Skip to main content
Erschienen in: Orphanet Journal of Rare Diseases 1/2020

Open Access 01.12.2020 | Research

Study on clinical and biological characteristics of ameloblastic carcinoma

verfasst von: Zhixing Niu, Ye Li, Wantao Chen, Junfang Zhao, Hongyu Zheng, Qing Deng, Zhian Zha, Hao Zhu, Qiang Sun, Lei Su

Erschienen in: Orphanet Journal of Rare Diseases | Ausgabe 1/2020

Abstract

Background

Ameloblastic carcinoma (AC) is an odontogenic malignant tumor which is closely related to benign ameloblastoma. Because of its rarity, diagnosis and treatment are difficult. In this study, we summarized and analyzed the clinical and biological characteristics of AC.

Results

Fifteen patients with AC and a median age of 53 years were identified. Among of them, five patients who were tested carried a BRAF-V600E mutation. Two patients presented with cervical lymph nodes and lung metastases. Primary AC was more invasive, and the bone destruction ability of the primary type was more radical than that of the secondary type.

Conclusions

This study revealed that the BRAF-V600E mutation was related to the aggressive behavior of AC, and early radical resection is crucial. Moreover, targeted therapy may be a new direction in the future.
Hinweise
Zhixing Niu and Ye Li contributed equally to this work

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AC
Ameloblastic carcinoma
H&E
Hematoxylin and eosin
WHO
World Health Organization

Background

Ameloblastoma is a common odontogenic epithelial tumor that can transform into a malignant tumor called ameloblastic carcinoma (AC), which is very rare [1]. In the latest edition of the 2017 World Health Organization (WHO) classification of odontogenic tumors, AC was defined as a rare odontogenic malignancy that combines the histologic features of ameloblastoma with cytologic atypia, having a 5-year survival rate of 69.1% [2, 3]. AC occurs mainly in the posterior mandible and presents as two main types: a primary type called de novo cancer and a secondary type, defined as a malignant transformation from a pre-existing benign ameloblastoma [3, 4].
Unfortunately, AC has a high recurrence rate after surgery, causing invasive and extensive bone destruction; its clinical diagnosis and treatment are very challenging. Transformation may be closely associated with a long medical history, multiple operations, radiotherapy, and chemotherapy, but the mechanisms of malignant transformation are poorly understood. Therefore, early tumor diagnosis and treatment are crucial.
In recent years, with the rapid development of molecular biology, some studies also reported a BRAF-V600E mutation rate of approximately 60% in ameloblastoma [57]. The BRAF gene is an important proto-oncogene that plays an important role in tumor cell proliferation, differentiation, and apoptosis. Therefore, the presence of BRAF-V600E mutation may be a biomarker of a more aggressive clinical course. Despite published reports on AC [2, 8], the systematic analysis of large samples of clinical, imaging, and pathological features is still lacking. In this study, we analyzed 15 patients with AC with a clear diagnosis and summarized the clinical and biological characteristics of AC.

Results

Clinical summary and manifestations

A total of 15 patients diagnosed with AC between 2014 and 2019 were included. The median age of the cohort was 53 (range 24–75) years. The duration of symptoms before diagnosis was 0.5–41 years, and the average disease duration was 10.3 years (Table 1). The mandible was found to be the most common tumor site in 86.7% of the patients (n = 13), followed by the maxilla (n = 2, 13.3%). Six patients had inferior alveolar nerve paralysis, and two had lymph node (Level Ib) and lung metastasis at presentation. Solid tumor/multicystic type structures were more common in 60% of the patients (n = 9), followed by the cystic (n = 4, 26.7%), and mixed type (n = 2, 13.3%). The patients’ clinical data are summarized in Tables 1 and 2. The varied treatment of these 15 AC cases included decompression, osteotomy, curettage, iliac bone graft, fibula graft, neck dissection, chemotherapy (Oxaliplatin, Tegafur), and seed implantation. So far, no patient has died. Conservative treatment such as curettage had a high recurrence rate, but radical resection and jaw reconstruction seemed to show satisfactory postoperative results (Table 1 and Fig. 1).
Table 1
Clinical information
Patient no
Structure
Diameter (cm)
Facial swelling
Tooth loosening
Limitation of mouth opening
Pain
Numbness
Growth direction
1
Cystic
4.9
Yes
No
No
+
Yes
Buccolingual
2
Solid
6.0
Yes
No
No
+++
Yes
Buccal
3
Solid
3.0
Yes
II°
Mild
+++
Yes
Buccal
4
Solid
8.0
No
No
Moderate
+++
No
Lingual
5
Solid
3.3
Yes
No
Mild
+
No
Submandibular
6
Cystic
2.0
Yes
III°
No
+++
No
Buccal
7
Mixed type
7.5
Yes
II°
No
+++
No
Buccal
8
Solid
2.5
No
No
No
-
No
Buccal
9
Cystic
4.0
Yes
No
No
+
Yes
Buccal
10
Cystic
8.5
Yes
II°
No
+++
Yes
Lingual
11
Solid
4.8
Yes
II°
No
+
No
Buccal
12
Solid
2.5
Yes
II°
No
++
No
Lingual
13
Mixed type
5.0
Yes
II°
No
-
No
Buccal
14
Solid
6.0
Yes
III°
No
+
Yes
Buccal
15
Cystic
8.0
Yes
No
No
+
No
Buccal
Mild(I°); moderate(II°); severe(III°)
Table 2
Clinical manifestation
Patient no
Location
Sex/year
S/C/R (times)
Course (year)
Follow-up time (month)
R-t/Treatment
BRAF-V600E
Type
1
Maxilla
F/53
2/0/0
1
32
1/Conservative
+
Primary
2
Mandible
M/64
1/3/0
0.5
26
0/Radical + ND + C
+
 
3
Mandible
F/63
1/0/0
20
82
0/Radical + ND + RC
NP
 
4
Mandible
M/52
2/0/0
0.5
21
1/Conservative
+
 
5
Mandible
F/66
2/0/0
18
40
1/Radical + RC
NP
Secondary
6
Mandible
F/60
2/0/0
4.5
36
1/Conservative
NP
 
7
Mandible
M/43
1/2/0
18
14
0/Radical + C
NP
 
8
Mandible
F/28
4/0/0
8
21
2/Conservative; 1/Radical
NP
 
9
Mandible
M/61
4/0/0
2.3
69
1/Radical + RC;1/Conservative; 1/Radical
+
 
10
Mandible
F/75
3/0/0
5
78
1/Conservative; 1/Radical
NP
 
11
Mandible
M/25
2/0/1
1.5
69
1/Radical + RC;1/Conservative
+
 
12
Mandible
M/24
3/0/0
6
52
1/Conservative;1/Radical
NP
 
13
Maxilla
F/68
8/0/1
41
54
6/Conservative;1/Radical
NP
 
14
Mandible
M/51
1/0/0
13
67
0/Radical + RC
NP
 
15
Mandible
M/36
4/1/0
15
5
3/Conservative
NP
 
F Female; M Male; S Surgery; C Chemotherapy; R Radiotherapy; R-t Recurrence-times; RC Reconstruction; ND Neck dissection; NP Not performed

Imaging features

AC manifests initially as multicystic or unicystic lesions with clear boundaries and a visible sclerotic zone. As the tumors increase in size, patients may experience tooth displacement, root resorption, osteolytic destruction, unclear boundaries, honeycomb-like changes (Fig. 2d), significantly uneven enhancement, further soft tissue invasion, infection, and facial swelling. Imaging revealed that primary tumors were more destructive than secondary tumors (Fig. 4).

Pathological features

AC can retains some of the typical histologic features of benign ameloblastoma, but it mainly presents malignant features, such as atypia, local necrosis, and perineural infiltration (Fig. 3). Peripheral AC is a malignant transformation of primary ameloblastoma that occurs outside the bone in the early stage. The malignant histological features of ameloblastoma can be observed in gingival tissues (Fig. 3g, h). Primary AC has histological characteristics similar to benign ameloblastoma but with obvious local cell atypia (Fig. 4f). Immunohistochemistry revealed that the proliferation index of Ki-67 in secondary tumors was higher than that of Ki-67 in primary tumors (Fig. 5). Furthermore, BRAF-V600E was detected in all 5 patients that underwent testing. BRAF genetic testing was not performed in the remaining 10 patients due to DNA degradation in the tissue samples (Table 1).

Discussion

AC is a rare and widely invasive malignant odontogenic epithelial neoplasm with significant proliferation and metastatic potential, requiring radical surgical intervention and close post-operative medical follow-up [9]. Little is known about the malignant mechanism of AC. A mixture of benign and malignant features may be present within the same tumor. Karakida et al. [4] inferred that postoperative chronic inflammation may promote its malignant transformation. Slater [10] proposed that multistep carcinogenesis, as seen in secondary AC, develops from pre-existing benign ameloblastoma before malignant transformation; patients usually experience multiple recurrences and various management courses. Accordingly, its diagnosis and treatment remain challenging. In this study, AC showed a unique biological behavior, different from ameloblastoma, which can not only cause extensive destruction of the jaw bone, but also nerve paralysis and distant metastasis. Imaging and histological features also showed that it had a more aggressive biological behavior.
A wide incidence age range with a mean age of 49 years has been reported [2]. In this study, the median presentation age was 53 years. The mandible was the most common AC location, closely correlating with earlier findings, which showed the posterior part of the mandible to be the most affected site, followed by the maxilla [11]. In this study, only two patients presented with cervical lymph nodes and lung metastases. Giridhar et al. [2] found that the progression-free survival and overall survival of AC were not different for patients with or without neck dissection, and prophylactic neck node dissection should be avoided. In this study, one patient suffered from eight recurrences. For this phenomenon, an important factor may be the maxillary location because of the abundant blood supply and its adjacent location to vital structures including the orbit, cranial base, and pterygomaxillary fossa, which are difficult to access by the surgeon and to obtain clear surgical margins [12]. The nuclear protein, Ki-67 antigen is a reliable marker reflecting cell proliferation, and Ki-67 is more specific for the proliferation of ameloblastoma and AC [13]. In this study, immunohistochemistry revealed that the proliferation index of Ki-67 in secondary tumors was higher than that in primary tumors, but radiography revealed that primary tumors were more destructive than secondary tumors, indicating that the increase in the Ki-67 index could not explain the invasiveness and bone destruction of those lesions but could help explain its ability to sustain growth and expansion [14]. Therefore, using the Ki-67 index increase to illustrate the destructive ability of AC remains a subjective measure [15]. In this study, one patient had AC accompanied by squamous cell carcinoma. This may be due to the malignant transformation of acanthomatous ameloblastoma, which exhibits extensive squamous metaplasia [16, 17]. Although AC shows squamous cell differentiation, it is not its main component; therefore, the possibility of AC must be first considered, rather than a primary oral squamous cell carcinoma [18].
The early treatment of ameloblastoma is crucial, and its malignant potential should be considered. The treatment of AC is usually extensive local excision. If the identification of benign or malignant ameloblastoma before surgery is difficult, frozen histological examination should be carried out at multiple tumor boundaries during surgery to discover malignant features in time [19]. Neck dissection should be considered only when local metastasis is suspected on clinical examination. In this study, radical resection and jaw reconstruction proved effective in reducing the recurrence and improving the quality of life of the patients. Radiotherapy is a classic adjuvant method for treating partially resected tumors; however, its efficacy is still unclear [8, 2022], as is that of systemic chemotherapy. Currently, various chemotherapeutic drugs, including platinum cyclophosphamide, carboplatin, paclitaxel, and 5-fluorouracil, have been reported useful, although with unsatisfactory therapeutic effects [23, 24]. In a previous report, an 8-year-old child was diagnosed with AC and systemic metastases and died after 5 cycles of chemotherapy [24]. The recent development of molecular biotechnology has improved tumor treatment. The incidence of BRAF-V600E mutations is high in osteogenic tumors [57, 25]. BRAF mutation is also associated with ameloblastoma invasiveness [26], and our results also demonstrated that BRAF-V600E is associated with AC. Furthermore, Kaye et al. [25] once treated a patient with ameloblastoma and pulmonary metastases by using two targeted drugs, dabrafenib and trametinib, which inhibit the effects of BRAF mutation. After 20 weeks, both the primary oral and pulmonary metastases were responding to treatment, suggesting that BRAF-V600E may be a therapeutic target for ameloblastoma, and targeted drug therapy may be used for AC with BRAF-V600E mutations.
There are some limitations to our study. Due to the complex mechanism of malignant transformation in AC, more studies focused on AC samples in various fields, such as molecular pathology and molecular biology, should be performed. Due to its rarity, AC treatment with molecular-targeted drugs are still untested. Thus, more AC cases need be documented.

Conclusion

AC diagnosis should be combined with clinical, imaging, and pathological manifestations to improve diagnostic accuracy. Due to its rarity, there is little knowledge about AC’s diagnosis and management. Moreover, clinical, imaging, and pathological features refer only to phenotypic characteristics. Further research on the mechanism of malignant transformation will help us to develop new treatment methods for this disease.

Methods

This study was approved by the Medical Ethics Review Committee of the First Affiliated Hospital of Zhengzhou University (Approval No: KY-2019-LW-008).
Data of 15 patients with AC from the First Affiliated Hospital of Zhengzhou University from 2014 to 2019 were reviewed. The medical files of all patients from the first consultation to the last medical consultation were collected. Hematoxylin and eosin (H&E) staining was performed on 4 μm histological sections and reviewed by three pathologists with > 5 years of work experience to confirm the original diagnoses, following the 2017 WHO odontogenic tumor guidelines [27]. We recorded the patient age and sex, tumor diameter, primary tumor site, patient symptoms, presence and location of metastases, imaging and pathologic features, treatment applied, follow-up information, and time of the last medical consultation. All patients were histologically examined and confirmed to have AC. Five patients (1, 2, 4, 9 and 11) were tested for the BRAF-V600E mutation. The other patients′ tissue samples were stored for too long and DNA degraded, so they could not be tested.

Immunohistochemical staining

Formalin-fixed, paraffin-embedded tissues from cases of AC were retrieved from the department of pathology, the first affiliated hospital of zhengzhou university. These tissues were cut into 4-μm tissue sections. Antibodies against the following antigens were used in this experiment: cytokeratin(CK) (mouse monoclonal antibody, AE1/AE3, Ready-to-use), P63 (mouse monoclonal antibody, 4A4 + UMAB4, Ready-to-use) from ZSGB-Bio, Beijing, China. Ki-67 (mouse monoclonal antibody, 30–9,Roche, Basel, Switzerland)is detected in Roche automatic immunohistochemistry platform.

Real-time PCR analysis and DNA sequencing

Real-time PCR was performed using an ABI 7300 real-time PCR system (Applied Biosystems, Foster City, CA, USA) and the SYBR Premix Ex Taq reagent kit (Takara Bio, Inc., Shiga, Japan). The forward and reverse primers were 5′-TGCTTGCTCTGATAGGAAAATG-3′ and 5′-CCACAAAATGGATCCAGACA-3′, respectively. The reaction procedure was as follows: pre-denaturation at 95 °C for 3 min; denaturation at 94 °C for 30 s, annealing extension at 60 °C for 30 s, and amplification at 72 °C for 30 s, for a total of 35 cycles. The PCR reaction product was handed over to Wuhan Sevier Biotechnology Co.Ltd (Hubei, China) to complete the DNA sequencing process based on ABI 3730XL sequencer(Applied Biosy-stem Inc, Waltham, Massachusetts,US).

Acknowledgements

Thanks to Prof. Xinming Li (Department of stomatology, The First Affiliated Hospital of Zhengzhou University) for kind advice in conception.
This study was approved by the Medical Ethics Review Committee of the First Affiliated Hospital of Zhengzhou University (Approval No: KY-2019-LW-008). The patients’ permission was obtained.
All authors approved the final publication.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Kosanwat T, Poomsawat S, Juengsomjit R. Ameloblastic carcinoma ex ameloblastoma of the maxilla. J Oral Maxillofac Pathol. 2019;23:58–62.CrossRef Kosanwat T, Poomsawat S, Juengsomjit R. Ameloblastic carcinoma ex ameloblastoma of the maxilla. J Oral Maxillofac Pathol. 2019;23:58–62.CrossRef
2.
Zurück zum Zitat Giridhar P, Mallick S, Upadhyay AD, Rath GK. Pattern of care and impact of prognostic factors in the outcome of ameloblastic carcinoma: a systematic review and individual patient data analysis of 199 cases. Eur Arch Otorhinolaryngol. 2017;274:3803–10.CrossRef Giridhar P, Mallick S, Upadhyay AD, Rath GK. Pattern of care and impact of prognostic factors in the outcome of ameloblastic carcinoma: a systematic review and individual patient data analysis of 199 cases. Eur Arch Otorhinolaryngol. 2017;274:3803–10.CrossRef
3.
Zurück zum Zitat Aoki T, Akiba T, Kondo Y, Sasaki M, Kajiwara H, Ota Y. The use of radiation therapy in the definitive management of ameloblastic carcinoma: a case report. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019;127:e56–60.CrossRef Aoki T, Akiba T, Kondo Y, Sasaki M, Kajiwara H, Ota Y. The use of radiation therapy in the definitive management of ameloblastic carcinoma: a case report. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019;127:e56–60.CrossRef
4.
Zurück zum Zitat Karakida K, Aoki T, Sakamoto H, Takahashi M, Akamatsu T, Ogura G, et al. Ameloblastic carcinoma, secondary type: a case report. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;110:e33–7.CrossRef Karakida K, Aoki T, Sakamoto H, Takahashi M, Akamatsu T, Ogura G, et al. Ameloblastic carcinoma, secondary type: a case report. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;110:e33–7.CrossRef
5.
Zurück zum Zitat Kurppa KJ, Caton J, Morgan PR, Ristimaki A, Ruhin B, Kellokoski J, et al. High frequency of BRAF V600E mutations in ameloblastoma. J Pathol. 2014;232:492-498.CrossRef Kurppa KJ, Caton J, Morgan PR, Ristimaki A, Ruhin B, Kellokoski J, et al. High frequency of BRAF V600E mutations in ameloblastoma. J Pathol. 2014;232:492-498.CrossRef
6.
Zurück zum Zitat Sweeney RT, McClary AC, Myers BR, Biscocho J, Neahring L, Kwei KA, et al. Identification of recurrent SMO and BRAF mutations in ameloblastomas. Nat Genet. 2014;46:722–5.CrossRef Sweeney RT, McClary AC, Myers BR, Biscocho J, Neahring L, Kwei KA, et al. Identification of recurrent SMO and BRAF mutations in ameloblastomas. Nat Genet. 2014;46:722–5.CrossRef
7.
Zurück zum Zitat Brown NA, Rolland D, McHugh JB, Weigelin HC, Zhao L, Lim MS, et al. Activating FGFR2-RAS-BRAF mutations in ameloblastoma. Clin Cancer Res. 2014;20:5517–26.CrossRef Brown NA, Rolland D, McHugh JB, Weigelin HC, Zhao L, Lim MS, et al. Activating FGFR2-RAS-BRAF mutations in ameloblastoma. Clin Cancer Res. 2014;20:5517–26.CrossRef
8.
Zurück zum Zitat Kar IB, Subramanyam RV, Mishra N, Singh AK. Ameloblastic carcinoma. A clinicopathologic dilemma—report of two cases with total review of literature from 1984 to 2012. Ann Maxillofac Surg. 2014;4:70–7.CrossRef Kar IB, Subramanyam RV, Mishra N, Singh AK. Ameloblastic carcinoma. A clinicopathologic dilemma—report of two cases with total review of literature from 1984 to 2012. Ann Maxillofac Surg. 2014;4:70–7.CrossRef
9.
Zurück zum Zitat Gunaratne DA, Coleman HG, Lim L, Morgan GJ. Ameloblastic carcinoma. Am J Case Rep. 2015;16:415–9.CrossRef Gunaratne DA, Coleman HG, Lim L, Morgan GJ. Ameloblastic carcinoma. Am J Case Rep. 2015;16:415–9.CrossRef
10.
Zurück zum Zitat Slater LJ. Odontogenic malignancies. Oral Maxillofac Surg Clin N Am. 2004;16:409–24.CrossRef Slater LJ. Odontogenic malignancies. Oral Maxillofac Surg Clin N Am. 2004;16:409–24.CrossRef
11.
Zurück zum Zitat Corio RL, Goldblatt LI, Edwards PA, Hartman KS. Ameloblastic carcinoma: a clinicopathologic study and assessment of eight cases. Oral Surg Oral Med Oral Pathol. 1987;64:570–6.CrossRef Corio RL, Goldblatt LI, Edwards PA, Hartman KS. Ameloblastic carcinoma: a clinicopathologic study and assessment of eight cases. Oral Surg Oral Med Oral Pathol. 1987;64:570–6.CrossRef
12.
Zurück zum Zitat Barnes L, Eveson JW, Reichart P, et al. Pathology and genetics of head and neck tumours. Lyon: IARC Press; 2005. Barnes L, Eveson JW, Reichart P, et al. Pathology and genetics of head and neck tumours. Lyon: IARC Press; 2005.
13.
14.
Zurück zum Zitat Brito-Mendoza L, Bologna-Molina R, Irigoyen-Camacho ME, Martinez G, Sanchez-Romero C, Mosqueda-Taylor A. A comparison of Ki67, Syndecan-1 (CD138), and molecular RANK, RANKL, and OPG triad expression in odontogenic keratocyts, unicystic ameloblastoma, and dentigerous cysts. Dis Mark. 2018;2018:7048531. Brito-Mendoza L, Bologna-Molina R, Irigoyen-Camacho ME, Martinez G, Sanchez-Romero C, Mosqueda-Taylor A. A comparison of Ki67, Syndecan-1 (CD138), and molecular RANK, RANKL, and OPG triad expression in odontogenic keratocyts, unicystic ameloblastoma, and dentigerous cysts. Dis Mark. 2018;2018:7048531.
15.
Zurück zum Zitat Lei Y, Jaradat JM, Owosho A, Adebiyi KE, Lybrand KS, Neville BW, et al. Evaluation of SOX2 as a potential marker for ameloblastic carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;117(608–16):e1. Lei Y, Jaradat JM, Owosho A, Adebiyi KE, Lybrand KS, Neville BW, et al. Evaluation of SOX2 as a potential marker for ameloblastic carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;117(608–16):e1.
17.
Zurück zum Zitat Fonseca FP, de Almeida OP, Vargas PA, Goncalves FJ, Correa Pontes FS, Rebelo Pontes HA. Ameloblastic carcinoma (secondary type) with extensive squamous differentiation areas and dedifferentiated regions. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;121:e154–61.CrossRef Fonseca FP, de Almeida OP, Vargas PA, Goncalves FJ, Correa Pontes FS, Rebelo Pontes HA. Ameloblastic carcinoma (secondary type) with extensive squamous differentiation areas and dedifferentiated regions. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;121:e154–61.CrossRef
18.
Zurück zum Zitat Mahmoud SAM, Amer HW, Mohamed SI. Primary ameloblastic carcinoma: literature review with case series. Pol J Pathol. 2018;69:243–53.CrossRef Mahmoud SAM, Amer HW, Mohamed SI. Primary ameloblastic carcinoma: literature review with case series. Pol J Pathol. 2018;69:243–53.CrossRef
19.
Zurück zum Zitat Loyola AM, Cardoso SV, de Faria PR, Servato JP, Eisenberg AL, Dias FL, et al. Ameloblastic carcinoma: a Brazilian collaborative study of 17 cases. Histopathology. 2016;69:687–701.CrossRef Loyola AM, Cardoso SV, de Faria PR, Servato JP, Eisenberg AL, Dias FL, et al. Ameloblastic carcinoma: a Brazilian collaborative study of 17 cases. Histopathology. 2016;69:687–701.CrossRef
20.
Zurück zum Zitat Dhir K, Sciubba J, Tufano RP. Ameloblastic carcinoma of the maxilla. Oral Oncol. 2003;39:736–41.CrossRef Dhir K, Sciubba J, Tufano RP. Ameloblastic carcinoma of the maxilla. Oral Oncol. 2003;39:736–41.CrossRef
21.
Zurück zum Zitat Hall JM, Weathers DR, Unni KK. Ameloblastic carcinoma: an analysis of 14 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103:799–807.CrossRef Hall JM, Weathers DR, Unni KK. Ameloblastic carcinoma: an analysis of 14 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103:799–807.CrossRef
22.
Zurück zum Zitat Li J, Du H, Li P, Zhang J, Tian W, Tang W. Ameloblastic carcinoma: an analysis of 12 cases with a review of the literature. Oncol Lett. 2014;8:914–20.CrossRef Li J, Du H, Li P, Zhang J, Tian W, Tang W. Ameloblastic carcinoma: an analysis of 12 cases with a review of the literature. Oncol Lett. 2014;8:914–20.CrossRef
23.
Zurück zum Zitat Saluja TS, Hosalkar R. Reconnoitre ameloblastic carcinoma: a prognostic update. Oral Oncol. 2018;77:118–24.CrossRef Saluja TS, Hosalkar R. Reconnoitre ameloblastic carcinoma: a prognostic update. Oral Oncol. 2018;77:118–24.CrossRef
24.
Zurück zum Zitat Horváth A, Horváth E, Popşor S. Mandibular ameloblastic carcinoma in a young patient. Rom J Morphol Embryol. 2012;53:179–83.PubMed Horváth A, Horváth E, Popşor S. Mandibular ameloblastic carcinoma in a young patient. Rom J Morphol Embryol. 2012;53:179–83.PubMed
25.
Zurück zum Zitat Kaye FJ, Ivey AM, Drane WE, Mendenhall WM, Allan RW. Clinical and radiographic response with combined BRAF-targeted therapy in stage 4 ameloblastoma. J Natl Cancer Inst. 2015;107:378.CrossRef Kaye FJ, Ivey AM, Drane WE, Mendenhall WM, Allan RW. Clinical and radiographic response with combined BRAF-targeted therapy in stage 4 ameloblastoma. J Natl Cancer Inst. 2015;107:378.CrossRef
26.
Zurück zum Zitat Fregnani ER, Perez DE, Paes de Almeida O, Fonseca FP, Soares FA, Castro-Junior G, et al. BRAF-V600E expression correlates with ameloblastoma aggressiveness. Histopathology. 2017;70:473–84.CrossRef Fregnani ER, Perez DE, Paes de Almeida O, Fonseca FP, Soares FA, Castro-Junior G, et al. BRAF-V600E expression correlates with ameloblastoma aggressiveness. Histopathology. 2017;70:473–84.CrossRef
Metadaten
Titel
Study on clinical and biological characteristics of ameloblastic carcinoma
verfasst von
Zhixing Niu
Ye Li
Wantao Chen
Junfang Zhao
Hongyu Zheng
Qing Deng
Zhian Zha
Hao Zhu
Qiang Sun
Lei Su
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Orphanet Journal of Rare Diseases / Ausgabe 1/2020
Elektronische ISSN: 1750-1172
DOI
https://doi.org/10.1186/s13023-020-01603-5

Weitere Artikel der Ausgabe 1/2020

Orphanet Journal of Rare Diseases 1/2020 Zur Ausgabe