33.
Zurück zum Zitat van den Pol AN, Ghosh PK, Liu RJ, et al. Hypocretin (orexin) enhances neuron activity and cell synchrony in developing mouse GFP-expressing locus coeruleus. J Physiol. 2002;541(Pt 1):169–85.PubMed van den Pol AN, Ghosh PK, Liu RJ, et al. Hypocretin (orexin) enhances neuron activity and cell synchrony in developing mouse GFP-expressing locus coeruleus. J Physiol. 2002;541(Pt 1):169–85.PubMed
34.
Zurück zum Zitat Brown RE, Sergeeva O, Eriksson KS, et al. Orexin A excites serotonergic neurons in the dorsal raphe nucleus of the rat. Neuropharmacology. 2001;40(3):457–9.PubMedCrossRef Brown RE, Sergeeva O, Eriksson KS, et al. Orexin A excites serotonergic neurons in the dorsal raphe nucleus of the rat. Neuropharmacology. 2001;40(3):457–9.PubMedCrossRef
35.
Zurück zum Zitat Liu RJ, van den Pol AN, Aghajanian GK. Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions. J Neurosci. 2002;22(21):9453–64.PubMed Liu RJ, van den Pol AN, Aghajanian GK. Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions. J Neurosci. 2002;22(21):9453–64.PubMed
36.
Zurück zum Zitat Bayer L, Eggermann E, Serafin M, et al. Orexins (hypocretins) directly excite tuberomammillary neurons. Eur J Neurosci. 2001;14(9):1571–5.PubMedCrossRef Bayer L, Eggermann E, Serafin M, et al. Orexins (hypocretins) directly excite tuberomammillary neurons. Eur J Neurosci. 2001;14(9):1571–5.PubMedCrossRef
37.
Zurück zum Zitat Eriksson KS, Sergeeva O, Brown RE, et al. Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J Neurosci. 2001;21(23):9273–9.PubMed Eriksson KS, Sergeeva O, Brown RE, et al. Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J Neurosci. 2001;21(23):9273–9.PubMed
38.
Zurück zum Zitat Burlet S, Tyler CJ, Leonard CS. Direct and indirect excitation of laterodorsal tegmental neurons by hypocretin/orexin peptides: implications for wakefulness and narcolepsy. J Neurosci. 2002;22(7):2862–72.PubMed Burlet S, Tyler CJ, Leonard CS. Direct and indirect excitation of laterodorsal tegmental neurons by hypocretin/orexin peptides: implications for wakefulness and narcolepsy. J Neurosci. 2002;22(7):2862–72.PubMed
39.
Zurück zum Zitat Eggermann E, Serafin M, Bayer L, et al. Orexins/hypocretins excite basal forebrain cholinergic neurones. Neuroscience. 2001;108(2):177–81.PubMedCrossRef Eggermann E, Serafin M, Bayer L, et al. Orexins/hypocretins excite basal forebrain cholinergic neurones. Neuroscience. 2001;108(2):177–81.PubMedCrossRef
40.
Zurück zum Zitat Li Y, Gao XB, Sakurai T, et al. Hypocretin/orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Neuron. 2002;36(6):1169–81.PubMedCrossRef Li Y, Gao XB, Sakurai T, et al. Hypocretin/orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Neuron. 2002;36(6):1169–81.PubMedCrossRef
41.
Zurück zum Zitat Yamanaka A, Tabuchi S, Tsunematsu T, et al. Orexin directly excites orexin neurons through orexin 2 receptor. J Neurosci. 2010;30(38):12642–52.PubMedCrossRef Yamanaka A, Tabuchi S, Tsunematsu T, et al. Orexin directly excites orexin neurons through orexin 2 receptor. J Neurosci. 2010;30(38):12642–52.PubMedCrossRef
42.
Zurück zum Zitat Lee MG, Hassani OK, Jones BE. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci. 2005;25(28):6716–20.PubMedCrossRef Lee MG, Hassani OK, Jones BE. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci. 2005;25(28):6716–20.PubMedCrossRef
43.
Zurück zum Zitat Mileykovskiy BY, Kiyashchenko LI, Siegel JM. Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron. 2005;46(5):787–98.PubMedCrossRef Mileykovskiy BY, Kiyashchenko LI, Siegel JM. Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron. 2005;46(5):787–98.PubMedCrossRef
44.
Zurück zum Zitat Takahashi K, Lin JS, Sakai K. Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse. Neuroscience. 2008;153:860–70.PubMedCrossRef Takahashi K, Lin JS, Sakai K. Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse. Neuroscience. 2008;153:860–70.PubMedCrossRef
45.
