Skip to main content
Erschienen in: Sports Medicine 1/2002

01.01.2002 | Review Article

The Scientific Basis for High-Intensity Interval Training

Optimising Training Programmes and Maximising Performance in Highly Trained Endurance Athletes

verfasst von: Paul B. Laursen, David G. Jenkins

Erschienen in: Sports Medicine | Ausgabe 1/2002

Einloggen, um Zugang zu erhalten

Abstract

While the physiological adaptations that occur following endurance training in previously sedentary and recreationally active individuals are relatively well understood, the adaptations to training in already highly trained endurance athletes remain unclear. While significant improvements in endurance performance and corresponding physiological markers are evident following submaximal endurance training in sedentary and recreationally active groups, an additional increase in submaximal training (i.e. volume) in highly trained individuals does not appear to further enhance either endurance performance or associated physiological variables [e.g. peak oxygen uptake (V̇O2peak), oxidative enzyme activity]. It seems that, for athletes who are already trained, improvements in endurance performance can be achieved only through high-intensity interval training (HIT). The limited research which has examined changes in muscle enzyme activity in highly trained athletes, following HIT, has revealed no change in oxidative or glycolytic enzyme activity, despite significant improvements in endurance performance (p < 0.05). Instead, an increase in skeletal muscle buffering capacity may be one mechanism responsible for an improvement in endurance performance. Changes in plasma volume, stroke volume, as well as muscle cation pumps, myoglobin, capillary density and fibre type characteristics have yet to be investigated in response to HIT with the highly trained athlete. Information relating to HIT programme optimisation in endurance athletes is also very sparse. Preliminary work using the velocity at whichV̇O2max is achieved (Vmax) as the interval intensity, and fractions (50 to 75%) of the time to exhaustion at Vmax (Tmax) as the interval duration has been successful in eliciting improvements in performance in long-distance runners. However, Vmax and Tmax have not been used with cyclists. Instead, HIT programme optimisation research in cyclists has revealed that repeated supramaximal sprinting may be equally effective as more traditional HIT programmes for eliciting improvements in endurance performance. Further examination of the biochemical and physiological adaptations which accompany different HIT programmes, as well as investigation into the optimal HIT programme for eliciting performance enhancements in highly trained athletes is required.
Literatur
1.
Zurück zum Zitat Hawley JA, Myburgh KH, Noakes TD, et al. Training techniques to improve fatigue resistance and enhance endurance performance. J Sports Sci 1997; 15: 325–33PubMedCrossRef Hawley JA, Myburgh KH, Noakes TD, et al. Training techniques to improve fatigue resistance and enhance endurance performance. J Sports Sci 1997; 15: 325–33PubMedCrossRef
2.
Zurück zum Zitat Wells CL, Pate RR. Training for performance of prolonged exercise. Carmel (IN): Benchmark Press, 1988 Wells CL, Pate RR. Training for performance of prolonged exercise. Carmel (IN): Benchmark Press, 1988
3.
Zurück zum Zitat Jones AM, Carter H. The effect of endurance training on parameters of aerobic fitness. Sports Med 2000; 29: 373–86PubMedCrossRef Jones AM, Carter H. The effect of endurance training on parameters of aerobic fitness. Sports Med 2000; 29: 373–86PubMedCrossRef
4.
Zurück zum Zitat Laursen PB, Rhodes EC. Factors affecting performance in an ultraendurance triathlon. Sports Med 2001; 31: 195–209PubMedCrossRef Laursen PB, Rhodes EC. Factors affecting performance in an ultraendurance triathlon. Sports Med 2001; 31: 195–209PubMedCrossRef
5.
Zurück zum Zitat Blomqvist CG, Saltin B. Cardiovascular adaptations to physical training. Annu Rev Physiol 1983; 45: 169–89PubMedCrossRef Blomqvist CG, Saltin B. Cardiovascular adaptations to physical training. Annu Rev Physiol 1983; 45: 169–89PubMedCrossRef
6.
Zurück zum Zitat Green HJ, Jones LL, Painter DC. Effects of short-term training on cardiac function during prolonged exercise. Med Sci Sports Exerc 1990; 22: 488–93PubMed Green HJ, Jones LL, Painter DC. Effects of short-term training on cardiac function during prolonged exercise. Med Sci Sports Exerc 1990; 22: 488–93PubMed
7.
Zurück zum Zitat Weston AR, Myburgh KH, Lindsay FH, et al. Skeletal muscle buffering capacity and endurance performance after high-intensity training by well-trained cyclists. Eur J Appl Physiol 1997; 75: 7–13CrossRef Weston AR, Myburgh KH, Lindsay FH, et al. Skeletal muscle buffering capacity and endurance performance after high-intensity training by well-trained cyclists. Eur J Appl Physiol 1997; 75: 7–13CrossRef
8.
Zurück zum Zitat Londeree BR. Effect of training on lactate/ventilatory thresholds: a meta-analysis. Med Sci Sports Exerc 1997; 29: 837–43PubMedCrossRef Londeree BR. Effect of training on lactate/ventilatory thresholds: a meta-analysis. Med Sci Sports Exerc 1997; 29: 837–43PubMedCrossRef
9.
Zurück zum Zitat Costill DL, Flynn MG, Kirman JP, et al. Effects of repeated days of intensified training on muscle glycogen and swimming performance. Med Sci Sports Exerc 1988; 20: 249–54PubMedCrossRef Costill DL, Flynn MG, Kirman JP, et al. Effects of repeated days of intensified training on muscle glycogen and swimming performance. Med Sci Sports Exerc 1988; 20: 249–54PubMedCrossRef
10.
Zurück zum Zitat Lake MJ, Cavanagh PR. Six weeks of training does not change running mechanics or improve running economy. Med Sci Sports Exerc 1996; 28: 860–9PubMedCrossRef Lake MJ, Cavanagh PR. Six weeks of training does not change running mechanics or improve running economy. Med Sci Sports Exerc 1996; 28: 860–9PubMedCrossRef
11.
Zurück zum Zitat Green HJ. Altitude acclimatization, training and performance. J Sci Med Sport 2000; 3: 299–312PubMedCrossRef Green HJ. Altitude acclimatization, training and performance. J Sci Med Sport 2000; 3: 299–312PubMedCrossRef
12.
Zurück zum Zitat Coyle EF. Physical activity as a metabolic stressor. Am J Clin Nutr 2000; 72 (2 Suppl.): 512S-20S Coyle EF. Physical activity as a metabolic stressor. Am J Clin Nutr 2000; 72 (2 Suppl.): 512S-20S
13.
Zurück zum Zitat Green HJ, Jones LL, Hughson RL, et al. Training-induced hypervolemia: lack of an effect on oxygen utilization during exercise. Med Sci Sports Exerc 1987; 19: 202–6PubMed Green HJ, Jones LL, Hughson RL, et al. Training-induced hypervolemia: lack of an effect on oxygen utilization during exercise. Med Sci Sports Exerc 1987; 19: 202–6PubMed
14.
Zurück zum Zitat Green HJ, Hughson RL, Thomson JA, et al. Supramaximal exercise after training-induced hypervolemia. I: gas exchange and acid-base balance. J Appl Physiol 1987; 62: 1944–53PubMed Green HJ, Hughson RL, Thomson JA, et al. Supramaximal exercise after training-induced hypervolemia. I: gas exchange and acid-base balance. J Appl Physiol 1987; 62: 1944–53PubMed
15.
Zurück zum Zitat Green HJ, Thomson JA, Houston ME. Supramaximal exercise after training-induced hypervolemia. II: blood/muscle substrates and metabolites. J Appl Physiol 1987; 62: 1954–61PubMed Green HJ, Thomson JA, Houston ME. Supramaximal exercise after training-induced hypervolemia. II: blood/muscle substrates and metabolites. J Appl Physiol 1987; 62: 1954–61PubMed
16.
Zurück zum Zitat Green HJ, Coates G, Sutton JR, et al. Early adaptations in gas exchange, cardiac function and haematology to prolonged exercise training in man. Eur J Appl Physiol 1991; 63: 17–23CrossRef Green HJ, Coates G, Sutton JR, et al. Early adaptations in gas exchange, cardiac function and haematology to prolonged exercise training in man. Eur J Appl Physiol 1991; 63: 17–23CrossRef
17.
Zurück zum Zitat Green HJ, Jones LL, Houston ME, et al. Muscle energetics during prolonged cycling after exercise hypervolemia. J Appl Physiol 1989; 66: 622–31PubMed Green HJ, Jones LL, Houston ME, et al. Muscle energetics during prolonged cycling after exercise hypervolemia. J Appl Physiol 1989; 66: 622–31PubMed
18.
Zurück zum Zitat Green HJ. Muscular adaptations at extreme altitude: metabolic implications during exercise. Int J Sports Med 1992; 13 Suppl. 1: S163–5CrossRef Green HJ. Muscular adaptations at extreme altitude: metabolic implications during exercise. Int J Sports Med 1992; 13 Suppl. 1: S163–5CrossRef
19.
Zurück zum Zitat Green HJ, Helyar R, Ball-Burnett M, et al. Metabolic adaptations to training precede changes in muscle mitochondrial capacity. J Appl Physiol 1992; 72: 484–91PubMed Green HJ, Helyar R, Ball-Burnett M, et al. Metabolic adaptations to training precede changes in muscle mitochondrial capacity. J Appl Physiol 1992; 72: 484–91PubMed
20.
Zurück zum Zitat Green HJ, Jones S, Ball-Burnett M, et al. Early adaptations in blood substrates, metabolites, and hormones to prolonged exercise training in man. Can J Physiol Pharmacol 1991; 69: 1222–9PubMedCrossRef Green HJ, Jones S, Ball-Burnett M, et al. Early adaptations in blood substrates, metabolites, and hormones to prolonged exercise training in man. Can J Physiol Pharmacol 1991; 69: 1222–9PubMedCrossRef
21.
Zurück zum Zitat Rowell AL. Human cardiovascular control. New York: Oxford University Press, 1993 Rowell AL. Human cardiovascular control. New York: Oxford University Press, 1993
22.
Zurück zum Zitat Fritzsche RG, Coyle EF. Cutaneous blood flow during exercise is higher in endurance-trained humans. J Appl Physiol 2000; 88: 738–44PubMed Fritzsche RG, Coyle EF. Cutaneous blood flow during exercise is higher in endurance-trained humans. J Appl Physiol 2000; 88: 738–44PubMed
23.
Zurück zum Zitat Coyle EF. Physiological determinants of endurance exercise performance. J Sci Med Sport 1999; 2: 181–9PubMedCrossRef Coyle EF. Physiological determinants of endurance exercise performance. J Sci Med Sport 1999; 2: 181–9PubMedCrossRef
24.
Zurück zum Zitat McKenzie S, Phillips SM, Carter SL, et al. Endurance exercise training attenuates leucine oxidation and BCOAD activation during exercise in humans. Am J Physiol Endocrinol Metab 2000; 278: E580–7 McKenzie S, Phillips SM, Carter SL, et al. Endurance exercise training attenuates leucine oxidation and BCOAD activation during exercise in humans. Am J Physiol Endocrinol Metab 2000; 278: E580–7
25.
Zurück zum Zitat Hickson RC, Hagberg JM, Ehsani AA, et al. Time course of the adaptive responses of aerobic power and heart rate to training. Med Sci Sports Exerc 1981; 13: 17–20PubMed Hickson RC, Hagberg JM, Ehsani AA, et al. Time course of the adaptive responses of aerobic power and heart rate to training. Med Sci Sports Exerc 1981; 13: 17–20PubMed
26.
Zurück zum Zitat Vock R, Hoppeler H, Claassen H, et al. Design of the oxygen and substrate pathways. VI: structural basis of intracellular substrate supply to mitochondria in muscle cells. J Exp Biol 1996; 199: 1689–97PubMed Vock R, Hoppeler H, Claassen H, et al. Design of the oxygen and substrate pathways. VI: structural basis of intracellular substrate supply to mitochondria in muscle cells. J Exp Biol 1996; 199: 1689–97PubMed
27.
Zurück zum Zitat Weibel ER, Taylor CR, Weber JM, et al. Design of the oxygen and substrate pathways. VII: different structural limits for oxygen and substrate supply to muscle mitochondria. J Exp Biol 1996; 199: 1699–709PubMed Weibel ER, Taylor CR, Weber JM, et al. Design of the oxygen and substrate pathways. VII: different structural limits for oxygen and substrate supply to muscle mitochondria. J Exp Biol 1996; 199: 1699–709PubMed
28.
Zurück zum Zitat Hoppeler H, Weibel ER. Limits for oxygen and substrate transport in mammals. J Exp Biol 1998; 201: 1051–64PubMed Hoppeler H, Weibel ER. Limits for oxygen and substrate transport in mammals. J Exp Biol 1998; 201: 1051–64PubMed
29.
Zurück zum Zitat Hoppeler H, Weibel ER. Structural and functional limits for oxygen supply to muscle. Acta Physiol Scand 2000; 168: 445–56PubMedCrossRef Hoppeler H, Weibel ER. Structural and functional limits for oxygen supply to muscle. Acta Physiol Scand 2000; 168: 445–56PubMedCrossRef
30.
Zurück zum Zitat Coggan AR, Raguso CA, Williams BD, et al. Glucose kinetics during high-intensity exercise in endurance-trained and untrained humans. J Appl Physiol 1995; 78: 1203–7PubMedCrossRef Coggan AR, Raguso CA, Williams BD, et al. Glucose kinetics during high-intensity exercise in endurance-trained and untrained humans. J Appl Physiol 1995; 78: 1203–7PubMedCrossRef
31.
Zurück zum Zitat Coggan AR, Kohrt WM, Spina RJ, et al. Endurance training decreases plasma glucose turnover and oxidation during moderate-intensity exercise in men. J Appl Physiol 1990; 68: 990–6PubMed Coggan AR, Kohrt WM, Spina RJ, et al. Endurance training decreases plasma glucose turnover and oxidation during moderate-intensity exercise in men. J Appl Physiol 1990; 68: 990–6PubMed
32.
Zurück zum Zitat Coggan AR. Plasma glucose metabolism during exercise: effect of endurance training in humans. Med Sci Sports Exerc 1997; 29: 620–7PubMedCrossRef Coggan AR. Plasma glucose metabolism during exercise: effect of endurance training in humans. Med Sci Sports Exerc 1997; 29: 620–7PubMedCrossRef
33.
Zurück zum Zitat Karlsson J, Nordesjo LO, Saltin B. Muscle glycogen utilization during exercise after physical training. Acta Physiol Scand 1974; 90: 210–7PubMedCrossRef Karlsson J, Nordesjo LO, Saltin B. Muscle glycogen utilization during exercise after physical training. Acta Physiol Scand 1974; 90: 210–7PubMedCrossRef
34.
Zurück zum Zitat Martin WH 3rd, Dalsky GP, Hurley BF, et al. Effect of endurance training on plasma free fatty acid turnover and oxidation during exercise. Am J Physiol 1993; 265: E708–14 Martin WH 3rd, Dalsky GP, Hurley BF, et al. Effect of endurance training on plasma free fatty acid turnover and oxidation during exercise. Am J Physiol 1993; 265: E708–14
35.
Zurück zum Zitat Hurley BF, Hagberg JM, Allen WK, et al. Effect of training on blood lactate levels during submaximal exercise. J Appl Physiol 1984; 56: 1260–4PubMed Hurley BF, Hagberg JM, Allen WK, et al. Effect of training on blood lactate levels during submaximal exercise. J Appl Physiol 1984; 56: 1260–4PubMed
36.
Zurück zum Zitat Shoemaker JK, Phillips SM, Green HJ, et al. Faster femoral artery blood velocity kinetics at the onset of exercise following short-term training. Cardiovasc Res 1996; 31: 278–86PubMed Shoemaker JK, Phillips SM, Green HJ, et al. Faster femoral artery blood velocity kinetics at the onset of exercise following short-term training. Cardiovasc Res 1996; 31: 278–86PubMed
37.
Zurück zum Zitat Green H, Grant S, Bombardier E, et al. Initial aerobic power does not alter muscle metabolic adaptations to short-term training. Am J Physiol 1999; 277: E39–48 Green H, Grant S, Bombardier E, et al. Initial aerobic power does not alter muscle metabolic adaptations to short-term training. Am J Physiol 1999; 277: E39–48
38.
Zurück zum Zitat Daniels JT, Yarbrough RA, Foster C. Changes in V̇O2max and running performance with training. Eur J Appl Physiol 1978; 39: 249–54CrossRef Daniels JT, Yarbrough RA, Foster C. Changes in V̇O2max and running performance with training. Eur J Appl Physiol 1978; 39: 249–54CrossRef
39.
