Skip to main content
Erschienen in: Sports Medicine 8/2016

01.08.2016 | Review Article

What are the Physiological Mechanisms for Post-Exercise Cold Water Immersion in the Recovery from Prolonged Endurance and Intermittent Exercise?

verfasst von: Mohammed Ihsan, Greig Watson, Chris R. Abbiss

Erschienen in: Sports Medicine | Ausgabe 8/2016

Einloggen, um Zugang zu erhalten

Abstract

Intense training results in numerous physiological perturbations such as muscle damage, hyperthermia, dehydration and glycogen depletion. Insufficient/untimely restoration of these physiological alterations might result in sub-optimal performance during subsequent training sessions, while chronic imbalance between training stress and recovery might lead to overreaching or overtraining syndrome. The use of post-exercise cold water immersion (CWI) is gaining considerable popularity among athletes to minimize fatigue and accelerate post-exercise recovery. CWI, through its primary ability to decrease tissue temperature and blood flow, is purported to facilitate recovery by ameliorating hyperthermia and subsequent alterations to the central nervous system (CNS), reducing cardiovascular strain, removing accumulated muscle metabolic by-products, attenuating exercise-induced muscle damage (EIMD) and improving autonomic nervous system function. The current review aims to provide a comprehensive and detailed examination of the mechanisms underpinning acute and longer term recovery of exercise performance following post-exercise CWI. Understanding the mechanisms will aid practitioners in the application and optimisation of CWI strategies to suit specific recovery needs and consequently improve athletic performance. Much of the literature indicates that the dominant mechanism by which CWI facilitates short term recovery is via ameliorating hyperthermia and consequently CNS mediated fatigue and by reducing cardiovascular strain. In contrast, there is limited evidence to support that CWI might improve acute recovery by facilitating the removal of muscle metabolites. CWI has been shown to augment parasympathetic reactivation following exercise. While CWI-mediated parasympathetic reactivation seems detrimental to high-intensity exercise performance when performed shortly after, it has been shown to be associated with improved longer term physiological recovery and day to day training performances. The efficacy of CWI for attenuating the secondary effects of EIMD seems dependent on the mode of exercise utilised. For instance, CWI application seems to demonstrate limited recovery benefits when EIMD was induced by single-joint eccentrically biased contractions. In contrast, CWI seems more effective in ameliorating effects of EIMD induced by whole body prolonged endurance/intermittent based exercise modalities.
Literatur
1.
Zurück zum Zitat Saltin B, Blomqvist G, Mitchell JH, et al. Response to exercise after bed rest and after training. Circulation. 1968;38(5 Suppl):VII1–78.PubMed Saltin B, Blomqvist G, Mitchell JH, et al. Response to exercise after bed rest and after training. Circulation. 1968;38(5 Suppl):VII1–78.PubMed
2.
Zurück zum Zitat Saltin B, Rowell LB. Functional adaptations to physical activity and inactivity. Fed Proc. 1980;39(5):1506–13.PubMed Saltin B, Rowell LB. Functional adaptations to physical activity and inactivity. Fed Proc. 1980;39(5):1506–13.PubMed
3.
Zurück zum Zitat Ehsani AA, Hagberg JM, Hickson RC. Rapid changes in left ventricular dimensions and mass in response to physical conditioning and deconditioning. Am J Cardiol. 1978;42(1):52–6.PubMedCrossRef Ehsani AA, Hagberg JM, Hickson RC. Rapid changes in left ventricular dimensions and mass in response to physical conditioning and deconditioning. Am J Cardiol. 1978;42(1):52–6.PubMedCrossRef
4.
Zurück zum Zitat Blomqvist CG, Saltin B. Cardiovascular adaptations to physical training. Annu Rev Physiol. 1983;45:169–89.PubMedCrossRef Blomqvist CG, Saltin B. Cardiovascular adaptations to physical training. Annu Rev Physiol. 1983;45:169–89.PubMedCrossRef
5.
Zurück zum Zitat Convertino VA. Blood volume: its adaptation to endurance training. Med Sci Sports Exerc. 1991;23(12):1338–48.PubMedCrossRef Convertino VA. Blood volume: its adaptation to endurance training. Med Sci Sports Exerc. 1991;23(12):1338–48.PubMedCrossRef
6.
Zurück zum Zitat Weight LM, Alexander D, Elliot T, et al. Erythropoietic adaptations to endurance training. Eur J Appl Physiol Occup Physiol. 1992;64(5):444–8.PubMedCrossRef Weight LM, Alexander D, Elliot T, et al. Erythropoietic adaptations to endurance training. Eur J Appl Physiol Occup Physiol. 1992;64(5):444–8.PubMedCrossRef
7.
Zurück zum Zitat Mier CM, Turner MJ, Ehsani AA, et al. Cardiovascular adaptations to 10 days of cycle exercise. J Appl Physiol (1985). 1997;83(6):1900–6. Mier CM, Turner MJ, Ehsani AA, et al. Cardiovascular adaptations to 10 days of cycle exercise. J Appl Physiol (1985). 1997;83(6):1900–6.
8.
Zurück zum Zitat Hoppeler H, Luthi P, Claassen H, et al. The ultrastructure of the normal human skeletal muscle. A morphometric analysis on untrained men, women and well-trained orienteers. Pflugers Arch. 1973;344(3):217–32.PubMedCrossRef Hoppeler H, Luthi P, Claassen H, et al. The ultrastructure of the normal human skeletal muscle. A morphometric analysis on untrained men, women and well-trained orienteers. Pflugers Arch. 1973;344(3):217–32.PubMedCrossRef
9.
Zurück zum Zitat Gollnick PD, Saltin B. Significance of skeletal muscle oxidative enzyme enhancement with endurance training. Clin Physiol. 1982;2(1):1–12.PubMedCrossRef Gollnick PD, Saltin B. Significance of skeletal muscle oxidative enzyme enhancement with endurance training. Clin Physiol. 1982;2(1):1–12.PubMedCrossRef
10.
Zurück zum Zitat Daussin FN, Zoll J, Dufour SP, et al. Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. Am J Physiol Regul Integr Comp Physiol. 2008;295(1):R264–72.PubMedCrossRef Daussin FN, Zoll J, Dufour SP, et al. Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. Am J Physiol Regul Integr Comp Physiol. 2008;295(1):R264–72.PubMedCrossRef
11.
Zurück zum Zitat Inbar O, Kaiser P, Tesch P. Relationships between leg muscle fiber type distribution and leg exercise performance. Int J Sports Med. 1981;2(3):154–9.PubMedCrossRef Inbar O, Kaiser P, Tesch P. Relationships between leg muscle fiber type distribution and leg exercise performance. Int J Sports Med. 1981;2(3):154–9.PubMedCrossRef
12.
Zurück zum Zitat Lash JM, Bohlen HG. Functional adaptations of rat skeletal muscle arterioles to aerobic exercise training. J Appl Physiol (1985). 1992;72(6):2052–62. Lash JM, Bohlen HG. Functional adaptations of rat skeletal muscle arterioles to aerobic exercise training. J Appl Physiol (1985). 1992;72(6):2052–62.
13.
Zurück zum Zitat Rakobowchuk M, Tanguay S, Burgomaster KA, et al. Sprint interval and traditional endurance training induce similar improvements in peripheral arterial stiffness and flow-mediated dilation in healthy humans. Am J Physiol Regul Integr Comp Physiol. 2008;295(1):R236–42.PubMedPubMedCentralCrossRef Rakobowchuk M, Tanguay S, Burgomaster KA, et al. Sprint interval and traditional endurance training induce similar improvements in peripheral arterial stiffness and flow-mediated dilation in healthy humans. Am J Physiol Regul Integr Comp Physiol. 2008;295(1):R236–42.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Hickson RC, Hagberg JM, Ehsani AA, et al. Time course of the adaptive responses of aerobic power and heart rate to training. Med Sci Sports Exerc. 1981;13(1):17–20.PubMed Hickson RC, Hagberg JM, Ehsani AA, et al. Time course of the adaptive responses of aerobic power and heart rate to training. Med Sci Sports Exerc. 1981;13(1):17–20.PubMed
15.
Zurück zum Zitat Billat V, Lepretre PM, Heugas AM, et al. Training and bioenergetic characteristics in elite male and female Kenyan runners. Med Sci Sports Exerc. 2003;35(2):297–304.PubMedCrossRef Billat V, Lepretre PM, Heugas AM, et al. Training and bioenergetic characteristics in elite male and female Kenyan runners. Med Sci Sports Exerc. 2003;35(2):297–304.PubMedCrossRef
16.
Zurück zum Zitat Billat VL, Demarle A, Slawinski J, et al. Physical and training characteristics of top-class marathon runners. Med Sci Sports Exerc. 2001;33(12):2089–97.PubMedCrossRef Billat VL, Demarle A, Slawinski J, et al. Physical and training characteristics of top-class marathon runners. Med Sci Sports Exerc. 2001;33(12):2089–97.PubMedCrossRef
17.
Zurück zum Zitat Reilly T, Ekblom B. The use of recovery methods post-exercise. J Sports Sci. 2005;23(6):619–27.PubMedCrossRef Reilly T, Ekblom B. The use of recovery methods post-exercise. J Sports Sci. 2005;23(6):619–27.PubMedCrossRef
18.
Zurück zum Zitat Barnett A. Using recovery modalities between training sessions in elite athletes: does it help? Sports Med. 2006;36(9):781–96.PubMedCrossRef Barnett A. Using recovery modalities between training sessions in elite athletes: does it help? Sports Med. 2006;36(9):781–96.PubMedCrossRef
20.
Zurück zum Zitat Peiffer JJ, Abbiss CR, Watson G, et al. Effect of a 5-min cold-water immersion recovery on exercise performance in the heat. Br J Sports Med. 2010;44(6):461–5.PubMedCrossRef Peiffer JJ, Abbiss CR, Watson G, et al. Effect of a 5-min cold-water immersion recovery on exercise performance in the heat. Br J Sports Med. 2010;44(6):461–5.PubMedCrossRef
21.
Zurück zum Zitat Peiffer JJ, Abbiss CR, Watson G, et al. Effect of cold-water immersion duration on body temperature and muscle function. J Sports Sci. 2009;27(10):987–93.PubMedCrossRef Peiffer JJ, Abbiss CR, Watson G, et al. Effect of cold-water immersion duration on body temperature and muscle function. J Sports Sci. 2009;27(10):987–93.PubMedCrossRef
22.
Zurück zum Zitat Vaile J, Halson S, Gill N, et al. Effect of hydrotherapy on the signs and symptoms of delayed onset muscle soreness. Eur J Appl Physiol. 2008;102(4):447–55.PubMedCrossRef Vaile J, Halson S, Gill N, et al. Effect of hydrotherapy on the signs and symptoms of delayed onset muscle soreness. Eur J Appl Physiol. 2008;102(4):447–55.PubMedCrossRef
23.
Zurück zum Zitat Ingram J, Dawson B, Goodman C, et al. Effect of water immersion methods on post-exercise recovery from simulated team sport exercise. J Sci Med Sport. 2009;12(3):417–21.PubMedCrossRef Ingram J, Dawson B, Goodman C, et al. Effect of water immersion methods on post-exercise recovery from simulated team sport exercise. J Sci Med Sport. 2009;12(3):417–21.PubMedCrossRef
24.
Zurück zum Zitat Minett GM, Duffield R, Billaut F, et al. Cold-water immersion decreases cerebral oxygenation but improves recovery after intermittent-sprint exercise in the heat. Scand J Med Sci Sports. 2014;24(4):656–66.PubMedCrossRef Minett GM, Duffield R, Billaut F, et al. Cold-water immersion decreases cerebral oxygenation but improves recovery after intermittent-sprint exercise in the heat. Scand J Med Sci Sports. 2014;24(4):656–66.PubMedCrossRef
25.
Zurück zum Zitat Dunne A, Crampton D, Egana M. Effect of post-exercise hydrotherapy water temperature on subsequent exhaustive running performance in normothermic conditions. J Sci Med Sport. 2013;16(5):466–71.PubMedCrossRef Dunne A, Crampton D, Egana M. Effect of post-exercise hydrotherapy water temperature on subsequent exhaustive running performance in normothermic conditions. J Sci Med Sport. 2013;16(5):466–71.PubMedCrossRef
26.
Zurück zum Zitat Vaile J, Halson S, Gill N, et al. Effect of hydrotherapy on recovery from fatigue. Int J Sports Med. 2008;29(7):539–44.PubMedCrossRef Vaile J, Halson S, Gill N, et al. Effect of hydrotherapy on recovery from fatigue. Int J Sports Med. 2008;29(7):539–44.PubMedCrossRef
27.
Zurück zum Zitat Stanley J, Peake JM, Buchheit M. Consecutive days of cold water immersion: effects on cycling performance and heart rate variability. Eur J Appl Physiol. 2013;113(2):371–84.PubMedCrossRef Stanley J, Peake JM, Buchheit M. Consecutive days of cold water immersion: effects on cycling performance and heart rate variability. Eur J Appl Physiol. 2013;113(2):371–84.PubMedCrossRef
28.
Zurück zum Zitat Pointon M, Duffield R, Cannon J, et al. Cold application for neuromuscular recovery following intense lower-body exercise. Eur J Appl Physiol. 2011;111(12):2977–86.PubMedCrossRef Pointon M, Duffield R, Cannon J, et al. Cold application for neuromuscular recovery following intense lower-body exercise. Eur J Appl Physiol. 2011;111(12):2977–86.PubMedCrossRef
29.
Zurück zum Zitat Poppendieck W, Faude O, Wegmann M, et al. Cooling and performance recovery of trained athletes: a meta-analytical review. Int J Sports Physiol Perform. 2013;8(3):227–42.PubMed Poppendieck W, Faude O, Wegmann M, et al. Cooling and performance recovery of trained athletes: a meta-analytical review. Int J Sports Physiol Perform. 2013;8(3):227–42.PubMed
30.
Zurück zum Zitat Versey NG, Halson SL, Dawson BT. Water immersion recovery for athletes: effect on exercise performance and practical recommendations. Sports Med. 2013;43(11):1101–30.PubMedCrossRef Versey NG, Halson SL, Dawson BT. Water immersion recovery for athletes: effect on exercise performance and practical recommendations. Sports Med. 2013;43(11):1101–30.PubMedCrossRef
31.
Zurück zum Zitat Leeder J, Gissane C, van Someren K, et al. Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med. 2011;46(4):233–40.PubMedCrossRef Leeder J, Gissane C, van Someren K, et al. Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med. 2011;46(4):233–40.PubMedCrossRef
32.
Zurück zum Zitat Halson SL. Does the time frame between exercise influence the effectiveness of hydrotherapy for recovery? Int J Sports Physiol Perform. 2011;6(2):147–59.PubMed Halson SL. Does the time frame between exercise influence the effectiveness of hydrotherapy for recovery? Int J Sports Physiol Perform. 2011;6(2):147–59.PubMed
33.
Zurück zum Zitat Bleakley C, McDonough S, Gardner E, et al. Cold-water immersion for preventing and treating muscle soreness after exercise. Cochrane Database Syst Rev. 2012;2:CD008262.PubMed Bleakley C, McDonough S, Gardner E, et al. Cold-water immersion for preventing and treating muscle soreness after exercise. Cochrane Database Syst Rev. 2012;2:CD008262.PubMed
34.
Zurück zum Zitat Ihsan M, Markworth JF, Watson G, et al. Regular post-exercise cooling enhances mitochondrial biogenesis through AMPK and p38 MAPK in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2015;309(3):R286–94.PubMedCrossRef Ihsan M, Markworth JF, Watson G, et al. Regular post-exercise cooling enhances mitochondrial biogenesis through AMPK and p38 MAPK in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2015;309(3):R286–94.PubMedCrossRef
35.
Zurück zum Zitat Ihsan M, Watson G, Choo HC, et al. Postexercise muscle cooling enhances gene expression of PGC-1alpha. Med Sci Sports Exerc. 2014;46(10):1900–7.PubMedCrossRef Ihsan M, Watson G, Choo HC, et al. Postexercise muscle cooling enhances gene expression of PGC-1alpha. Med Sci Sports Exerc. 2014;46(10):1900–7.PubMedCrossRef
36.
Zurück zum Zitat Ihsan M, Watson G, Abbiss C. PGC-1α mediated muscle aerobic adaptations to exercise, heat and cold exposure. Cell Mol Exerc Physiol. 2014;3(1):e7.CrossRef Ihsan M, Watson G, Abbiss C. PGC-1α mediated muscle aerobic adaptations to exercise, heat and cold exposure. Cell Mol Exerc Physiol. 2014;3(1):e7.CrossRef
37.
Zurück zum Zitat Frohlich M, Faude O, Klein M, et al. Strength training adaptations after cold water immersion. J Strength Cond Res. 2014;28(9):2628–33.PubMedCrossRef Frohlich M, Faude O, Klein M, et al. Strength training adaptations after cold water immersion. J Strength Cond Res. 2014;28(9):2628–33.PubMedCrossRef
38.
Zurück zum Zitat Roberts LA, Raastad T, Markworth JF, et al. Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training. J Physiol. 2015;593(18):4285–301.PubMedCrossRef Roberts LA, Raastad T, Markworth JF, et al. Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training. J Physiol. 2015;593(18):4285–301.PubMedCrossRef
39.
Zurück zum Zitat Taylor JL, Todd G, Gandevia SC. Evidence for a supraspinal contribution to human muscle fatigue. Clin Exp Pharmacol Physiol. 2006;33(4):400–5.PubMedCrossRef Taylor JL, Todd G, Gandevia SC. Evidence for a supraspinal contribution to human muscle fatigue. Clin Exp Pharmacol Physiol. 2006;33(4):400–5.PubMedCrossRef
40.
Zurück zum Zitat Nybo L, Nielsen B. Hyperthermia and central fatigue during prolonged exercise in humans. J Appl Physiol (1985). 2001;91(3):1055–60. Nybo L, Nielsen B. Hyperthermia and central fatigue during prolonged exercise in humans. J Appl Physiol (1985). 2001;91(3):1055–60.
41.
Zurück zum Zitat Morrison S, Sleivert G, Cheung S. Passive hyperthermia reduces voluntary activation and isometric force production. Eur J Appl Physiol. 2004;91(5):729–36.PubMedCrossRef Morrison S, Sleivert G, Cheung S. Passive hyperthermia reduces voluntary activation and isometric force production. Eur J Appl Physiol. 2004;91(5):729–36.PubMedCrossRef
42.
Zurück zum Zitat Cheung SS, Sleivert GG. Multiple triggers for hyperthermic fatigue and exhaustion. Exerc Sport Sci Rev. 2004;32(3):100–6.PubMedCrossRef Cheung SS, Sleivert GG. Multiple triggers for hyperthermic fatigue and exhaustion. Exerc Sport Sci Rev. 2004;32(3):100–6.PubMedCrossRef
43.
44.
Zurück zum Zitat Wakabayashi H, Kaneda K, Sato D, et al. Effect of non-uniform skin temperature on thermoregulatory response during water immersion. Eur J Appl Physiol. 2008;104(2):175–81.PubMedCrossRef Wakabayashi H, Kaneda K, Sato D, et al. Effect of non-uniform skin temperature on thermoregulatory response during water immersion. Eur J Appl Physiol. 2008;104(2):175–81.PubMedCrossRef
45.
Zurück zum Zitat Peiffer JJ, Abbiss CR, Nosaka K, et al. Effect of cold water immersion after exercise in the heat on muscle function, body temperatures, and vessel diameter. J Sci Med Sport. 2009;12(1):91–6.PubMedCrossRef Peiffer JJ, Abbiss CR, Nosaka K, et al. Effect of cold water immersion after exercise in the heat on muscle function, body temperatures, and vessel diameter. J Sci Med Sport. 2009;12(1):91–6.PubMedCrossRef
46.
Zurück zum Zitat Yeargin SW, Casa DJ, McClung JM, et al. Body cooling between two bouts of exercise in the heat enhances subsequent performance. J Strength Cond Res. 2006;20(2):383–9.PubMed Yeargin SW, Casa DJ, McClung JM, et al. Body cooling between two bouts of exercise in the heat enhances subsequent performance. J Strength Cond Res. 2006;20(2):383–9.PubMed
47.
Zurück zum Zitat Pointon M, Duffield R, Cannon J, et al. Cold water immersion recovery following intermittent-sprint exercise in the heat. Eur J Appl Physiol. 2012;112(7):2483–94.PubMedCrossRef Pointon M, Duffield R, Cannon J, et al. Cold water immersion recovery following intermittent-sprint exercise in the heat. Eur J Appl Physiol. 2012;112(7):2483–94.PubMedCrossRef
48.
Zurück zum Zitat Nielsen B, Hyldig T, Bidstrup F, et al. Brain activity and fatigue during prolonged exercise in the heat. Pflugers Arch. 2001;442(1):41–8.PubMedCrossRef Nielsen B, Hyldig T, Bidstrup F, et al. Brain activity and fatigue during prolonged exercise in the heat. Pflugers Arch. 2001;442(1):41–8.PubMedCrossRef
49.
Zurück zum Zitat Nybo L, Nielsen B. Perceived exertion is associated with an altered brain activity during exercise with progressive hyperthermia. J Appl Physiol (1985). 2001;91(5):2017–23. Nybo L, Nielsen B. Perceived exertion is associated with an altered brain activity during exercise with progressive hyperthermia. J Appl Physiol (1985). 2001;91(5):2017–23.
50.
Zurück zum Zitat Meeusen R, Watson P, Hasegawa H, et al. Central fatigue: the serotonin hypothesis and beyond. Sports Med. 2006;36(10):881–909.PubMedCrossRef Meeusen R, Watson P, Hasegawa H, et al. Central fatigue: the serotonin hypothesis and beyond. Sports Med. 2006;36(10):881–909.PubMedCrossRef
51.
Zurück zum Zitat Davis JM, Bailey SP. Possible mechanisms of central nervous system fatigue during exercise. Med Sci Sports Exerc. 1997;29(1):45–57.PubMedCrossRef Davis JM, Bailey SP. Possible mechanisms of central nervous system fatigue during exercise. Med Sci Sports Exerc. 1997;29(1):45–57.PubMedCrossRef
52.
Zurück zum Zitat Nybo L, Rasmussen P. Inadequate cerebral oxygen delivery and central fatigue during strenuous exercise. Exerc Sport Sci Rev. 2007;35(3):110–8.PubMedCrossRef Nybo L, Rasmussen P. Inadequate cerebral oxygen delivery and central fatigue during strenuous exercise. Exerc Sport Sci Rev. 2007;35(3):110–8.PubMedCrossRef
53.
Zurück zum Zitat Nybo L, Moller K, Pedersen BK, et al. Association between fatigue and failure to preserve cerebral energy turnover during prolonged exercise. Acta Physiol Scand. 2003;179(1):67–74.PubMedCrossRef Nybo L, Moller K, Pedersen BK, et al. Association between fatigue and failure to preserve cerebral energy turnover during prolonged exercise. Acta Physiol Scand. 2003;179(1):67–74.PubMedCrossRef
54.
Zurück zum Zitat Vaile J, Halson S, Gill N, et al. Effect of cold water immersion on repeat cycling performance and thermoregulation in the heat. J Sports Sci. 2008;26(5):431–40.PubMedCrossRef Vaile J, Halson S, Gill N, et al. Effect of cold water immersion on repeat cycling performance and thermoregulation in the heat. J Sports Sci. 2008;26(5):431–40.PubMedCrossRef
55.
Zurück zum Zitat De Pauw K, Roelands B, Marušič U, et al. Brain mapping after prolonged cycling and during recovery in the heat. J Appl Physiol (1985). 2013;115(9):1324–31.CrossRef De Pauw K, Roelands B, Marušič U, et al. Brain mapping after prolonged cycling and during recovery in the heat. J Appl Physiol (1985). 2013;115(9):1324–31.CrossRef
56.
Zurück zum Zitat Stocks JM, Patterson MJ, Hyde DE, et al. Effects of immersion water temperature on whole-body fluid distribution in humans. Acta Physiol Scand. 2004;182(1):3–10.PubMedCrossRef Stocks JM, Patterson MJ, Hyde DE, et al. Effects of immersion water temperature on whole-body fluid distribution in humans. Acta Physiol Scand. 2004;182(1):3–10.PubMedCrossRef
57.
Zurück zum Zitat Newsholme E, Acworth I, Blomstrand E. Amino acids, brain neurotransmitters and a functional link between muscle and brain that is important in sustained exercise. Adv Myochem. 1987;1987:127–38. Newsholme E, Acworth I, Blomstrand E. Amino acids, brain neurotransmitters and a functional link between muscle and brain that is important in sustained exercise. Adv Myochem. 1987;1987:127–38.
58.
Zurück zum Zitat Roelands B, Hasegawa H, Watson P, et al. The effects of acute dopamine reuptake inhibition on performance. Med Sci Sports Exerc. 2008;40(5):879–85.PubMedCrossRef Roelands B, Hasegawa H, Watson P, et al. The effects of acute dopamine reuptake inhibition on performance. Med Sci Sports Exerc. 2008;40(5):879–85.PubMedCrossRef
59.
Zurück zum Zitat Bailey SP, Davis JM, Ahlborn EN. Serotonergic agonists and antagonists affect endurance performance in the rat. Int J Sports Med. 1993;14(6):330–3.PubMedCrossRef Bailey SP, Davis JM, Ahlborn EN. Serotonergic agonists and antagonists affect endurance performance in the rat. Int J Sports Med. 1993;14(6):330–3.PubMedCrossRef
60.
Zurück zum Zitat Roelands B, Goekint M, Buyse L, et al. Time trial performance in normal and high ambient temperature: is there a role for 5-HT? Eur J Appl Physiol. 2009;107(1):119–26.PubMedCrossRef Roelands B, Goekint M, Buyse L, et al. Time trial performance in normal and high ambient temperature: is there a role for 5-HT? Eur J Appl Physiol. 2009;107(1):119–26.PubMedCrossRef
61.
Zurück zum Zitat Mundel T, Bunn SJ, Hooper PL, et al. The effects of face cooling during hyperthermic exercise in man: evidence for an integrated thermal, neuroendocrine and behavioural response. Exp Physiol. 2007;92(1):187–95.PubMedCrossRef Mundel T, Bunn SJ, Hooper PL, et al. The effects of face cooling during hyperthermic exercise in man: evidence for an integrated thermal, neuroendocrine and behavioural response. Exp Physiol. 2007;92(1):187–95.PubMedCrossRef
62.
Zurück zum Zitat Mundel T, Hooper PL, Bunn SJ, et al. The effects of face cooling on the prolactin response and subjective comfort during moderate passive heating in humans. Exp Physiol. 2006;91(6):1007–14.PubMedCrossRef Mundel T, Hooper PL, Bunn SJ, et al. The effects of face cooling on the prolactin response and subjective comfort during moderate passive heating in humans. Exp Physiol. 2006;91(6):1007–14.PubMedCrossRef
63.
Zurück zum Zitat Rowell LB. Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev. 1974;54(1):75–159.PubMed Rowell LB. Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev. 1974;54(1):75–159.PubMed
64.
Zurück zum Zitat González-Alonso J, Calbet JAL. Reductions in systemic and skeletal muscle blood flow and oxygen delivery limit maximal aerobic capacity in humans. Circulation. 2003;107(6):824–30.PubMedCrossRef González-Alonso J, Calbet JAL. Reductions in systemic and skeletal muscle blood flow and oxygen delivery limit maximal aerobic capacity in humans. Circulation. 2003;107(6):824–30.PubMedCrossRef
65.
Zurück zum Zitat Périard JD, Cramer MN, Chapman PG, et al. Cardiovascular strain impairs prolonged self-paced exercise in the heat. Exp Physiol. 2011;96(2):134–44.PubMedCrossRef Périard JD, Cramer MN, Chapman PG, et al. Cardiovascular strain impairs prolonged self-paced exercise in the heat. Exp Physiol. 2011;96(2):134–44.PubMedCrossRef
66.
Zurück zum Zitat Hayashi K, Honda Y, Ogawa T, et al. Effects of brief leg cooling after moderate exercise on cardiorespiratory responses to subsequent exercise in the heat. Eur J Appl Physiol. 2004;92(4–5):414–20.PubMed Hayashi K, Honda Y, Ogawa T, et al. Effects of brief leg cooling after moderate exercise on cardiorespiratory responses to subsequent exercise in the heat. Eur J Appl Physiol. 2004;92(4–5):414–20.PubMed
67.
Zurück zum Zitat Vaile J, O’Hagan C, Stefanovic B, et al. Effect of cold water immersion on repeated cycling performance and limb blood flow. Br J Sports Med. 2010;45(10):825–9.PubMedCrossRef Vaile J, O’Hagan C, Stefanovic B, et al. Effect of cold water immersion on repeated cycling performance and limb blood flow. Br J Sports Med. 2010;45(10):825–9.PubMedCrossRef
68.
Zurück zum Zitat Mawhinney C, Jones H, Joo CH, et al. Influence of cold-water immersion on limb and cutaneous blood flow after exercise. Med Sci Sports Exerc. 2013;45(12):2277–85.PubMedCrossRef Mawhinney C, Jones H, Joo CH, et al. Influence of cold-water immersion on limb and cutaneous blood flow after exercise. Med Sci Sports Exerc. 2013;45(12):2277–85.PubMedCrossRef
69.
Zurück zum Zitat Ihsan M, Watson G, Lipski M, et al. Influence of postexercise cooling on muscle oxygenation and blood volume changes. Med Sci Sports Exerc. 2013;45(5):876–82.PubMedCrossRef Ihsan M, Watson G, Lipski M, et al. Influence of postexercise cooling on muscle oxygenation and blood volume changes. Med Sci Sports Exerc. 2013;45(5):876–82.PubMedCrossRef
70.
Zurück zum Zitat Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88(1):287–332.PubMedCrossRef Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88(1):287–332.PubMedCrossRef
71.
Zurück zum Zitat Abbiss CR, Laursen PB. Models to explain fatigue during prolonged endurance cycling. Sports Med. 2005;35(10):865–98.PubMedCrossRef Abbiss CR, Laursen PB. Models to explain fatigue during prolonged endurance cycling. Sports Med. 2005;35(10):865–98.PubMedCrossRef
72.
Zurück zum Zitat Halson SL, Quod MJ, Martin DT, et al. Physiological responses to cold water immersion following cycling in the heat. Int J Sports Physiol Perform. 2008;3(3):331–46.PubMed Halson SL, Quod MJ, Martin DT, et al. Physiological responses to cold water immersion following cycling in the heat. Int J Sports Physiol Perform. 2008;3(3):331–46.PubMed
73.
Zurück zum Zitat Hausswirth C, Duffield R, Pournot H, et al. Postexercise cooling interventions and the effects on exercise-induced heat stress in a temperate environment. Appl Physiol Nutr Metab. 2012;37(5):965–75.PubMedCrossRef Hausswirth C, Duffield R, Pournot H, et al. Postexercise cooling interventions and the effects on exercise-induced heat stress in a temperate environment. Appl Physiol Nutr Metab. 2012;37(5):965–75.PubMedCrossRef
74.
Zurück zum Zitat Johansen LB, Bie P, Warberg J, et al. Role of hemodilution on renal responses to water immersion in humans. Am J Physiol. 1995;269(5 Pt 2):R1068–76.PubMed Johansen LB, Bie P, Warberg J, et al. Role of hemodilution on renal responses to water immersion in humans. Am J Physiol. 1995;269(5 Pt 2):R1068–76.PubMed
75.
Zurück zum Zitat Johansen LB, Jensen TUS, Pump B, et al. Contribution of abdomen and legs to central blood volume expansion in humans during immersion. J Appl Physiol (1985). 1997;83(3):695–9. Johansen LB, Jensen TUS, Pump B, et al. Contribution of abdomen and legs to central blood volume expansion in humans during immersion. J Appl Physiol (1985). 1997;83(3):695–9.
76.
Zurück zum Zitat Park KS, Choi JK, Park YS. Cardiovascular regulation during water immersion. Appl Hum Sci. 1999;18(6):233–41.CrossRef Park KS, Choi JK, Park YS. Cardiovascular regulation during water immersion. Appl Hum Sci. 1999;18(6):233–41.CrossRef
77.
Zurück zum Zitat Gabrielsen A, Johansen LB, Norsk P. Central cardiovascular pressures during graded water immersion in humans. J Appl Physiol (1985). 1993;75(2):581–5. Gabrielsen A, Johansen LB, Norsk P. Central cardiovascular pressures during graded water immersion in humans. J Appl Physiol (1985). 1993;75(2):581–5.
78.
Zurück zum Zitat Parouty J, Al Haddad H, Quod M, et al. Effect of cold water immersion on 100-m sprint performance in well-trained swimmers. Eur J Appl Physiol. 2010;109(3):483–90.PubMedCrossRef Parouty J, Al Haddad H, Quod M, et al. Effect of cold water immersion on 100-m sprint performance in well-trained swimmers. Eur J Appl Physiol. 2010;109(3):483–90.PubMedCrossRef
79.
Zurück zum Zitat Crowe MJ, O’Connor D, Rudd D. Cold water recovery reduces anaerobic performance. Int J Sports Med. 2007;28(12):994–8.PubMedCrossRef Crowe MJ, O’Connor D, Rudd D. Cold water recovery reduces anaerobic performance. Int J Sports Med. 2007;28(12):994–8.PubMedCrossRef
80.
Zurück zum Zitat Bergh U, Ekblom B. Influence of muscle temperature on maximal muscle strength and power output in human skeletal muscles. Acta Physiol Scand. 1979;107(1):33–7.PubMedCrossRef Bergh U, Ekblom B. Influence of muscle temperature on maximal muscle strength and power output in human skeletal muscles. Acta Physiol Scand. 1979;107(1):33–7.PubMedCrossRef
81.
Zurück zum Zitat Stanley J, Peake JM, Buchheit M. Cardiac parasympathetic reactivation following exercise: implications for training prescription. Sports Med. 2013;43(12):1259–77.PubMedCrossRef Stanley J, Peake JM, Buchheit M. Cardiac parasympathetic reactivation following exercise: implications for training prescription. Sports Med. 2013;43(12):1259–77.PubMedCrossRef
82.
Zurück zum Zitat Hautala AJ, Kiviniemi AM, Tulppo MP. Individual responses to aerobic exercise: the role of the autonomic nervous system. Neurosci Biobehav Rev. 2009;33(2):107–15.PubMedCrossRef Hautala AJ, Kiviniemi AM, Tulppo MP. Individual responses to aerobic exercise: the role of the autonomic nervous system. Neurosci Biobehav Rev. 2009;33(2):107–15.PubMedCrossRef
83.
Zurück zum Zitat Perini R, Orizio C, Comande A, et al. Plasma norepinephrine and heart rate dynamics during recovery from submaximal exercise in man. Eur J Appl Physiol Occup Physiol. 1989;58(8):879–83.PubMedCrossRef Perini R, Orizio C, Comande A, et al. Plasma norepinephrine and heart rate dynamics during recovery from submaximal exercise in man. Eur J Appl Physiol Occup Physiol. 1989;58(8):879–83.PubMedCrossRef
84.
Zurück zum Zitat Buchheit M, Al Haddad H, Mendez-Villanueva A, et al. Effect of maturation on hemodynamic and autonomic control recovery following maximal running exercise in highly trained young soccer players. Front Physiol. 2011;2:69.PubMedPubMedCentralCrossRef Buchheit M, Al Haddad H, Mendez-Villanueva A, et al. Effect of maturation on hemodynamic and autonomic control recovery following maximal running exercise in highly trained young soccer players. Front Physiol. 2011;2:69.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Buchheit M, Duche P, Laursen PB, et al. Postexercise heart rate recovery in children: relationship with power output, blood pH, and lactate. Appl Physiol Nutr Metab. 2010;35(2):142–50.PubMedCrossRef Buchheit M, Duche P, Laursen PB, et al. Postexercise heart rate recovery in children: relationship with power output, blood pH, and lactate. Appl Physiol Nutr Metab. 2010;35(2):142–50.PubMedCrossRef
86.
Zurück zum Zitat Ba A, Delliaux S, Bregeon F, et al. Post-exercise heart rate recovery in healthy, obeses, and COPD subjects: relationships with blood lactic acid and PaO2 levels. Clin Res Cardiol. 2009;98(1):52–8.PubMedCrossRef Ba A, Delliaux S, Bregeon F, et al. Post-exercise heart rate recovery in healthy, obeses, and COPD subjects: relationships with blood lactic acid and PaO2 levels. Clin Res Cardiol. 2009;98(1):52–8.PubMedCrossRef
87.
Zurück zum Zitat Mourot L, Bouhaddi M, Gandelin E, et al. Cardiovascular autonomic control during short-term thermoneutral and cool head-out immersion. Aviat Space Environ Med. 2008;79(1):14–20.PubMedCrossRef Mourot L, Bouhaddi M, Gandelin E, et al. Cardiovascular autonomic control during short-term thermoneutral and cool head-out immersion. Aviat Space Environ Med. 2008;79(1):14–20.PubMedCrossRef
88.
Zurück zum Zitat Pump B, Shiraishi M, Gabrielsen A, et al. Cardiovascular effects of static carotid baroreceptor stimulation during water immersion in humans. Am J Physiol Heart Circ Physiol. 2001;280(6):H2607–15.PubMed Pump B, Shiraishi M, Gabrielsen A, et al. Cardiovascular effects of static carotid baroreceptor stimulation during water immersion in humans. Am J Physiol Heart Circ Physiol. 2001;280(6):H2607–15.PubMed
89.
Zurück zum Zitat Buchheit M, Peiffer JJ, Abbiss CR, et al. Effect of cold water immersion on postexercise parasympathetic reactivation. Am J Physiol Heart Circ Physiol. 2009;296(2):H421–7.PubMedCrossRef Buchheit M, Peiffer JJ, Abbiss CR, et al. Effect of cold water immersion on postexercise parasympathetic reactivation. Am J Physiol Heart Circ Physiol. 2009;296(2):H421–7.PubMedCrossRef
90.
Zurück zum Zitat Stanley J, Buchheit M, Peake JM. The effect of post-exercise hydrotherapy on subsequent exercise performance and heart rate variability. Eur J Appl Physiol. 2012;112(3):951–61.PubMedCrossRef Stanley J, Buchheit M, Peake JM. The effect of post-exercise hydrotherapy on subsequent exercise performance and heart rate variability. Eur J Appl Physiol. 2012;112(3):951–61.PubMedCrossRef
91.
Zurück zum Zitat Al Haddad H, Parouty J, Buchheit M. Effect of daily cold water immersion on heart rate variability and subjective ratings of well-being in highly trained swimmers. Int J Sports Physiol Perform. 2012;7(1):33–8.PubMed Al Haddad H, Parouty J, Buchheit M. Effect of daily cold water immersion on heart rate variability and subjective ratings of well-being in highly trained swimmers. Int J Sports Physiol Perform. 2012;7(1):33–8.PubMed
92.
Zurück zum Zitat Bastos FN, Vanderlei LC, Nakamura FY, et al. Effects of cold water immersion and active recovery on post-exercise heart rate variability. Int J Sports Med. 2012;33(11):873–9.PubMedCrossRef Bastos FN, Vanderlei LC, Nakamura FY, et al. Effects of cold water immersion and active recovery on post-exercise heart rate variability. Int J Sports Med. 2012;33(11):873–9.PubMedCrossRef
93.
Zurück zum Zitat Richter EA, Ruderman NB, Galbo H. Alpha and beta adrenergic effects on metabolism in contracting, perfused muscle. Acta Physiol Scand. 1982;116(3):215–22.PubMedCrossRef Richter EA, Ruderman NB, Galbo H. Alpha and beta adrenergic effects on metabolism in contracting, perfused muscle. Acta Physiol Scand. 1982;116(3):215–22.PubMedCrossRef
94.
Zurück zum Zitat Costill DL, Hargreaves M. Carbohydrate nutrition and fatigue. Sports Med. 1992;13(2):86–92.PubMedCrossRef Costill DL, Hargreaves M. Carbohydrate nutrition and fatigue. Sports Med. 1992;13(2):86–92.PubMedCrossRef
95.
Zurück zum Zitat Rauch HG, St Clair Gibson A, Lambert EV, et al. A signalling role for muscle glycogen in the regulation of pace during prolonged exercise. Br J Sports Med. 2005;39(1):34–8.PubMedPubMedCentralCrossRef Rauch HG, St Clair Gibson A, Lambert EV, et al. A signalling role for muscle glycogen in the regulation of pace during prolonged exercise. Br J Sports Med. 2005;39(1):34–8.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Rauch LH, Rodger I, Wilson GR, et al. The effects of carbohydrate loading on muscle glycogen content and cycling performance. Int J Sport Nutr. 1995;5(1):25–36.PubMed Rauch LH, Rodger I, Wilson GR, et al. The effects of carbohydrate loading on muscle glycogen content and cycling performance. Int J Sport Nutr. 1995;5(1):25–36.PubMed
97.
Zurück zum Zitat Beelen M, Burke LM, Gibala MJ, et al. Nutritional strategies to promote postexercise recovery. Int J Sport Nutr Exerc Metab. 2010;20(6):515–32.PubMed Beelen M, Burke LM, Gibala MJ, et al. Nutritional strategies to promote postexercise recovery. Int J Sport Nutr Exerc Metab. 2010;20(6):515–32.PubMed
98.
Zurück zum Zitat Gregson W, Allan R, Holden S, et al. Postexercise cold-water immersion does not attenuate muscle glycogen resynthesis. Med Sci Sports Exerc. 2013;45(6):1174–81.PubMedCrossRef Gregson W, Allan R, Holden S, et al. Postexercise cold-water immersion does not attenuate muscle glycogen resynthesis. Med Sci Sports Exerc. 2013;45(6):1174–81.PubMedCrossRef
99.
Zurück zum Zitat Slivka D, Heesch M, Dumke C, et al. Effects of post-exercise recovery in a cold environment on muscle glycogen, PGC-1alpha, and downstream transcription factors. Cryobiology. 2013;66(3):250–5.PubMedCrossRef Slivka D, Heesch M, Dumke C, et al. Effects of post-exercise recovery in a cold environment on muscle glycogen, PGC-1alpha, and downstream transcription factors. Cryobiology. 2013;66(3):250–5.PubMedCrossRef
100.
Zurück zum Zitat Slivka DR, Dumke CL, Tucker TJ, et al. Human mRNA response to exercise and temperature. Int J Sports Med. 2012;33(2):94–100.PubMedCrossRef Slivka DR, Dumke CL, Tucker TJ, et al. Human mRNA response to exercise and temperature. Int J Sports Med. 2012;33(2):94–100.PubMedCrossRef
101.
Zurück zum Zitat Tucker TJ, Slivka DR, Cuddy JS, et al. Effect of local cold application on glycogen recovery. J Sports Med Phys Fitness. 2012;52(2):158–64.PubMed Tucker TJ, Slivka DR, Cuddy JS, et al. Effect of local cold application on glycogen recovery. J Sports Med Phys Fitness. 2012;52(2):158–64.PubMed
102.
Zurück zum Zitat Kennedy JW, Hirshman MF, Gervino EV, et al. Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes. Diabetes. 1999;48(5):1192–7.PubMedCrossRef Kennedy JW, Hirshman MF, Gervino EV, et al. Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes. Diabetes. 1999;48(5):1192–7.PubMedCrossRef
103.
Zurück zum Zitat Swenson C, Sward L, Karlsson J. Cryotherapy in sports medicine. Scand J Med Sci Sports. 1996;6(4):193–200.PubMedCrossRef Swenson C, Sward L, Karlsson J. Cryotherapy in sports medicine. Scand J Med Sci Sports. 1996;6(4):193–200.PubMedCrossRef
104.
Zurück zum Zitat Wilcock IM, Cronin JB, Hing WA. Physiological response to water immersion: a method for sport recovery? Sports Med. 2006;36(9):747–65.PubMedCrossRef Wilcock IM, Cronin JB, Hing WA. Physiological response to water immersion: a method for sport recovery? Sports Med. 2006;36(9):747–65.PubMedCrossRef
105.
Zurück zum Zitat Yanagisawa O, Kudo H, Takahashi N, et al. Magnetic resonance imaging evaluation of cooling on blood flow and oedema in skeletal muscles after exercise. Eur J Appl Physiol. 2004;91(5):737–40.PubMedCrossRef Yanagisawa O, Kudo H, Takahashi N, et al. Magnetic resonance imaging evaluation of cooling on blood flow and oedema in skeletal muscles after exercise. Eur J Appl Physiol. 2004;91(5):737–40.PubMedCrossRef
106.
Zurück zum Zitat Crenshaw AG, Karlsson S, Gerdle B, et al. Differential responses in intramuscular pressure and EMG fatigue indicators during low- vs. high-level isometric contractions to fatigue. Acta Physiol Scand. 1997;160(4):353–61.PubMedCrossRef Crenshaw AG, Karlsson S, Gerdle B, et al. Differential responses in intramuscular pressure and EMG fatigue indicators during low- vs. high-level isometric contractions to fatigue. Acta Physiol Scand. 1997;160(4):353–61.PubMedCrossRef
107.
Zurück zum Zitat Gregson W, Black MA, Jones H, et al. Influence of cold water immersion on limb and cutaneous blood flow at rest. Am J Sports Med. 2011;39(6):1316–23.PubMedCrossRef Gregson W, Black MA, Jones H, et al. Influence of cold water immersion on limb and cutaneous blood flow at rest. Am J Sports Med. 2011;39(6):1316–23.PubMedCrossRef
108.
Zurück zum Zitat Merrick MA, Rankin JM, Andres FA, et al. A preliminary examination of cryotherapy and secondary injury in skeletal muscle. Med Sci Sports Exerc. 1999;31(11):1516.PubMedCrossRef Merrick MA, Rankin JM, Andres FA, et al. A preliminary examination of cryotherapy and secondary injury in skeletal muscle. Med Sci Sports Exerc. 1999;31(11):1516.PubMedCrossRef
109.
Zurück zum Zitat Carvalho N, Puntel G, Correa P, et al. Protective effects of therapeutic cold and heat against the oxidative damage induced by a muscle strain injury in rats. J Sports Sci. 2010;28(9):923–35.PubMedCrossRef Carvalho N, Puntel G, Correa P, et al. Protective effects of therapeutic cold and heat against the oxidative damage induced by a muscle strain injury in rats. J Sports Sci. 2010;28(9):923–35.PubMedCrossRef
110.
Zurück zum Zitat Cheung K, Hume PA, Maxwell L. Delayed onset muscle soreness. Sports Med. 2003;33(2):145–64.PubMedCrossRef Cheung K, Hume PA, Maxwell L. Delayed onset muscle soreness. Sports Med. 2003;33(2):145–64.PubMedCrossRef
111.
Zurück zum Zitat Ebbeling CB, Clarkson PM. Exercise-induced muscle damage and adaptation. Sports Med. 1989;7(4):207–34.PubMedCrossRef Ebbeling CB, Clarkson PM. Exercise-induced muscle damage and adaptation. Sports Med. 1989;7(4):207–34.PubMedCrossRef
112.
Zurück zum Zitat Proudfoot CJ, Garry EM, Cottrell DF, et al. Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain. Curr Biol. 2006;16(16):1591–605.PubMedCrossRef Proudfoot CJ, Garry EM, Cottrell DF, et al. Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain. Curr Biol. 2006;16(16):1591–605.PubMedCrossRef
113.
Zurück zum Zitat Knowlton WM, Palkar R, Lippoldt EK, et al. A sensory-labeled line for cold: TRPM8-expressing sensory neurons define the cellular basis for cold, cold pain, and cooling-mediated analgesia. J Neurosci. 2013;33(7):2837–48.PubMedPubMedCentralCrossRef Knowlton WM, Palkar R, Lippoldt EK, et al. A sensory-labeled line for cold: TRPM8-expressing sensory neurons define the cellular basis for cold, cold pain, and cooling-mediated analgesia. J Neurosci. 2013;33(7):2837–48.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Graven-Nielsen T, Lund H, Arendt-Nielsen L, et al. Inhibition of maximal voluntary contraction force by experimental muscle pain: a centrally mediated mechanism. Muscle Nerve. 2002;26(5):708–12.PubMedCrossRef Graven-Nielsen T, Lund H, Arendt-Nielsen L, et al. Inhibition of maximal voluntary contraction force by experimental muscle pain: a centrally mediated mechanism. Muscle Nerve. 2002;26(5):708–12.PubMedCrossRef
115.
Zurück zum Zitat Minett GM, Duffield R. Is recovery driven by central or peripheral factors? A role for the brain in recovery following intermittent-sprint exercise. Front Physiol. 2014;5:24.PubMedPubMedCentralCrossRef Minett GM, Duffield R. Is recovery driven by central or peripheral factors? A role for the brain in recovery following intermittent-sprint exercise. Front Physiol. 2014;5:24.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Ascensao A, Leite M, Rebelo AN, et al. Effects of cold water immersion on the recovery of physical performance and muscle damage following a one-off soccer match. J Sports Sci. 2011;29(3):217–25.PubMedCrossRef Ascensao A, Leite M, Rebelo AN, et al. Effects of cold water immersion on the recovery of physical performance and muscle damage following a one-off soccer match. J Sports Sci. 2011;29(3):217–25.PubMedCrossRef
117.
Zurück zum Zitat Goodall S, Howatson G. The effects of multiple cold water immersions on indices of muscle damage. J Sports Sci Med. 2008;7(2):235–41.PubMedPubMedCentral Goodall S, Howatson G. The effects of multiple cold water immersions on indices of muscle damage. J Sports Sci Med. 2008;7(2):235–41.PubMedPubMedCentral
118.
Zurück zum Zitat Jakeman JR, Macrae R, Eston R. A single 10-min bout of cold-water immersion therapy after strenuous plyometric exercise has no beneficial effect on recovery from the symptoms of exercise-induced muscle damage. Ergonomics. 2009;52(4):456–60.PubMedCrossRef Jakeman JR, Macrae R, Eston R. A single 10-min bout of cold-water immersion therapy after strenuous plyometric exercise has no beneficial effect on recovery from the symptoms of exercise-induced muscle damage. Ergonomics. 2009;52(4):456–60.PubMedCrossRef
119.
Zurück zum Zitat Sellwood KL, Brukner P, Williams D, et al. Ice-water immersion and delayed-onset muscle soreness: a randomised controlled trial. Br J Sports Med. 2007;41(6):392–7.PubMedPubMedCentralCrossRef Sellwood KL, Brukner P, Williams D, et al. Ice-water immersion and delayed-onset muscle soreness: a randomised controlled trial. Br J Sports Med. 2007;41(6):392–7.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Paddon-Jones DJ, Quigley BM. Effect of cryotherapy on muscle soreness and strength following eccentric exercise. Int J Sports Med. 1997;18(8):588–93.PubMedCrossRef Paddon-Jones DJ, Quigley BM. Effect of cryotherapy on muscle soreness and strength following eccentric exercise. Int J Sports Med. 1997;18(8):588–93.PubMedCrossRef
121.
Zurück zum Zitat Kuligowski LA, Lephart SM, Giannantonio FP, et al. Effect of whirlpool therapy on the signs and symptoms of delayed-onset muscle soreness. J Athl Train. 1998;33(3):222–8.PubMedPubMedCentral Kuligowski LA, Lephart SM, Giannantonio FP, et al. Effect of whirlpool therapy on the signs and symptoms of delayed-onset muscle soreness. J Athl Train. 1998;33(3):222–8.PubMedPubMedCentral
122.
Zurück zum Zitat Eston R, Peters D. Effects of cold water immersion on the symptoms of exercise-induced muscle damage. J Sports Sci. 1999;17(3):231–8.PubMedCrossRef Eston R, Peters D. Effects of cold water immersion on the symptoms of exercise-induced muscle damage. J Sports Sci. 1999;17(3):231–8.PubMedCrossRef
123.
Zurück zum Zitat Rowsell GJ, Coutts AJ, Reaburn P, et al. Effect of post-match cold-water immersion on subsequent match running performance in junior soccer players during tournament play. J Sports Sci. 2011;29(1):1–6.PubMedCrossRef Rowsell GJ, Coutts AJ, Reaburn P, et al. Effect of post-match cold-water immersion on subsequent match running performance in junior soccer players during tournament play. J Sports Sci. 2011;29(1):1–6.PubMedCrossRef
124.
Zurück zum Zitat Brophy-Williams N, Landers G, Wallman K. Effect of immediate and delayed cold water immersion after a high intensity exercise session on subsequent run performance. J Sports Sci Med. 2011;10:665–70.PubMedPubMedCentral Brophy-Williams N, Landers G, Wallman K. Effect of immediate and delayed cold water immersion after a high intensity exercise session on subsequent run performance. J Sports Sci Med. 2011;10:665–70.PubMedPubMedCentral
125.
Zurück zum Zitat Bailey DM, Erith SJ, Griffin PJ, et al. Influence of cold-water immersion on indices of muscle damage following prolonged intermittent shuttle running. J Sports Sci. 2007;25(11):1163–70.PubMedCrossRef Bailey DM, Erith SJ, Griffin PJ, et al. Influence of cold-water immersion on indices of muscle damage following prolonged intermittent shuttle running. J Sports Sci. 2007;25(11):1163–70.PubMedCrossRef
126.
Zurück zum Zitat Pournot H, Bieuzen F, Duffield R, et al. Short term effects of various water immersions on recovery from exhaustive intermittent exercise. Eur J Appl Physiol. 2011;111(7):1287–95.PubMedCrossRef Pournot H, Bieuzen F, Duffield R, et al. Short term effects of various water immersions on recovery from exhaustive intermittent exercise. Eur J Appl Physiol. 2011;111(7):1287–95.PubMedCrossRef
127.
Zurück zum Zitat King M, Duffield R. The effects of recovery interventions on consecutive days of intermittent sprint exercise. J Strength Cond Res. 2009;23(6):1795–802.PubMedCrossRef King M, Duffield R. The effects of recovery interventions on consecutive days of intermittent sprint exercise. J Strength Cond Res. 2009;23(6):1795–802.PubMedCrossRef
128.
Zurück zum Zitat Corbett J, Barwood MJ, Lunt HC, et al. Water immersion as a recovery aid from intermittent shuttle running exercise. Eur J Sport Sci. 2012;12(6):509–14.CrossRef Corbett J, Barwood MJ, Lunt HC, et al. Water immersion as a recovery aid from intermittent shuttle running exercise. Eur J Sport Sci. 2012;12(6):509–14.CrossRef
129.
Zurück zum Zitat Warren GL, Lowe DA, Armstrong RB. Measurement tools used in the study of eccentric contraction-induced injury. Sports Med. 1999;27(1):43–59.PubMedCrossRef Warren GL, Lowe DA, Armstrong RB. Measurement tools used in the study of eccentric contraction-induced injury. Sports Med. 1999;27(1):43–59.PubMedCrossRef
Metadaten
Titel
What are the Physiological Mechanisms for Post-Exercise Cold Water Immersion in the Recovery from Prolonged Endurance and Intermittent Exercise?
verfasst von
Mohammed Ihsan
Greig Watson
Chris R. Abbiss
Publikationsdatum
01.08.2016
Verlag
Springer International Publishing
Erschienen in
Sports Medicine / Ausgabe 8/2016
Print ISSN: 0112-1642
Elektronische ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-016-0483-3

Weitere Artikel der Ausgabe 8/2016

Sports Medicine 8/2016 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.