Zurück zum Zitat Horvath TL, Gao XB. Input organization and plasticity of hypocretin neurons: possible clues to obesity’s association with insomnia. Cell Metab. 2005;1(4):279–86.PubMedCrossRef Horvath TL, Gao XB. Input organization and plasticity of hypocretin neurons: possible clues to obesity’s association with insomnia. Cell Metab. 2005;1(4):279–86.PubMedCrossRef
46.
Zurück zum Zitat Mieda M, Willie JT, Hara J, et al. Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice. Proc Natl Acad Sci USA. 2004;101(13):4649–54.PubMedCrossRef Mieda M, Willie JT, Hara J, et al. Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice. Proc Natl Acad Sci USA. 2004;101(13):4649–54.PubMedCrossRef
47.
Zurück zum Zitat Scammell TE, Winrow CJ. Orexin receptors: pharmacology and therapeutic opportunities. Annu Rev Pharmacol Toxicol. 2011;51:243–66.PubMedCrossRef Scammell TE, Winrow CJ. Orexin receptors: pharmacology and therapeutic opportunities. Annu Rev Pharmacol Toxicol. 2011;51:243–66.PubMedCrossRef
48.
Zurück zum Zitat Brisbare-Roch C, Dingemanse J, Koberstein R, et al. Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nat Med. 2007;13(2):150–5.PubMedCrossRef Brisbare-Roch C, Dingemanse J, Koberstein R, et al. Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nat Med. 2007;13(2):150–5.PubMedCrossRef
49.
Zurück zum Zitat Hoever P, de Haas S, Winkler J, et al. Orexin receptor antagonism, a new sleep-promoting paradigm: an ascending single-dose study with almorexant. Clin Pharmacol Ther. 2010;87(5):593–600.PubMedCrossRef Hoever P, de Haas S, Winkler J, et al. Orexin receptor antagonism, a new sleep-promoting paradigm: an ascending single-dose study with almorexant. Clin Pharmacol Ther. 2010;87(5):593–600.PubMedCrossRef
50.
Zurück zum Zitat Hoever P, Dorffner G, Benes H, et al. Orexin receptor antagonism, a new sleep-enabling paradigm: a proof-of-concept clinical trial. Clin Pharmacol Ther. 2012;91(6):975–85.PubMedCrossRef Hoever P, Dorffner G, Benes H, et al. Orexin receptor antagonism, a new sleep-enabling paradigm: a proof-of-concept clinical trial. Clin Pharmacol Ther. 2012;91(6):975–85.PubMedCrossRef
51.
Zurück zum Zitat Porter RA, Chan WN, Coulton S, et al. 1,3-Biarylureas as selective non-peptide antagonists of the orexin-1 receptor. Bioorg Med Chem Lett. 2001;11(14):1907–10.PubMedCrossRef Porter RA, Chan WN, Coulton S, et al. 1,3-Biarylureas as selective non-peptide antagonists of the orexin-1 receptor. Bioorg Med Chem Lett. 2001;11(14):1907–10.PubMedCrossRef
52.
Zurück zum Zitat Smart D, Sabido-David C, Brough SJ, et al. SB-334867-A: the first selective orexin-1 receptor antagonist. Br J Pharmacol. 2001;132(6):1179–82.PubMedCrossRef Smart D, Sabido-David C, Brough SJ, et al. SB-334867-A: the first selective orexin-1 receptor antagonist. Br J Pharmacol. 2001;132(6):1179–82.PubMedCrossRef
53.
Zurück zum Zitat Langmead CJ, Jerman JC, Brough SJ, et al. Characterisation of the binding of [3H]-SB-674042, a novel nonpeptide antagonist, to the human orexin-1 receptor. Br J Pharmacol. 2004;141(2):340–6.PubMedCrossRef Langmead CJ, Jerman JC, Brough SJ, et al. Characterisation of the binding of [3H]-SB-674042, a novel nonpeptide antagonist, to the human orexin-1 receptor. Br J Pharmacol. 2004;141(2):340–6.PubMedCrossRef
54.
Zurück zum Zitat Renzulli C, Nash M, Wright M, et al. Disposition and metabolism of [14C]SB-649868, an orexin 1 and 2 receptor antagonist, in humans. Drug Metab Dispos. 2011;39(2):215–27.PubMedCrossRef Renzulli C, Nash M, Wright M, et al. Disposition and metabolism of [14C]SB-649868, an orexin 1 and 2 receptor antagonist, in humans. Drug Metab Dispos. 2011;39(2):215–27.PubMedCrossRef
55.
Zurück zum Zitat Bettica P, Squassante L, Groeger JA, et al. Differential effects of a dual orexin receptor antagonist (SB-649868) and zolpidem on sleep initiation and consolidation, SWS, REM sleep, and EEG power spectra in a model of situational insomnia. Neuropsychopharmacology. 2012;37(5):1224–33.PubMedCrossRef Bettica P, Squassante L, Groeger JA, et al. Differential effects of a dual orexin receptor antagonist (SB-649868) and zolpidem on sleep initiation and consolidation, SWS, REM sleep, and EEG power spectra in a model of situational insomnia. Neuropsychopharmacology. 2012;37(5):1224–33.PubMedCrossRef
56.
Zurück zum Zitat Cox CD, Breslin MJ, Whitman DB, et al. Discovery of the dual orexin receptor antagonist [(7R)-4-(5-chloro-1,3-benzoxazol-2-yl)-7-methyl-1,4-diazepan-1-yl][5-methyl-2-(2H–1,2,3-triazol-2-yl)phenyl]methanone (MK-4305) for the treatment of insomnia. J Med Chem. 2010;53(14):5320–32.PubMedCrossRef Cox CD, Breslin MJ, Whitman DB, et al. Discovery of the dual orexin receptor antagonist [(7R)-4-(5-chloro-1,3-benzoxazol-2-yl)-7-methyl-1,4-diazepan-1-yl][5-methyl-2-(2H–1,2,3-triazol-2-yl)phenyl]methanone (MK-4305) for the treatment of insomnia. J Med Chem. 2010;53(14):5320–32.PubMedCrossRef
57.
Zurück zum Zitat Winrow CJ, Gotter AL, Cox CD, et al. Pharmacological characterization of MK-6096: a dual orexin receptor antagonist for insomnia. Neuropharmacology. 2012;62(2):978–87.PubMedCrossRef Winrow CJ, Gotter AL, Cox CD, et al. Pharmacological characterization of MK-6096: a dual orexin receptor antagonist for insomnia. Neuropharmacology. 2012;62(2):978–87.PubMedCrossRef
58.
Zurück zum Zitat Dugovic C, Shelton JE, Aluisio LE, et al. Blockade of orexin-1 receptors attenuates orexin-2 receptor antagonism-induced sleep promotion in the rat. J Pharmacol Exp Ther. 2009;330(1):142–51.PubMedCrossRef Dugovic C, Shelton JE, Aluisio LE, et al. Blockade of orexin-1 receptors attenuates orexin-2 receptor antagonism-induced sleep promotion in the rat. J Pharmacol Exp Ther. 2009;330(1):142–51.PubMedCrossRef
59.
Zurück zum Zitat Morairty SR, Revel FG, Malherbe P, et al. Dual hypocretin receptor antagonism is more effective for sleep promotion than antagonism of either receptor alone. PLoS One. 2012;7(7):e39131.PubMedCrossRef Morairty SR, Revel FG, Malherbe P, et al. Dual hypocretin receptor antagonism is more effective for sleep promotion than antagonism of either receptor alone. PLoS One. 2012;7(7):e39131.PubMedCrossRef
60.
Zurück zum Zitat Mochizuki T, Arrigoni E, Marcus JN, et al. Orexin receptor 2 expression in the posterior hypothalamus rescues sleepiness in narcoleptic mice. Proc Natl Acad Sci USA. 2011;108(11):4471–6.PubMedCrossRef Mochizuki T, Arrigoni E, Marcus JN, et al. Orexin receptor 2 expression in the posterior hypothalamus rescues sleepiness in narcoleptic mice. Proc Natl Acad Sci USA. 2011;108(11):4471–6.PubMedCrossRef
61.
Zurück zum Zitat Carter ME, Adamantidis A, Ohtsu H, et al. Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions. J Neurosci. 2009;29(35):10939–49.PubMedCrossRef Carter ME, Adamantidis A, Ohtsu H, et al. Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions. J Neurosci. 2009;29(35):10939–49.PubMedCrossRef
62.
Zurück zum Zitat Carter ME, Brill J, Bonnavion P, et al. Mechanism for hypocretin-mediated sleep-to-wake transitions. Proc Natl Acad Sci USA. 2012;109(39):E2635–44.PubMedCrossRef Carter ME, Brill J, Bonnavion P, et al. Mechanism for hypocretin-mediated sleep-to-wake transitions. Proc Natl Acad Sci USA. 2012;109(39):E2635–44.PubMedCrossRef
64.
Zurück zum Zitat GlaxoSmithKline. To evaluate the effects of SB-649868 (10, 30 mg and 60 mg) on subjects with primary insomnia [ClinicalTrials.gov identifier NCT00426816]. (online). http://clinicaltrials.gov. Accessed 4 Dec 2012. GlaxoSmithKline. To evaluate the effects of SB-649868 (10, 30 mg and 60 mg) on subjects with primary insomnia [ClinicalTrials.gov identifier NCT00426816]. (online). http://​clinicaltrials.​gov. Accessed 4 Dec 2012.
65.
Zurück zum Zitat Merck. Safety and efficacy study in primary insomnia patients-study B (4305-029) [ClinicalTrials.gov identifier NCT01097629]. US National Institutes of Health, ClinicalTrials.gov (online). http://www.clinicaltrials.gov. Accessed 4 Dec 2012. Merck. Safety and efficacy study in primary insomnia patients-study B (4305-029) [ClinicalTrials.gov identifier NCT01097629]. US National Institutes of Health, ClinicalTrials.gov (online). http://​www.​clinicaltrials.​gov. Accessed 4 Dec 2012.
66.
Zurück zum Zitat Merck. Safety and efficacy study in primary insomnia patients-study A (4305-028) [ClinicalTrials.gov identifier NCT01097616]. US National Institutes of Health, ClinicalTrials.gov (online). http://www.clinicaltrials.gov. Accessed 4 Dec 2012. Merck. Safety and efficacy study in primary insomnia patients-study A (4305-028) [ClinicalTrials.gov identifier NCT01097616]. US National Institutes of Health, ClinicalTrials.gov (online). http://​www.​clinicaltrials.​gov. Accessed 4 Dec 2012.
68.
Zurück zum Zitat Merck. Polysomnography study of MK6096 in patients with primary insomnia (6096-011) [ClinicalTrials.gov identifier NCT01021852]. US National Institutes of Health, ClinicalTrials.gov (online). http://www.clinicaltrials.gov. Accessed 4 Dec 2012. Merck. Polysomnography study of MK6096 in patients with primary insomnia (6096-011) [ClinicalTrials.gov identifier NCT01021852]. US National Institutes of Health, ClinicalTrials.gov (online). http://​www.​clinicaltrials.​gov. Accessed 4 Dec 2012.
69.
Zurück zum Zitat Merck. A study of the safety and efficacy of MK-6096 for migraine prophylaxis in participants with episodic migraine (MK-6096-020) [ClinicalTrials.gov Identifier: NCT01513291]. US National Institutes of Health, ClinicalTrials.gov (online). http://www.clinicaltrials.gov. Accessed 4 Dec 2012. Merck. A study of the safety and efficacy of MK-6096 for migraine prophylaxis in participants with episodic migraine (MK-6096-020) [ClinicalTrials.gov Identifier: NCT01513291]. US National Institutes of Health, ClinicalTrials.gov (online). http://​www.​clinicaltrials.​gov. Accessed 4 Dec 2012.
70.
Zurück zum Zitat Merck. Safety and efficacy of MK-6096 as adjunctive therapy in participants with major depressive disorder and partial response to antidepressant monotherapy (MK-6096-022 AM2) [ClinicalTrials.gov Identifier: NCT01554176]. US National Institutes of Health, ClinicalTrials.gov (online). http://www.clinicaltrials.gov. Accessed 4 Dec 2012. Merck. Safety and efficacy of MK-6096 as adjunctive therapy in participants with major depressive disorder and partial response to antidepressant monotherapy (MK-6096-022 AM2) [ClinicalTrials.gov Identifier: NCT01554176]. US National Institutes of Health, ClinicalTrials.gov (online). http://​www.​clinicaltrials.​gov. Accessed 4 Dec 2012.
71.
Zurück zum Zitat Study to evaluate MK-6096 in the treatment of painful diabetic neuropathy (PDN) in adults (MK-6096-021 AM1) [ClinicalTrials.gov Identifier: NCT01564459] US National Institutes of Health, ClinicalTrials.gov (online). http://www.clinicaltrials.gov. Accessed 4 Dec 2012. Study to evaluate MK-6096 in the treatment of painful diabetic neuropathy (PDN) in adults (MK-6096-021 AM1) [ClinicalTrials.gov Identifier: NCT01564459] US National Institutes of Health, ClinicalTrials.gov (online). http://​www.​clinicaltrials.​gov. Accessed 4 Dec 2012.
Metadaten
Titel
Orexin (Hypocretin) Receptor Agonists and Antagonists for Treatment of Sleep Disorders
Rationale for Development and Current Status
verfasst von
Michihiro Mieda
Takeshi Sakurai
Publikationsdatum
01.02.2013
Verlag
Springer International Publishing AG
Erschienen in
CNS Drugs / Ausgabe 2/2013
Print ISSN: 1172-7047
Elektronische ISSN: 1179-1934
DOI
https://doi.org/10.1007/s40263-012-0036-8

Weitere Artikel der Ausgabe 2/2013

CNS Drugs 2/2013 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.