Zurück zum Zitat Henriksson J. Effects of physical training on the metabolism of skeletal muscle. Diabetes Care 1992; 15: 1701–11PubMedCrossRef Henriksson J. Effects of physical training on the metabolism of skeletal muscle. Diabetes Care 1992; 15: 1701–11PubMedCrossRef
40.
Zurück zum Zitat Denis C, Fouquet R, Poty P, et al. Effect of 40 weeks of endurance training on the anaerobic threshold. Int J Sports Med 1982; 3: 208–14PubMedCrossRef Denis C, Fouquet R, Poty P, et al. Effect of 40 weeks of endurance training on the anaerobic threshold. Int J Sports Med 1982; 3: 208–14PubMedCrossRef
41.
Zurück zum Zitat Hardman AE, Williams C, Wootton SA. The influence of short term endurance training on maximum oxygen uptake, submaximum endurance and the ability to perform brief, maximal exercise. J Sports Sci 1986; 4: 109–16PubMedCrossRef Hardman AE, Williams C, Wootton SA. The influence of short term endurance training on maximum oxygen uptake, submaximum endurance and the ability to perform brief, maximal exercise. J Sports Sci 1986; 4: 109–16PubMedCrossRef
42.
Zurück zum Zitat Ekblom B. Effect of physical training on oxygen transport system in man. Acta Physiol Scand 1969; 328 Suppl.: 1045 Ekblom B. Effect of physical training on oxygen transport system in man. Acta Physiol Scand 1969; 328 Suppl.: 1045
43.
Zurück zum Zitat Hickson RC, Bomze HA, Holloszy JO. Linear increase in aerobic power induced by a strenuous program of endurance exercise. J Appl Physiol 1977; 42: 372–6PubMed Hickson RC, Bomze HA, Holloszy JO. Linear increase in aerobic power induced by a strenuous program of endurance exercise. J Appl Physiol 1977; 42: 372–6PubMed
44.
45.
Zurück zum Zitat Billat LV. Interval training for performance: a scientific and empirical practice. Part II: anaerobic interval training. Sports Med 2001; 31: 75–90PubMedCrossRef Billat LV. Interval training for performance: a scientific and empirical practice. Part II: anaerobic interval training. Sports Med 2001; 31: 75–90PubMedCrossRef
46.
Zurück zum Zitat Green H, Tupling R, Roy B, et al. Adaptations in skeletal muscle exercise metabolism to a sustained session of heavy intermittent exercise. Am J Physiol Endocrinol Metab 2000; 278: E118–26 Green H, Tupling R, Roy B, et al. Adaptations in skeletal muscle exercise metabolism to a sustained session of heavy intermittent exercise. Am J Physiol Endocrinol Metab 2000; 278: E118–26
47.
Zurück zum Zitat Green HJ, Fraser IG. Differential effects of exercise intensity on serumuric acid concentration. Med Sci Sports Exerc 1988; 20: 55–9PubMedCrossRef Green HJ, Fraser IG. Differential effects of exercise intensity on serumuric acid concentration. Med Sci Sports Exerc 1988; 20: 55–9PubMedCrossRef
48.
Zurück zum Zitat Keith SP, Jacobs I, McLellan TM. Adaptations to training at the individual anaerobic threshold. Eur J Appl Physiol 1992; 65: 316–23CrossRef Keith SP, Jacobs I, McLellan TM. Adaptations to training at the individual anaerobic threshold. Eur J Appl Physiol 1992; 65: 316–23CrossRef
49.
Zurück zum Zitat Burke J, Thayer R, Belcamino M. Comparison of effects of two interval-training programmes on lactate and ventilatory thresholds. Br J Sports Med 1994; 28: 18–21PubMedCrossRef Burke J, Thayer R, Belcamino M. Comparison of effects of two interval-training programmes on lactate and ventilatory thresholds. Br J Sports Med 1994; 28: 18–21PubMedCrossRef
50.
Zurück zum Zitat Simoneau JA, Lortie G, Boulay MR, et al. Human skeletal muscle fiber type alteration with high-intensity intermittent training. Eur J Appl Physiol 1985; 54: 250–3CrossRef Simoneau JA, Lortie G, Boulay MR, et al. Human skeletal muscle fiber type alteration with high-intensity intermittent training. Eur J Appl Physiol 1985; 54: 250–3CrossRef
51.
Zurück zum Zitat Rodas G, Ventura JL, Cadefau JA, et al. A short training programme for the rapid improvement of both aerobic and anaerobic metabolism. Eur J Appl Physiol 2000; 82: 480–6PubMedCrossRef Rodas G, Ventura JL, Cadefau JA, et al. A short training programme for the rapid improvement of both aerobic and anaerobic metabolism. Eur J Appl Physiol 2000; 82: 480–6PubMedCrossRef
52.
Zurück zum Zitat Parra J, Cadefau JA, Rodas G, et al. The distribution of rest periods affects performance and adaptations of energy metabolism induced by high-intensity training in human muscle. Acta Physiol Scand 2000; 169: 157–65PubMedCrossRef Parra J, Cadefau JA, Rodas G, et al. The distribution of rest periods affects performance and adaptations of energy metabolism induced by high-intensity training in human muscle. Acta Physiol Scand 2000; 169: 157–65PubMedCrossRef
53.
Zurück zum Zitat MacDougall JD, Hicks AL, MacDonald JR, et al. Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol 1998; 84: 2138–42PubMedCrossRef MacDougall JD, Hicks AL, MacDonald JR, et al. Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol 1998; 84: 2138–42PubMedCrossRef
54.
Zurück zum Zitat Linossier MT, Dennis C, Dormois D, et al. Ergometric and metabolic adaptation to a 5-s sprint training programme. Eur J Appl Physiol 1993; 67: 408–14CrossRef Linossier MT, Dennis C, Dormois D, et al. Ergometric and metabolic adaptation to a 5-s sprint training programme. Eur J Appl Physiol 1993; 67: 408–14CrossRef
55.
Zurück zum Zitat Simoneau JA, Lortie G, Boulay MR, et al. Effects of two high-intensity intermittent training programs interspaced by detraining on human skeletal muscle and performance. Eur J Appl Physiol 1987; 56: 516–21CrossRef Simoneau JA, Lortie G, Boulay MR, et al. Effects of two high-intensity intermittent training programs interspaced by detraining on human skeletal muscle and performance. Eur J Appl Physiol 1987; 56: 516–21CrossRef
56.
Zurück zum Zitat Henritze J, Weltman A, Schurrer RL, et al. Effects of training at and above the lactate threshold on the lactate threshold and maximal oxygen uptake. Eur J Appl Physiol 1985; 54: 84–8CrossRef Henritze J, Weltman A, Schurrer RL, et al. Effects of training at and above the lactate threshold on the lactate threshold and maximal oxygen uptake. Eur J Appl Physiol 1985; 54: 84–8CrossRef
57.
Zurück zum Zitat Nevill ME, Boobis LH, Brooks S, et al. Effect of training on muscle metabolism during treadmill sprinting. J Appl Physiol 1989; 67: 2376–82PubMed Nevill ME, Boobis LH, Brooks S, et al. Effect of training on muscle metabolism during treadmill sprinting. J Appl Physiol 1989; 67: 2376–82PubMed
58.
Zurück zum Zitat Tabata I, Nishimura K, Kouzaki M, et al. Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and V̇O2max. Med Sci Sports Exerc 1996; 28: 1327–30PubMedCrossRef Tabata I, Nishimura K, Kouzaki M, et al. Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and V̇O2max. Med Sci Sports Exerc 1996; 28: 1327–30PubMedCrossRef
59.
Zurück zum Zitat Ray CA. Sympathetic adaptations to one-legged training. J Appl Physiol 1999; 86: 1583–7PubMed Ray CA. Sympathetic adaptations to one-legged training. J Appl Physiol 1999; 86: 1583–7PubMed
60.
Zurück zum Zitat Harmer AR, McKenna MJ, Sutton JR, et al. Skeletal muscle metabolic and ionic adaptations during intense exercise following sprint training in humans. J Appl Physiol 2000; 89: 1793–803PubMed Harmer AR, McKenna MJ, Sutton JR, et al. Skeletal muscle metabolic and ionic adaptations during intense exercise following sprint training in humans. J Appl Physiol 2000; 89: 1793–803PubMed
61.
Zurück zum Zitat Essen B, Hagenfeldt L, Kaijser L. Utilization of blood-borne and intramuscular substrates during continuous and intermittent exercise in man. J Physiol 1977; 265: 489–506PubMed Essen B, Hagenfeldt L, Kaijser L. Utilization of blood-borne and intramuscular substrates during continuous and intermittent exercise in man. J Physiol 1977; 265: 489–506PubMed
62.
Zurück zum Zitat Chilibeck PD, Bell GJ, Farrar RP, et al. Higher mitochondrial fatty acid oxidation following intermittent versus continuous endurance exercise training. Can J Physiol Pharmacol 1998; 76: 891–4PubMedCrossRef Chilibeck PD, Bell GJ, Farrar RP, et al. Higher mitochondrial fatty acid oxidation following intermittent versus continuous endurance exercise training. Can J Physiol Pharmacol 1998; 76: 891–4PubMedCrossRef
63.
Zurück zum Zitat Gorostiaga EM, Walter CB, Foster C, et al. Uniqueness of interval and continuous training at the same maintained exercise intensity. Eur J Appl Physiol Occup Physiol 1991; 63: 101–7PubMedCrossRef Gorostiaga EM, Walter CB, Foster C, et al. Uniqueness of interval and continuous training at the same maintained exercise intensity. Eur J Appl Physiol Occup Physiol 1991; 63: 101–7PubMedCrossRef
64.
Zurück zum Zitat Franch J, Madsen K, Djurhuus MS, et al. Improved running economy following intensified training correlates with reduced ventilatory demands. Med Sci Sports Exerc 1998; 30: 1250–6PubMedCrossRef Franch J, Madsen K, Djurhuus MS, et al. Improved running economy following intensified training correlates with reduced ventilatory demands. Med Sci Sports Exerc 1998; 30: 1250–6PubMedCrossRef
65.
Zurück zum Zitat Coetzer P, Noakes TD, Sanders B, et al. Superior fatigue resistance of elite black South African distance runners. J Appl Physiol 1993; 75: 1822–7PubMed Coetzer P, Noakes TD, Sanders B, et al. Superior fatigue resistance of elite black South African distance runners. J Appl Physiol 1993; 75: 1822–7PubMed
66.
Zurück zum Zitat Billat V, Renoux JC, Pinoteau J, et al. Times to exhaustion at 90, 100 and 105% of velocity at V̇O2max (maximal aerobic speed) and critical speed in elite long-distance runners. Arch Physiol Biochem 1995; 103: 129–35PubMedCrossRef Billat V, Renoux JC, Pinoteau J, et al. Times to exhaustion at 90, 100 and 105% of velocity at V̇O2max (maximal aerobic speed) and critical speed in elite long-distance runners. Arch Physiol Biochem 1995; 103: 129–35PubMedCrossRef
67.
Zurück zum Zitat Holloszy JO, Booth FW. Biochemical adaptations to endurance exercise in muscle. Annu Rev Physiol 1976; 38: 273–91PubMedCrossRef Holloszy JO, Booth FW. Biochemical adaptations to endurance exercise in muscle. Annu Rev Physiol 1976; 38: 273–91PubMedCrossRef
68.
Zurück zum Zitat Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 1984; 56: 831–8PubMed Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 1984; 56: 831–8PubMed
69.
Zurück zum Zitat Gaitanos GC, Williams C, Boobis LH, et al. Human muscle metabolism during intermittent maximal exercise. J Appl Physiol 1993; 75: 712–9PubMed Gaitanos GC, Williams C, Boobis LH, et al. Human muscle metabolism during intermittent maximal exercise. J Appl Physiol 1993; 75: 712–9PubMed
70.
Zurück zum Zitat Medbo JI, Mohn AC, Tabata I, et al. Anaerobic capacity determined by maximal accumulated O2 deficit. J Appl Physiol 1988; 64: 50–60PubMed Medbo JI, Mohn AC, Tabata I, et al. Anaerobic capacity determined by maximal accumulated O2 deficit. J Appl Physiol 1988; 64: 50–60PubMed
71.
Zurück zum Zitat Henriksson J, Reitman JS. Time course of changes in human skeletal muscle succinate dehydrogenase and cytochrome oxidase activities and maximal oxygen uptake with physical activity and inactivity. Acta Physiol Scand 1977; 99: 91–7PubMedCrossRef Henriksson J, Reitman JS. Time course of changes in human skeletal muscle succinate dehydrogenase and cytochrome oxidase activities and maximal oxygen uptake with physical activity and inactivity. Acta Physiol Scand 1977; 99: 91–7PubMedCrossRef
72.
Zurück zum Zitat Phillips SM, Green HJ, Tarnopolsky MA, et al. Effects of training duration on substrate turnover and oxidation during exercise. J Appl Physiol 1996; 81: 2182–91PubMed Phillips SM, Green HJ, Tarnopolsky MA, et al. Effects of training duration on substrate turnover and oxidation during exercise. J Appl Physiol 1996; 81: 2182–91PubMed
73.
Zurück zum Zitat Phillips SM, Green HJ, Tarnopolsky MA, et al. Progressive effect of endurance training on metabolic adaptations in working skeletal muscle. Am J Physiol 1996; 270: E265–72 Phillips SM, Green HJ, Tarnopolsky MA, et al. Progressive effect of endurance training on metabolic adaptations in working skeletal muscle. Am J Physiol 1996; 270: E265–72
74.
Zurück zum Zitat Acevedo EO, Goldfarb AH. Increased training intensity effects on plasma lactate, ventilatory threshold, and endurance. Med Sci Sports Exerc 1989; 21: 563–8PubMed Acevedo EO, Goldfarb AH. Increased training intensity effects on plasma lactate, ventilatory threshold, and endurance. Med Sci Sports Exerc 1989; 21: 563–8PubMed
75.
Zurück zum Zitat Collins MH, Pearsall DJ, Zavorsky GS, et al. Acute effects of intense interval training on running mechanics. J Sports Sci 2000; 18: 83–90PubMedCrossRef Collins MH, Pearsall DJ, Zavorsky GS, et al. Acute effects of intense interval training on running mechanics. J Sports Sci 2000; 18: 83–90PubMedCrossRef
76.
Zurück zum Zitat James DV, Doust JH. Oxygen uptake during moderate intensity running: response following a single bout of interval training. Eur J Appl Physiol 1998; 77: 551–5CrossRef James DV, Doust JH. Oxygen uptake during moderate intensity running: response following a single bout of interval training. Eur J Appl Physiol 1998; 77: 551–5CrossRef
77.
Zurück zum Zitat James DV, Doust JH. Oxygen uptake during high-intensity running: response following a single bout of interval training. Eur J Appl Physiol 1999; 79: 237–43CrossRef James DV, Doust JH. Oxygen uptake during high-intensity running: response following a single bout of interval training. Eur J Appl Physiol 1999; 79: 237–43CrossRef
78.
Zurück zum Zitat Billat VL, Flechet B, Petit B, et al. Interval training at V̇O2max: effects on aerobic performance and overtraining markers. Med Sci Sports Exerc 1999; 31: 156–63PubMedCrossRef Billat VL, Flechet B, Petit B, et al. Interval training at V̇O2max: effects on aerobic performance and overtraining markers. Med Sci Sports Exerc 1999; 31: 156–63PubMedCrossRef
79.
Zurück zum Zitat Babineau C, Leger L. Physiological response of 5/1 intermittent aerobic exercise and its relationship to 5 km endurance performance. Int J Sports Med 1997; 18: 13–9PubMedCrossRef Babineau C, Leger L. Physiological response of 5/1 intermittent aerobic exercise and its relationship to 5 km endurance performance. Int J Sports Med 1997; 18: 13–9PubMedCrossRef
80.
Zurück zum Zitat Westgarth-Taylor C, Hawley JA, Rickard S, et al. Metabolic and performance adaptations to interval training in endurance trained cyclists. Eur J Appl Physiol 1997; 75: 298–304CrossRef Westgarth-Taylor C, Hawley JA, Rickard S, et al. Metabolic and performance adaptations to interval training in endurance trained cyclists. Eur J Appl Physiol 1997; 75: 298–304CrossRef
81.
Zurück zum Zitat Stepto NK, Hawley JA, Dennis SC, et al. Effects of different interval-training programs on cycling time-trial performance. Med Sci Sports Exerc 1998; 31: 736–41 Stepto NK, Hawley JA, Dennis SC, et al. Effects of different interval-training programs on cycling time-trial performance. Med Sci Sports Exerc 1998; 31: 736–41
82.
Zurück zum Zitat Laursen PB, Blanchard MA, Jenkins DG. Acute high-intensity interval training improves Tvent and PPO in highly trained males. Can J Appl Physiol. In press Laursen PB, Blanchard MA, Jenkins DG. Acute high-intensity interval training improves Tvent and PPO in highly trained males. Can J Appl Physiol. In press
83.
Zurück zum Zitat Lindsay FH, Hawley JA, Myburgh KH, et al. Improved athletic performance in highly trained cyclists after interval training. Med Sci Sports Exerc 1996; 28: 1427–34PubMedCrossRef Lindsay FH, Hawley JA, Myburgh KH, et al. Improved athletic performance in highly trained cyclists after interval training. Med Sci Sports Exerc 1996; 28: 1427–34PubMedCrossRef
84.
Zurück zum Zitat Gaskill SE, Serfass RC, Bacharach DW, et al. Responses to training in cross-country skiers. Med Sci Sports Exerc 1999; 31: 1211–7PubMedCrossRef Gaskill SE, Serfass RC, Bacharach DW, et al. Responses to training in cross-country skiers. Med Sci Sports Exerc 1999; 31: 1211–7PubMedCrossRef
85.
Zurück zum Zitat Stepto NK, Martin DT, Fallon KE, et al. Metabolic demands of intense aerobic interval training in competitive cyclists. Med Sci Sports Exerc 2001; 33: 303–10PubMed Stepto NK, Martin DT, Fallon KE, et al. Metabolic demands of intense aerobic interval training in competitive cyclists. Med Sci Sports Exerc 2001; 33: 303–10PubMed
86.
Zurück zum Zitat Smith TP, McNaughton LR, Marshall KJ. Effects of 4-wk training using Vmax/Tmax on V̇O2max and performance in athletes. Med Sci Sports Exerc 1999; 31: 892–6PubMedCrossRef Smith TP, McNaughton LR, Marshall KJ. Effects of 4-wk training using Vmax/Tmax on V̇O2max and performance in athletes. Med Sci Sports Exerc 1999; 31: 892–6PubMedCrossRef
87.
Zurück zum Zitat Smith TP, Dilger J, Davoren B, et al. Optimising high intensity treadmill training using V̇O2max and Tmax. Pre-Olympic Congress; 2000 Sep 7–13; Brisbane 2000 Smith TP, Dilger J, Davoren B, et al. Optimising high intensity treadmill training using V̇O2max and Tmax. Pre-Olympic Congress; 2000 Sep 7–13; Brisbane 2000
88.
Zurück zum Zitat Zavorsky GS, Montgomery DL, Pearsall DJ. Effect of intense interval workouts on running economy using three recovery durations. Eur J Appl Physiol 1998; 77: 224–30CrossRef Zavorsky GS, Montgomery DL, Pearsall DJ. Effect of intense interval workouts on running economy using three recovery durations. Eur J Appl Physiol 1998; 77: 224–30CrossRef
89.
Zurück zum Zitat Hickey MS, Costill DL, McConell GK, et al. Day to day variation in time trial cycling performance. Int J Sports Med 1992; 13: 467–70PubMedCrossRef Hickey MS, Costill DL, McConell GK, et al. Day to day variation in time trial cycling performance. Int J Sports Med 1992; 13: 467–70PubMedCrossRef
90.
Zurück zum Zitat Gleser MA, Vogel JA. Endurance exercise: effect of work-rest schedules and repeated testing. J Appl Physiol 1971; 31: 735–9PubMed Gleser MA, Vogel JA. Endurance exercise: effect of work-rest schedules and repeated testing. J Appl Physiol 1971; 31: 735–9PubMed
91.
Zurück zum Zitat Zavorsky GS. Evidence and possible mechanisms of altered maximum heart rate with endurance training and tapering. Sports Med 2000; 29: 13–26PubMedCrossRef Zavorsky GS. Evidence and possible mechanisms of altered maximum heart rate with endurance training and tapering. Sports Med 2000; 29: 13–26PubMedCrossRef
92.
Zurück zum Zitat Convertino VA. Blood volume: its adaptation to endurance training. Med Sci Sports Exerc 1991; 23: 1338–48PubMed Convertino VA. Blood volume: its adaptation to endurance training. Med Sci Sports Exerc 1991; 23: 1338–48PubMed
93.
Zurück zum Zitat Sawka MN, Convertino VA, Eichner ER, et al. Blood volume: importance and adaptations to exercise training, environmental stresses, and trauma/sickness. Med Sci Sports Exerc 2000; 32: 332–48PubMedCrossRef Sawka MN, Convertino VA, Eichner ER, et al. Blood volume: importance and adaptations to exercise training, environmental stresses, and trauma/sickness. Med Sci Sports Exerc 2000; 32: 332–48PubMedCrossRef
94.
Zurück zum Zitat Coyle EF, Hopper MK, Coggan AR. Maximal oxygen uptake relative to plasma volume expansion. Int J Sports Med 1990; 11: 116–9PubMedCrossRef Coyle EF, Hopper MK, Coggan AR. Maximal oxygen uptake relative to plasma volume expansion. Int J Sports Med 1990; 11: 116–9PubMedCrossRef
95.
Zurück zum Zitat Convertino VA, Brock PJ, Keil LC, et al. Exercise training-induced hypervolemia: role of plasma albumin, renin, and vasopressin. J Appl Physiol 1980; 48: 665–9PubMed Convertino VA, Brock PJ, Keil LC, et al. Exercise training-induced hypervolemia: role of plasma albumin, renin, and vasopressin. J Appl Physiol 1980; 48: 665–9PubMed
96.
Zurück zum Zitat Hopper MK, Coggan AR, Coyle EF. Exercise stroke volume relative to plasma-volume expansion. J Appl Physiol 1988; 64: 404–8PubMed Hopper MK, Coggan AR, Coyle EF. Exercise stroke volume relative to plasma-volume expansion. J Appl Physiol 1988; 64: 404–8PubMed
97.
Zurück zum Zitat Pandolf KB. Effects of physical training and cardiorespiratory physical fitness on exercise-heat tolerance: recent observations. Med Sci Sports 1979; 11: 60–5PubMed Pandolf KB. Effects of physical training and cardiorespiratory physical fitness on exercise-heat tolerance: recent observations. Med Sci Sports 1979; 11: 60–5PubMed
98.
Zurück zum Zitat Hargreaves M, Febbraio M. Limits to exercise performance in the heat. Int J Sports Med 1998; 19 Suppl. 2: S115–6CrossRef Hargreaves M, Febbraio M. Limits to exercise performance in the heat. Int J Sports Med 1998; 19 Suppl. 2: S115–6CrossRef
99.
Zurück zum Zitat Convertino VA, Greenleaf JE, Bernauer EM. Role of thermal and exercise factors in the mechanism of hypervolemia. J Appl Physiol 1980; 48: 657–64PubMed Convertino VA, Greenleaf JE, Bernauer EM. Role of thermal and exercise factors in the mechanism of hypervolemia. J Appl Physiol 1980; 48: 657–64PubMed
100.
Zurück zum Zitat Nielsen B, Hales JR, Strange S, et al. Human circulatory and thermoregulatory adaptations with heat acclimation and exercise in a hot, dry environment. J Physiol 1993; 460: 467–85PubMed Nielsen B, Hales JR, Strange S, et al. Human circulatory and thermoregulatory adaptations with heat acclimation and exercise in a hot, dry environment. J Physiol 1993; 460: 467–85PubMed
101.
Zurück zum Zitat Gonzalez-Alonso J, Teller C, Andersen SL, et al. Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol 1999; 86: 1032–9PubMed Gonzalez-Alonso J, Teller C, Andersen SL, et al. Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol 1999; 86: 1032–9PubMed
102.
Zurück zum Zitat Armstrong LE, Maresh CM. Effects of training, environment, and hot factors on the sweating response to exercise. Int J Sports Med 1998; 19 Suppl. 2: S103–5CrossRef Armstrong LE, Maresh CM. Effects of training, environment, and hot factors on the sweating response to exercise. Int J Sports Med 1998; 19 Suppl. 2: S103–5CrossRef
103.
Zurück zum Zitat Gisolfi CV. Work-heat tolerance derived from interval training. J Appl Physiol 1973; 35: 349–54PubMed Gisolfi CV. Work-heat tolerance derived from interval training. J Appl Physiol 1973; 35: 349–54PubMed
104.
Zurück zum Zitat Billat LV. Interval training for performance: a scientific and empirical practice. Part I: aerobic interval training. Sports Med 2001; 31: 13–31PubMedCrossRef Billat LV. Interval training for performance: a scientific and empirical practice. Part I: aerobic interval training. Sports Med 2001; 31: 13–31PubMedCrossRef
105.
Zurück zum Zitat Shepley B, MacDougall JD, Cipriano N, et al. Physiological effects of tapering in highly trained athletes. J Appl Physiol 1992; 72: 706–11PubMed Shepley B, MacDougall JD, Cipriano N, et al. Physiological effects of tapering in highly trained athletes. J Appl Physiol 1992; 72: 706–11PubMed
106.
Zurück zum Zitat Tabata I, Irisawa K, Kouzaki M, et al. Metabolic profile of high intensity intermittent exercises. Med Sci Sports Exerc 1997; 29: 390–5PubMedCrossRef Tabata I, Irisawa K, Kouzaki M, et al. Metabolic profile of high intensity intermittent exercises. Med Sci Sports Exerc 1997; 29: 390–5PubMedCrossRef
107.
Zurück zum Zitat Coyle EC, Coggan AR, Hopper MK, et al. Determinants of endurance in well-trained cyclists. J Appl Physiol 1988; 64: 2622–30PubMed Coyle EC, Coggan AR, Hopper MK, et al. Determinants of endurance in well-trained cyclists. J Appl Physiol 1988; 64: 2622–30PubMed
108.
Zurück zum Zitat Linossier MT, Dormois D, Bregere P, et al. Effect of sodium citrate on performance and metabolism of human skeletal muscle during supramaximal cycling exercise. Eur JAppl Physiol Occup Physiol 1997; 76: 48–54CrossRef Linossier MT, Dormois D, Bregere P, et al. Effect of sodium citrate on performance and metabolism of human skeletal muscle during supramaximal cycling exercise. Eur JAppl Physiol Occup Physiol 1997; 76: 48–54CrossRef
109.
Zurück zum Zitat McKenna MJ, Harmer AR, Fraser SF, et al. Effects of training on potassium, calcium and hydrogen ion regulation in skeletal muscle and blood during exercise. Acta Physiol Scand 1996; 156: 335–46PubMedCrossRef McKenna MJ, Harmer AR, Fraser SF, et al. Effects of training on potassium, calcium and hydrogen ion regulation in skeletal muscle and blood during exercise. Acta Physiol Scand 1996; 156: 335–46PubMedCrossRef
110.
Zurück zum Zitat Potteiger JA, Nickel GL, Webster MJ, et al. Sodium citrate ingestion enhances 30 km cycling performance. Int J Sports Med 1996; 17: 7–11PubMedCrossRef Potteiger JA, Nickel GL, