Skip to main content
Erschienen in: Journal of Orthopaedic Surgery and Research 1/2020

Open Access 01.12.2020 | Systematic review

D-dimer in the diagnosis of periprosthetic joint infection: a systematic review and meta-analysis

verfasst von: Guangxu Lu, Tong Li, Haoqi Ye, Shujin Liu, Peng Zhang, Wenliang Wang

Erschienen in: Journal of Orthopaedic Surgery and Research | Ausgabe 1/2020

Abstract

Background

D-dimer, a coagulation-related indicator, has recently been used as a tool for the diagnosis of periprosthetic joint infection (PJI), but its reliability is uncertain. The purpose of this systematic review and meta-analysis was to explore the accuracy of D-dimer in the diagnosis of PJI after joint arthroplasty.

Methods

We systematically searched the MEDLINE, EMBASE, and Cochrane databases for relevant literature about D-dimer in the diagnosis of PJI. QUADAS-2 was used to assess the risk of bias and clinical applicability of each included study. We used the bivariate meta-analysis framework to pool the sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the SROC curve (AUC). Univariate meta-regression and subgroup analyses were performed to explore the sources of heterogeneity.

Results

We included 8 eligible studies. The pooled diagnostic sensitivity and specificity were 0.82 (95% CI, 0.70–0.89) and 0.70 (95% CI, 0.55–0.82), respectively. The pooled PLR, NLR, and DOR were 2.7 (95% CI, 1.7–4.4), 0.26 (95% CI, 0.15–0.46), and 10 (95% CI, 4–25), respectively. The AUC was 0.83 (95% CI, 0.8–0.86). Serum D-dimer might have higher diagnostic accuracy than plasma D-dimer for PJI (pooled sensitivity: 0.88 vs 0.67; pooled specificity: 0.76 vs 0.61).

Conclusions

D-dimer has limited performance for the diagnosis of PJI.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
PJI
Periprosthetic joint infection
PLR
Positive likelihood ratio
NLR
Negative likelihood ratio
DOR
Diagnostic odds ratio
AUC
The area under the SROC curve
MSIS
Musculoskeletal Infection Society
ICM
International Consensus Meeting
CRP
C-reactive protein
ESR
Erythrocyte sedimentation rate
WBC
White blood cell
PMN%
Polymorphonuclear neutrophil percentage
PRISMA
Preferred Reporting Items for Systematic Reviews and Meta-Analyses

Introduction

Periprosthetic joint infection (PJI) is a rare and devastating complication that affects 0.7–2.4% of patients after hip or knee arthroplasty [13]. PJI not only affects the quality of life of infected patients but also increases the risk of death [4].
Because the typical clinical manifestations of patients with PJI may not appear and pain can be caused by other diseases, PJI is difficult to diagnose. The Musculoskeletal Infection Society (MSIS) formulated diagnostic criteria for PJI and tried to reduce the incidence rate of this dreaded complication [5, 6]. In 2018, the International Consensus Meeting (ICM) modified the criteria and added D-dimer and alpha-defensin into the new definition of PJI for the knee and hip joint [7] (Table 1).
Table 1
MSIS criteria for diagnosis of PJI (modified by ICM in 2018) [7]
Major criteria
1. Two positive periprosthetic cultures with phenotypically identical organisms
2. A sinus tract communicating with the joint
Minor criteria
3. Preoperative diagnosis
Score
Decision
Serum
1).CRP (> 1 mg/dL) OR D-dimer (> 850 ng/mL)
2
≥ 6: Infected
2–5: Possibly infected
0–1: Not infected
2). ESR (> 30 mm/h)
1
Synovial
1). Synovial WBC count (> 3000 cells/uL) or LE +
3
2). Alpha-defensin (signal-to cut-off ratio > 1)
3
3). Synovial PMN (%) (> 80%)
2
4). Synovial CRP (> 6.9 mg/L)
1
4. Intraoperative diagnosis.
Score
≥ 6: Infected
4–5: Inconclusive
≤ 3: Not infected
1). Preoperative score
2). Histology
3
3). Purulence
3
4). Single culture
2
PJI is present when 1 of the major criteria is met
CRP C-reactive protein, ESR erythrocyte sedimentation rate, WBC white blood cell, and PMN% polymorphonuclear neutrophil percentage
D-dimer is a specific degradation product of fibrin monomer that is crosslinked by activating factor XIII and then hydrolyzed by fibrinolytic enzyme [8]. It is a specific marker of the fibrinolysis process and mainly reflects the function of fibrinolysis [8]. A study suggested that D-dimer could be used to determine prognosis in systemic sepsis [9]. D-dimer levels continue to rise due to the host’s inflammatory response to infection in sepsis [9].
Currently, some studies have examined the diagnostic value of D-dimer for PJI, but diagnostic accuracy varies in different studies. Therefore, the purpose of this systematic review and meta-analysis was to evaluate the diagnostic accuracy of D-dimer for PJI.

Materials and methods

This systematic review and meta-analysis strictly followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [10] (Fig. 1).

Search strategy

We systematically searched all literature about D-dimer in the diagnosis of PJI in MEDLINE, Embase, and the Cochrane Library (from the inception of each database until November 2019), without language restrictions. The search strategies are shown in Table 2.
Table 2
Search strategy on MEDLINE, Embase, and Cochrane
PubMed and Cochrane
#1 ((((((((((((joint arthroplasty) OR joint replacement) OR knee replacement) OR hip replacement) OR hip arthroplasty) OR knee arthroplasty) OR Arthroplasty, Replacement, Knee) OR Arthroplasty, Replacement) OR Arthroplasty, Replacement, Shoulder) OR Arthroplasty, Replacement, Hip) OR shoulder replacement) OR shoulder arthroplasty
#2 ((periprosthetic infection) OR prosthetic joint infection) OR periprosthetic joint infection
#3 ((diagnostic test) OR test) OR diagnosis
#4 (((((((fibrin fragment D) or D-dimer fibrin) or D-dimer fragments) or fibrin fragment D1 dimer) or fibrin fragment DD) or D-dimer) or fibrin fragment D-dimer)
#1 and #2 and #3 and #4
EMBASE
#1 ‘joint arthroplasty' OR 'joint replacement' OR 'knee replacement' OR 'hip replacement' OR 'hip arthroplasty' OR 'knee arthroplasty' OR 'replacement arthroplasty' OR 'shoulder replacement' OR 'shoulder arthroplasty'
#2 ‘diagnostic test' OR 'diagnosis' OR test
#3 ‘periprosthetic infection' OR 'prosthetic joint infection' OR 'periprosthetic joint infection'
#4 ‘fibrin fragment d'/expr OR 'fibrin fragment d' OR 'd-dimer fibrin' OR 'd-dimer fragments' OR 'fibrin fragment d1 dimer' OR 'fibrin fragment dd' OR 'd dimer'/exp OR 'd dimer' OR 'fibrin fragment d-dimer'
#1 and #2 and #3 and #4

Eligibility criteria

We included all studies that reported the accuracy of D-dimer in the diagnosis of PJI after hip or knee arthroplasty and used the MISS or modified MISS criteria. Studies lacking sensitivity and specificity values and those that had duplicated data were excluded.
Two authors independently scanned the titles, abstracts, and full texts sequentially and screened the literature based on the eligibility criteria. The third author settled any disagreements that arose.

Data extraction

Two authors independently classified all studies and extracted data using standardized scales. We extracted all baseline data (author name, publication year, country, average age, sex distribution, BMI, joint type, patient exclusion criteria, diagnostic criteria, etc.) and outcome indicators (sensitivity, specificity, PLR, NLR, DOR, AUC, etc.). The third author resolved any disagreements that arose.

Quality evaluation

The quality of each included study was evaluated using the QUADAS-2 tool [11], which mainly includes four parts: patient selection, indicator testing, reference standard, and flow and timing. The first three parts are also needed to evaluate clinical practicability. According to the answers (“yes,” “no,” or “uncertain”) to the relevant landmark questions included in each part, the risk of bias level was determined as “low,” “high,” or “uncertain.” Two authors independently evaluated the quality, and the third author decided the final result in the event of any divergences.

Statistical analysis

We used the bivariate meta-analysis framework to pool the sensitivity, specificity, PLR, NLR, DOR, and AUC by using the “Midas” command [12]. Compared with the traditional summary ROC curve, the bivariate model is a development and expansion [13]. The joint modeling of sensitivity and specificity is used as the starting point for the analysis, and a random effects model is used [13]. Thus, the diagnostic accuracy may be more reliable with this method [14]. The I2 statistic was used to estimate the heterogeneity among studies. The value of I2 is between 0 and 100%. An I2 value of < 50% indicates low heterogeneity, while an I2 value of > 50% indicates high heterogeneity.
When there was high heterogeneity, we evaluated the threshold effect through the Spearman correlation coefficient of the logarithm of sensitivity and 1-specificity. When the P value was < 0.05, the threshold effect was considered significant. At the same time, we used univariate meta-regression to find the potential sources of heterogeneity. Then, we conducted a subgroup analysis to further investigate the source of heterogeneity. A test for publication bias (Deeks’ funnel plot) was also used to analyze the sources of heterogeneity. When the P value was < 0.05, the tests for publication bias were considered statistically significant [15].
Stata 14.0 software and Meta-DiSc 1.4 were used for data analysis.

Result

After a systematic search in the above databases, 34 studies were initially selected, and finally, 8 studies [1623] were included according to the inclusion and exclusion criteria (Table 3). The 8 included studies were conducted in 2 countries (China and the USA) and included 1587 patients, involving 514 knee joints, 822 hip joints, and 50 extra-articular infections. A total of 457 patients were diagnosed with PJI, and the rate ranged from 17 to 45%. The average age of all the patients in the studies ranged from 61.5 to 68.9 years, with 33–53% males. All 8 studies were published in the last 3 years, and there was no patient overlap in these studies.
Table 3
Characteristics of included studies
Study
Year
Country
Study design
No. of patientsa
Mean age
Mal/female
Site of arthroplasty
Exclusion criteria
Reference standard
Cut-off
Sample
Shahi et al. [20]
2017
USA
Prospective
57/245b
61.5
129/116
Knee (98) and hip (97)
A
MSIS
850 ng/ml
Serum
Fu et al. [22]
2019
China
Prospective
15/45
65.8
12/33
Knee (40) and hip (5)
B
MSIS
850 ng/ml
Plasma
Li et al. [19]
2019
China
Retrospective
95/565
61.7
248/317
Knee (153) and hip (412)
A
ICM
1250 ng/ml
Plasma
Xu et al. [18]
2019
China
Retrospective
129/318
NA
NA
Knee (63) and hip (23)
A
MSIS
1020 ng/ml
Plasma
Huang et al. [21]
2019
China
Retrospective
31/101
66.4
NA
Hip (101)
B
MSIS
850 ng/ml
Serum
Qin et al. [16]
2020
China
Prospective
55/122
65.2
53/69
Knee (44) and hip (78)
B
MSIS
1170 ng/ml
Serum
Xiong et al. [17]
2019
China
Prospective
26/80
62.3
32/48
Knee (47) and hip (33)
B
MSIS
760 ng/ml
Serum
Pannu et al. [23]
2020
USA
Retrospective
49/111
68.9
49/111
Knee (69) and hip (42)
A
ICM
850 ng/ml
serum
A does not exclude patients with rheumatoid arthritis, autoimmune diseases, tumors, smoking and obesity; B exclude patients with rheumatoid arthritis, autoimmune diseases, tumors, smoking, and obesity
NA not available
aThe values are given as the number of patients with an infection/total number of patients in study
b50 of 245 patients were extra-articular infection
Four studies [16, 17, 20, 22] were prospective studies, and the other 4 studies [18, 19, 21, 23] were retrospective studies. In terms of the diagnostic threshold, 4 studies [2023] used 850 퓊g/L, which was recommended by the ICM (2018) as the diagnostic threshold of D-dimer. Pannu et al. [23] also used 2300 ng/ml as the cut-off in their study. The remaining 4 studies [1619] used 1250 ng/L, 1020 ng/L, 1170 ng/ml, and 760 ng/ml as the diagnostic thresholds. Four studies [2123] determined the diagnostic threshold in advance, and the remaining studies [1620] obtained the diagnostic threshold from the ROC curve. Three studies [18, 19, 22, 23], all from China, used plasma samples for the quantification of D-dimer, and 5 studies [16, 17, 20, 21, 23] used serum samples. Four studies [16, 17, 21, 22] excluded patients with rheumatoid arthritis, autoimmune diseases, tumors, smoker status, or obesity and the remaining 4 studies [1820, 23] did not.

Quality assessment

According to the QUADAS-2 tool, we evaluated the quality of all included studies (Table 4 and Fig. 2). The risk of bias in reference standards and flow and timing was low in all studies. Six studies [1618, 2022] were at high risk of bias for patient selection because of inappropriate discharge standards and case-control trials. Because retrospective studies and thresholds were not set in advance in 7 studies [1621, 23], the bias of the index test was high. All studies scored between 6 and 9 (the total score is 10 points).
Table 4
QUADAS-2 evaluation
Study
QUADAS Score*
1
2
3
Bias
Appl.
4
5
Bias
Appl.
6
7
Bias
Appl.
8
9
10
Bias
Shahi et al. [20]
NC
0
1
High
Low
1
0
High
Low
1
1
Low
Low
1
1
1
Low
Fu et al. [22]
NC
0
0
High
Low
1
1
Low
Low
1
1
Low
Low
1
1
1
Low
Li et al. [19]
NC
1
1
Low
Low
0
0
High
Low
1
1
Low
Low
1
1
1
Low
Xu et al. [18]
NC
0
1
High
Low
0
0
High
Low
1
1
Low
Low
1
1
1
Low
Huang et al. [21]
NC
0
0
High
Low
0
1
High
Low
1
1
Low
Low
1
1
1
Low
Qin et al. [16]
NC
1
0
High
Low
1
0
High
Low
1
1
Low
Low
1
1
1
Low
Xiong et al. [17]
NC
1
0
High
Low
1
0
High
Low
1
1
Low
Low
1
1
1
Low
Pannu et al. [23]
1
1
1
Low
Low
0
1
High
Low
1
1
Low
Low
1
1
1
Low
The numbers in the top row correspond to the following questions: Domain 1: Patient selection. Numbers correspond with the following questions: (1) Was a consecutive or random sample of patients enrolled? (2) Was a case-control design avoided? (3) Did the study avoid inappropriate exclusions? Domain 2: Index test. Numbers correspond with the following questions: (4) Were the index test results interpreted without knowledge of the results of the reference standard? (5) If a threshold was used, was it pre-specified? Domain 3: Reference test. Numbers correspond with the following questions: (6) Is the reference standard likely to correctly classify the target condition? (7) Were the reference standard results interpreted without knowledge of the results of the index test? Domain 4: Flow and timing. Numbers correspond with the following questions: (8) Was there an appropriate interval between index test(s) and reference standard? (9) Did all patients receive a reference standard? (10) Did patients receive the same reference standard? (11) Were all patients included in the analysis?
*Number 1 indicates “yes,” and 0 indicates “no”; Bias risk: of bias; Appl.: concerns regarding applicability; NC: not clear

Diagnostic value

The pooled diagnostic sensitivity and specificity were 0.82 (95% CI, 0.70–0.89) and 0.70 (95% CI, 0.55–0.82), respectively (Fig. 3); however, the heterogeneity between studies was obvious, with I2 values of 83.19% (95% CI, 71.75–94.64%) and 94.17% (95% CI, 91.23–97.11%). The pooled PLR, NLR, and DOR were 2.7 (95% CI, 1.7–5.4), 0.26 (95% CI, 0.15–0.46), and 10 (95% CI, 4–25), respectively (Fig. 3). The AUC was 0.83 (95% CI, 0.8–0.86) (Fig. 4). The Spearman correlation coefficient was − 0.071 (P = 0.867). The heterogeneity might be unrelated to the threshold effects.

Heterogeneity analysis

Meta-regression

We performed univariate meta-regression to search for the potential sources of heterogeneity (Fig. 5). For sensitivity and specificity, the sample differences and racial differences had the most significant impacts on the heterogeneity of the results (P < 0.05). Based on these results, we performed subgroup analysis to further explore the source of heterogeneity. When I2 < 50% or P > 0.05, we considered the heterogeneity to be low in the subgroup.

Subgroup analysis

In the subgroup of plasma D-dimer [18, 19, 22], the pooled sensitivity and specificity were 0.67 (95% CI 0.60–0.72) and 0.61 (95% CI 0.57–0.65); in the subgroup of serum D-dimer [16, 17, 20, 21, 23], the pooled sensitivity and specificity were 0.88 (95% CI 0.83–0.92) and 0.76 (95% CI 0.71–0.80). In the subgroup of East Asian races [16–19, 21, 22], the pooled sensitivity and specificity were 0.72 (95% CI 0.67–0.77) and 0.65 (95% CI 0.61–0.68); in the subgroup of Caucasian and African American races [20, 23], the pooled sensitivity and specificity were 0.92 (95% CI 0.86–0.97) and 0.74 (95% CI 0.67–0.80), respectively (Table 5).
Table 5
Subgroup analysis
Subgroup
Number of studies
Pooled sensitivity (95% CI)
Pooled specificity (95% CI)
P
I2
A
3
0.67(0.60–0.72)
0.61(0.57–0.65)
0.82/0.003
0/82.6%
B
5
0.88(0.83–0.92)
0.76(0.71–0.80)
0.0001/0.0001
68.7%/95.1%
C
6
0.72(0.67–0.77)
0.65(0.61–0.68)
0.001/0.0001
74.9%/84.5%
D
2
0.92(0.86–0.97)
0.74(0.67–0.80)
0.20/0.0001
39.5%/98.7%
A plasma D-dimer, B serum D-dimer, C East Asian race, D Caucasian and African American race

Publication bias

The Deeks’ funnel plot asymmetry test of DOR did not show significant asymmetry (P = 0.34), indicating that publication bias might not exist (Fig. 6).

Discussion

The diagnosis of PJI after arthroplasty is a complicated problem for every orthopedist. With early diagnosis, patients can undergo debridement or conservative treatment to treat PJI and avoid 1 or 2 stage revision. Therefore, the quick and accurate diagnosis of PJI is critical. Many potential blood and synovial fluid biomarkers for the diagnosis of PJI have been evaluated, but the clinical gold standard for the diagnosis of the disease has still not been found. Therefore, it is necessary and meaningful to develop a new and accurate diagnostic method for PJI.
D-dimer is familiar to medical workers and has not been valued in the past few decades. It has only been used to screen venous thromboembolism [24, 25]. Recently, some studies showed that D-dimer was associated with inflammation and might be elevated in infected patients [26, 27]. Rodelo et al. found that higher levels of D-dimer were associated with increased 28-day mortality in septic patients [9]. In addition, D-dimer is recommended as a critical diagnostic indicator for infectious diseases such as endocarditis and mycoplasma pneumonia [28, 29]. Subsequently, D-dimer levels attracted the attention of plastic surgeons.
Shahi et al. [20] reported in his study that serum D-dimer has high diagnostic value for PJI in lower limbs, with a sensitivity and specificity of 89% and 93%, respectively, which preluded the diagnosis of PJI by D-dimer. Parvizi et al. [30] believe that the diagnosis of PJI, such as ankylosing spondylitis, rheumatoid arthritis, and endocarditis, should depend on a combination of various diagnoses, so they added D-dimer and redefined the diagnosis of the PJI standard. The new diagnostic criteria were validated in 222 PJI patients and 200 sterile patients. They found that the sensitivity and specificity of the new diagnostic criteria were 97.7% and 99.5%, respectively, while the sensitivities of the MSIS and ICM diagnostic criteria were only 86.9% and 79.3%, and their specificities were both 99.5%. The ICM passed this diagnostic criterion in 2018, but the pass rate was only 68%. Since 2019, an increasing number of articles about D-dimer in the diagnosis of PJI have been reported, and its diagnostic value is suspected.
This is the first systematic review and meta-analysis about the utility of D-dimer for the diagnosis of PJI. We found that D-dimer has limited performance for the diagnosis of PJI, with a pooled sensitivity and specificity of 0.82 and 0.70, respectively, and had a poorer diagnostic value than that of CPR and ESR reported by Carli AV et al. [31]. In this systematic review, the pooled sensitivity and specificity of CRP were 0.85 and 0.81, respectively, and the pooled sensitivity and specificity of ESR were 0.82 and 0.79. The results of the subgroup analysis showed that serum D-dimer might have a higher diagnostic accuracy than plasma D-dimer for PJI (the pooled sensitivity was 0.88 vs 0.67, and the pooled specificity was 0.76 vs 0.61), and D-dimer had better accuracy in subgroups with Caucasian and African American races than in subgroups with East Asian races (the pooled sensitivity was 0.92 vs 0.72, and the pooled specificity was 0.74 vs 0.65).
One possible reason for the variance in the subgroup results was that the samples for the quantification of D-dimer were different: serum vs plasma. Serum is the liquid part of blood after coagulation, while plasma is the liquid part of the blood where coagulation has been prevented. Their density is similar, but their composition is different. The main difference is that there are more fibrinogen and coagulation proteins in plasma [32]. Boisclair et al. [33] reported that there was a very high correlation between plasma and serum D-dimer levels (r = 0.931, P < 0.01), but the diagnostic sensitivity was not consistent. The study reported that the sensitivities of plasma D-dimer for DIC, DVT, and MI were 100%, 90.4%, and 60%, respectively, but the sensitivities of serum D-dimer were 100%, 94.1%, and 22.2%. The different sensitivities of plasma and serum might be due to the more significant uncertainty in assigning a cut-off for elevated levels of serum D-dimer. The D-dimer assay was operating at its lower detection limit when used to measure non-elevated levels in serum [33]. However, whether different sensitivities between plasma and serum exist in PJI is not supported by relevant literature.
Another possible reason was that the level of D-dimer is easily affected by other diseases. Busso et al. [34] reported that the inflammatory synovium secretes a large amount of fibrin in patients with rheumatoid arthritis, and the degradation of this protein subsequently leads to an increase in the level of D-dimer in serum and synovial fluid. In addition, thrombosis [35], malignancies, autoimmune diseases, pregnancy, and heart and brain vascular diseases might affect the determination of D-dimer levels in the blood [36, 37]. Li et al. [19] found that the diagnostic accuracy of D-dimer was poor in the subgroups containing these diseases in their study.
In addition, racial differences may affect the diagnostic accuracy of D-dimer for PJI. Shahi and Pannu’s studies [20, 23] were conducted in the USA, and the population may be predominantly Caucasian and African-American. In the six other studies reported by Chinese scholars, the patients were predominantly of the East Asian race. The studies found that D-dimer levels varied between races, such as between African American and Caucasian patients [38, 39]. We suspect that there are also differences in D-dimer levels between the East Asian population and the other races, which will affect the result. However, there are no studies to support this view.
Synovial fluid viscosity tests and several other plasma biomarkers have been reported to diagnose PJI. The synovial fluid viscosity level was significantly lower in patients with PJI than in patients with aseptic failure, with a sensitivity of 0.99 and a specificity of 0.67 [22]. Both plasma fibrinogen and fibrin degradation product (FDP) are coagulation-related indicators. When the threshold for plasma fibrinogen was 4.01 g/L, the sensitivity and specificity values were 0.763 and 0.862 [19], respectively. FDP has low sensitivity and specificity, with values of 65.12% and 60.33%, respectively [18].
Our meta-analysis has some strengths and potential limitations. The cases included all involved hip and knee joints. In addition, all studies used MSIS standards [5] or modified MSIS standards [6]. Therefore, the classification bias was minimized. The most important factor was that all D-dimer tests were taken before surgery, excluding the interference of a sharp increase in serum D-dimer levels after surgery [40].
The limitations of our meta-analysis included variability in race, age range, sex ratio, and sample size. In addition, none of the studies considered whether patients used antibiotics before admission. Shahi et al. [20] reported that premature antibiotic treatment could affect the results of D-dimer in the blood. Another limitation of our study is that MSIS standards or modified MSIS standards lack the sensitivity to detect chronic and low-grade PJI; patients with “positive” D-dimer results might be classified as uninfected [41]. Additionally, most studies did not provide information about the measurement of D-dimer. D-dimer assays can be categorized into three types [42]: ELISA, immunoturbidimetric automated assay, and latex-based immunoassays. ELISA is more sensitive than immunoturbidimetric automated assays and latex-based immunoassays [42]. In addition, some studies excluded patients with tumors, rheumatoid arthritis, autoimmune diseases, a history of smoking, and obesity. However, the proportion of such patients in joint replacement is still high. The exclusion of these patients will interfere with the accuracy of D-dimer in the diagnosis of PJI. Finally, the diagnostic thresholds in some studies were not determined in advance, and the threshold values were not unified in this meta-analysis.

Conclusion

D-dimer, a coagulation-related indicator, is inexpensive and easy to measure but has limited performance for the diagnosis of PJI, and the pooled sensitivity and specificity were poorer than those of traditional inflammatory markers such as CRP and ESR. Based on our findings, we suggest using serum samples for the quantification of D-dimer. Additionally, the diagnostic accuracy may be better in Caucasian and African American patients.

Acknowledgements

Not applicable
Not applicable
Not applicable

Competing interests

No author associated with this paper has disclosed any potential or pertinent conflicts which may be perceived to have impending conflict with this work.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Kurtz SM, Lau E, Watson H, Schmier JK, Parvizi J. Economic burden of periprosthetic joint infection in the United States. J Arthroplasty. 2012;27(8 Suppl):61-5.e1. Kurtz SM, Lau E, Watson H, Schmier JK, Parvizi J. Economic burden of periprosthetic joint infection in the United States. J Arthroplasty. 2012;27(8 Suppl):61-5.e1.
2.
Zurück zum Zitat Huotari K, Peltola M, Jamsen E. The incidence of late prosthetic joint infections: a registry-based study of 112,708 primary hip and knee replacements. Acta Orthop. 2015;86(3):321–5.PubMedPubMedCentral Huotari K, Peltola M, Jamsen E. The incidence of late prosthetic joint infections: a registry-based study of 112,708 primary hip and knee replacements. Acta Orthop. 2015;86(3):321–5.PubMedPubMedCentral
3.
Zurück zum Zitat Dale H, Fenstad AM, Hallan G, Havelin LI, Furnes O, Overgaard S, et al. Increasing risk of prosthetic joint infection after total hip arthroplasty. Acta Orthop. 2012;83(5):449–58.PubMedPubMedCentral Dale H, Fenstad AM, Hallan G, Havelin LI, Furnes O, Overgaard S, et al. Increasing risk of prosthetic joint infection after total hip arthroplasty. Acta Orthop. 2012;83(5):449–58.PubMedPubMedCentral
4.
Zurück zum Zitat Berend KR, Lombardi AV Jr, Morris MJ, Bergeson AG, Adams JB, Sneller MA. Two-stage treatment of hip periprosthetic joint infection is associated with a high rate of infection control but high mortality. Clin Orthop Relat Res. 2013;471(2):510–8.PubMed Berend KR, Lombardi AV Jr, Morris MJ, Bergeson AG, Adams JB, Sneller MA. Two-stage treatment of hip periprosthetic joint infection is associated with a high rate of infection control but high mortality. Clin Orthop Relat Res. 2013;471(2):510–8.PubMed
5.
Zurück zum Zitat Zmistowski B, Della Valle C, Bauer TW, Malizos KN, Alavi A, Bedair H, et al. Diagnosis of periprosthetic joint infection. J Orth Res. 2014;32(Suppl 1):S98–107. Zmistowski B, Della Valle C, Bauer TW, Malizos KN, Alavi A, Bedair H, et al. Diagnosis of periprosthetic joint infection. J Orth Res. 2014;32(Suppl 1):S98–107.
6.
Zurück zum Zitat Parvizi J, Zmistowski B, Berbari EF, Bauer TW, Springer BD, Della Valle CJ, et al. New definition for periprosthetic joint infection: from the Workgroup of the Musculoskeletal Infection Society. Clin Orthop Relat Res. 2011;469(11):2992–4.PubMedPubMedCentral Parvizi J, Zmistowski B, Berbari EF, Bauer TW, Springer BD, Della Valle CJ, et al. New definition for periprosthetic joint infection: from the Workgroup of the Musculoskeletal Infection Society. Clin Orthop Relat Res. 2011;469(11):2992–4.PubMedPubMedCentral
7.
Zurück zum Zitat Shohat N, Bauer T, Buttaro M, Budhiparama N, Cashman J, Della Valle CJ, et al. Hip and Knee Section, What is the definition of a Periprosthetic Joint Infection (PJI) of the knee and the hip? Can the same criteria be used for both joints?: Proceedings of International Consensus on Orthopedic Infections. The Journal of arthroplasty. 2019;34(2S):S325–S7.PubMed Shohat N, Bauer T, Buttaro M, Budhiparama N, Cashman J, Della Valle CJ, et al. Hip and Knee Section, What is the definition of a Periprosthetic Joint Infection (PJI) of the knee and the hip? Can the same criteria be used for both joints?: Proceedings of International Consensus on Orthopedic Infections. The Journal of arthroplasty. 2019;34(2S):S325–S7.PubMed
8.
Zurück zum Zitat Adam SS, Key NS, Greenberg CS. D-dimer antigen: current concepts and future prospects. Blood. 2009;113(13):2878–87.PubMed Adam SS, Key NS, Greenberg CS. D-dimer antigen: current concepts and future prospects. Blood. 2009;113(13):2878–87.PubMed
9.
Zurück zum Zitat Rodelo JR, De la Rosa G, Valencia ML, Ospina S, Arango CM, Gomez CI, et al. D-dimer is a significant prognostic factor in patients with suspected infection and sepsis. Am J Emerg Med. 2012;30(9):1991-9. Rodelo JR, De la Rosa G, Valencia ML, Ospina S, Arango CM, Gomez CI, et al. D-dimer is a significant prognostic factor in patients with suspected infection and sepsis. Am J Emerg Med. 2012;30(9):1991-9.
10.
Zurück zum Zitat Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62(10):1006–12.PubMed Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62(10):1006–12.PubMed
11.
Zurück zum Zitat Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–36.PubMed Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–36.PubMed
12.
Zurück zum Zitat Dwamena BA. Evidence-based radiology: step 3--diagnostic systematic review and meta-analysis (critical appraisal). Semin Roentgenol. 2009;44(3):170–9.PubMed Dwamena BA. Evidence-based radiology: step 3--diagnostic systematic review and meta-analysis (critical appraisal). Semin Roentgenol. 2009;44(3):170–9.PubMed
13.
Zurück zum Zitat Dora C, Altwegg M, Gerber C, Bottger EC, Zbinden R. Evaluation of conventional microbiological procedures and molecular genetic techniques for diagnosis of infections in patients with implanted orthopedic devices. J Clin Microbiol. 2008;46(2):824–5.PubMed Dora C, Altwegg M, Gerber C, Bottger EC, Zbinden R. Evaluation of conventional microbiological procedures and molecular genetic techniques for diagnosis of infections in patients with implanted orthopedic devices. J Clin Microbiol. 2008;46(2):824–5.PubMed
14.
Zurück zum Zitat Kriston L, Harter M, Holzel L. Challenges in reporting meta-analyses of diagnostic accuracy studies. Ann Intern Med. 2009;150(6):430.PubMed Kriston L, Harter M, Holzel L. Challenges in reporting meta-analyses of diagnostic accuracy studies. Ann Intern Med. 2009;150(6):430.PubMed
15.
Zurück zum Zitat Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol. 2005;58(9):882–93.PubMed Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol. 2005;58(9):882–93.PubMed
16.
Zurück zum Zitat Qin L, Li F, Gong X, Wang J, Huang W, Hu N. Combined measurement of D-dimer and C-reactive protein levels: highly accurate for diagnosing chronic periprosthetic joint infection. J Arthroplasty. 2020;35(1):229–34.PubMed Qin L, Li F, Gong X, Wang J, Huang W, Hu N. Combined measurement of D-dimer and C-reactive protein levels: highly accurate for diagnosing chronic periprosthetic joint infection. J Arthroplasty. 2020;35(1):229–34.PubMed
17.
Zurück zum Zitat Xiong L, Li S, Dai M. Comparison of D-dimer with CRP and ESR for diagnosis of periprosthetic joint infection. J Orthop Surg Res. 2019;14(1):240.PubMedPubMedCentral Xiong L, Li S, Dai M. Comparison of D-dimer with CRP and ESR for diagnosis of periprosthetic joint infection. J Orthop Surg Res. 2019;14(1):240.PubMedPubMedCentral
18.
Zurück zum Zitat Xu H, Xie J, Huang Q, Lei Y, Zhang S, Pei F. Plasma fibrin degradation product and D-dimer are of limited value for diagnosing periprosthetic joint infection. J Arthroplasty. 2019;34(10):2454–60.PubMed Xu H, Xie J, Huang Q, Lei Y, Zhang S, Pei F. Plasma fibrin degradation product and D-dimer are of limited value for diagnosing periprosthetic joint infection. J Arthroplasty. 2019;34(10):2454–60.PubMed
19.
Zurück zum Zitat Li R, Shao HY, Hao LB, Yu BZ, Qu PF, Zhou YX, et al. Plasma fibrinogen exhibits better performance than plasma D-dimer in the diagnosis of periprosthetic joint infection: a multicenter retrospective study. J Bone Joint Surg Am. 2019;101(7):613–9.PubMed Li R, Shao HY, Hao LB, Yu BZ, Qu PF, Zhou YX, et al. Plasma fibrinogen exhibits better performance than plasma D-dimer in the diagnosis of periprosthetic joint infection: a multicenter retrospective study. J Bone Joint Surg Am. 2019;101(7):613–9.PubMed
20.
Zurück zum Zitat Shahi A, Kheir MM, Tarabichi M, Hosseinzadeh HRS, Tan TL, Parvizi J. Serum D-dimer test is promising for the diagnosis of periprosthetic joint infection and timing of reimplantation. J Bone Joint Surg Am. 2017;99(17):1419–27.PubMed Shahi A, Kheir MM, Tarabichi M, Hosseinzadeh HRS, Tan TL, Parvizi J. Serum D-dimer test is promising for the diagnosis of periprosthetic joint infection and timing of reimplantation. J Bone Joint Surg Am. 2017;99(17):1419–27.PubMed
21.
Zurück zum Zitat Huang J, Zhang Y, Wang Z, Dong Y, Zhao Y, Zheng J, et al. The serum level of D-Dimer is not suitable for distinguishing between prosthetic joint infection and aseptic loosening. J Orthop Surg Res. 2019;14(1):407.PubMedPubMedCentral Huang J, Zhang Y, Wang Z, Dong Y, Zhao Y, Zheng J, et al. The serum level of D-Dimer is not suitable for distinguishing between prosthetic joint infection and aseptic loosening. J Orthop Surg Res. 2019;14(1):407.PubMedPubMedCentral
22.
Zurück zum Zitat Fu J, Ni M, Chai W, Li X, Hao L, Chen J. Synovial fluid viscosity test is promising for the diagnosis of periprosthetic joint infection. J Arthroplasty. 2019;34(6):1197–200.PubMed Fu J, Ni M, Chai W, Li X, Hao L, Chen J. Synovial fluid viscosity test is promising for the diagnosis of periprosthetic joint infection. J Arthroplasty. 2019;34(6):1197–200.PubMed
23.
Zurück zum Zitat Pannu TS, Villa JM, Patel PD, Riesgo AM, Barsoum WK, Higuera CA. The utility of serum D-dimer for the diagnosis of periprosthetic joint infection in revision total hip and knee arthroplasty. The Journal of arthroplasty. 2020:S0883-5403(20)30071-1. Pannu TS, Villa JM, Patel PD, Riesgo AM, Barsoum WK, Higuera CA. The utility of serum D-dimer for the diagnosis of periprosthetic joint infection in revision total hip and knee arthroplasty. The Journal of arthroplasty. 2020:S0883-5403(20)30071-1.
24.
Zurück zum Zitat Khanbhai M, Hansrani V, Burke J, Ghosh J, McCollum C. The early management of DVT in the North West of England: a nation-wide problem? Thromb Res. 2015;136(1):76–86.PubMed Khanbhai M, Hansrani V, Burke J, Ghosh J, McCollum C. The early management of DVT in the North West of England: a nation-wide problem? Thromb Res. 2015;136(1):76–86.PubMed
25.
Zurück zum Zitat Bounameaux H, de Moerloose P, Perrier A, Reber G. Plasma measurement of D-dimer as diagnostic aid in suspected venous thromboembolism: an overview. Thromb Haemost. 1994;71(1):1–6.PubMed Bounameaux H, de Moerloose P, Perrier A, Reber G. Plasma measurement of D-dimer as diagnostic aid in suspected venous thromboembolism: an overview. Thromb Haemost. 1994;71(1):1–6.PubMed
26.
Zurück zum Zitat Schwameis M, Steiner MM, Schoergenhofer C, Lagler H, Buchtele N, Jilma-Stohlawetz P, et al. D-dimer and histamine in early stage bacteremia: a prospective controlled cohort study. Eur J Intern Med. 2015;26(10):782–6.PubMed Schwameis M, Steiner MM, Schoergenhofer C, Lagler H, Buchtele N, Jilma-Stohlawetz P, et al. D-dimer and histamine in early stage bacteremia: a prospective controlled cohort study. Eur J Intern Med. 2015;26(10):782–6.PubMed
27.
Zurück zum Zitat Ribera T, Monreal L, Armengou L, Rios J, Prades M. Synovial fluid D-dimer concentration in foals with septic joint disease. J Vet Intern Med. 2011;25(5):1113–7.PubMed Ribera T, Monreal L, Armengou L, Rios J, Prades M. Synovial fluid D-dimer concentration in foals with septic joint disease. J Vet Intern Med. 2011;25(5):1113–7.PubMed
28.
Zurück zum Zitat Turak O, Canpolat U, Ozcan F, Yayla C, Mendi MA, Oksuz F, et al. D-dimer level predicts in-hospital mortality in patients with infective endocarditis: a prospective single-centre study. Thromb Res. 2014;134(3):587–92.PubMed Turak O, Canpolat U, Ozcan F, Yayla C, Mendi MA, Oksuz F, et al. D-dimer level predicts in-hospital mortality in patients with infective endocarditis: a prospective single-centre study. Thromb Res. 2014;134(3):587–92.PubMed
29.
Zurück zum Zitat Mele N, Turc G. Stroke associated with recent mycoplasma pneumoniae infection: a systematic review of clinical features and presumed pathophysiological mechanisms. Front Neurol. 2018;9:1109.PubMedPubMedCentral Mele N, Turc G. Stroke associated with recent mycoplasma pneumoniae infection: a systematic review of clinical features and presumed pathophysiological mechanisms. Front Neurol. 2018;9:1109.PubMedPubMedCentral
30.
Zurück zum Zitat Parvizi J, Tan TL, Goswami K, Higuera C, Della Valle C, Chen AF, et al. The 2018 definition of periprosthetic hip and knee infection: an evidence-based and validated criteria. J Arthroplasty. 2018;33(5):1309-14.e2. Parvizi J, Tan TL, Goswami K, Higuera C, Della Valle C, Chen AF, et al. The 2018 definition of periprosthetic hip and knee infection: an evidence-based and validated criteria. J Arthroplasty. 2018;33(5):1309-14.e2.
31.
Zurück zum Zitat Carli AV, Abdelbary H, Ahmadzai N, Cheng W, Shea B, Hutton B, et al. Diagnostic accuracy of serum, synovial, and tissue testing for chronic periprosthetic joint infection after hip and knee replacements: a systematic review. J Bone Joint Surg Am. 2019;101(7):635–49.PubMed Carli AV, Abdelbary H, Ahmadzai N, Cheng W, Shea B, Hutton B, et al. Diagnostic accuracy of serum, synovial, and tissue testing for chronic periprosthetic joint infection after hip and knee replacements: a systematic review. J Bone Joint Surg Am. 2019;101(7):635–49.PubMed
32.
Zurück zum Zitat Lima-Oliveira G, Monneret D, Guerber F, Guidi GC. Sample management for clinical biochemistry assays: are serum and plasma interchangeable specimens? Crit Rev Clin Lab Sci. 2018;55(7):480–500.PubMed Lima-Oliveira G, Monneret D, Guerber F, Guidi GC. Sample management for clinical biochemistry assays: are serum and plasma interchangeable specimens? Crit Rev Clin Lab Sci. 2018;55(7):480–500.PubMed
33.
Zurück zum Zitat Boisclair MD, Lane DA, Wilde JT, Ireland H, Preston FE, Ofosu FA. A comparative evaluation of assays for markers of activated coagulation and/or fibrinolysis: thrombin-antithrombin complex, D-dimer and fibrinogen/fibrin fragment E antigen. Br J Haematol. 1990;74(4):471–9.PubMed Boisclair MD, Lane DA, Wilde JT, Ireland H, Preston FE, Ofosu FA. A comparative evaluation of assays for markers of activated coagulation and/or fibrinolysis: thrombin-antithrombin complex, D-dimer and fibrinogen/fibrin fragment E antigen. Br J Haematol. 1990;74(4):471–9.PubMed
34.
Zurück zum Zitat Busso N, Hamilton JA. Extravascular coagulation and the plasminogen activator/plasmin system in rheumatoid arthritis. Arthritis Rheum. 2002;46(9):2268–79.PubMed Busso N, Hamilton JA. Extravascular coagulation and the plasminogen activator/plasmin system in rheumatoid arthritis. Arthritis Rheum. 2002;46(9):2268–79.PubMed
35.
Zurück zum Zitat Coleman DM, Wakefield TW. Biomarkers for the diagnosis of deep vein thrombosis. Expert Opin Med Diagn. 2012;6(4):253–7.PubMed Coleman DM, Wakefield TW. Biomarkers for the diagnosis of deep vein thrombosis. Expert Opin Med Diagn. 2012;6(4):253–7.PubMed
36.
Zurück zum Zitat Olson JD. D-dimer: an overview of hemostasis and fibrinolysis, assays, and clinical applications. Adv Clin Chem. 2015;69:1–46.PubMed Olson JD. D-dimer: an overview of hemostasis and fibrinolysis, assays, and clinical applications. Adv Clin Chem. 2015;69:1–46.PubMed
37.
Zurück zum Zitat O'Neal WT, Soliman EZ, Howard G, Howard VJ, Safford MM, Cushman M, et al. Inflammation and hemostasis in atrial fibrillation and coronary heart disease: the REasons for Geographic And Racial Differences in Stroke study. Atherosclerosis. 2015;243(1):192–7.PubMedPubMedCentral O'Neal WT, Soliman EZ, Howard G, Howard VJ, Safford MM, Cushman M, et al. Inflammation and hemostasis in atrial fibrillation and coronary heart disease: the REasons for Geographic And Racial Differences in Stroke study. Atherosclerosis. 2015;243(1):192–7.PubMedPubMedCentral
38.
Zurück zum Zitat Pieper CF, Rao KM, Currie MS, Harris TB, Cohen HJ. Age, functional status, and racial differences in plasma D-dimer levels in community-dwelling elderly persons. J Gerontol A Biol Sci Med Sci. 2000;55(11):M649–57.PubMed Pieper CF, Rao KM, Currie MS, Harris TB, Cohen HJ. Age, functional status, and racial differences in plasma D-dimer levels in community-dwelling elderly persons. J Gerontol A Biol Sci Med Sci. 2000;55(11):M649–57.PubMed
39.
Zurück zum Zitat Zakai NA, McClure LA, Judd SE, Kissela B, Howard G, Safford M, et al. D-dimer and the risk of stroke and coronary heart disease. The REasons for Geographic and Racial Differences in Stroke (REGARDS) Study. Thromb Haemost. 2017;117(3):618–24.PubMed Zakai NA, McClure LA, Judd SE, Kissela B, Howard G, Safford M, et al. D-dimer and the risk of stroke and coronary heart disease. The REasons for Geographic and Racial Differences in Stroke (REGARDS) Study. Thromb Haemost. 2017;117(3):618–24.PubMed
40.
Zurück zum Zitat Lee YS, Lee YK, Han SB, Nam CH, Parvizi J, Koo KH. Natural progress of D-dimer following total joint arthroplasty: a baseline for the diagnosis of the early postoperative infection. J Orthop Surg Res. 2018;13(1):36.PubMedPubMedCentral Lee YS, Lee YK, Han SB, Nam CH, Parvizi J, Koo KH. Natural progress of D-dimer following total joint arthroplasty: a baseline for the diagnosis of the early postoperative infection. J Orthop Surg Res. 2018;13(1):36.PubMedPubMedCentral
41.
Zurück zum Zitat Osmon DR, Berbari EF, Berendt AR, Lew D, Zimmerli W, Steckelberg JM, et al. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2013;56(1):e1–e25.PubMed Osmon DR, Berbari EF, Berendt AR, Lew D, Zimmerli W, Steckelberg JM, et al. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2013;56(1):e1–e25.PubMed
42.
Zurück zum Zitat Tripodi A. D-dimer testing in laboratory practice. Clin Chem. 2011;57(9):1256–62.PubMed Tripodi A. D-dimer testing in laboratory practice. Clin Chem. 2011;57(9):1256–62.PubMed
Metadaten
Titel
D-dimer in the diagnosis of periprosthetic joint infection: a systematic review and meta-analysis
verfasst von
Guangxu Lu
Tong Li
Haoqi Ye
Shujin Liu
Peng Zhang
Wenliang Wang
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Journal of Orthopaedic Surgery and Research / Ausgabe 1/2020
Elektronische ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-020-01761-z

Weitere Artikel der Ausgabe 1/2020

Journal of Orthopaedic Surgery and Research 1/2020 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Arthroskopie kann Knieprothese nicht hinauszögern

25.04.2024 Gonarthrose Nachrichten

Ein arthroskopischer Eingriff bei Kniearthrose macht im Hinblick darauf, ob und wann ein Gelenkersatz fällig wird, offenbar keinen Unterschied.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Ärztliche Empathie hilft gegen Rückenschmerzen

23.04.2024 Leitsymptom Rückenschmerzen Nachrichten

Personen mit chronischen Rückenschmerzen, die von einfühlsamen Ärzten und Ärztinnen betreut werden, berichten über weniger Beschwerden und eine bessere Lebensqualität.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.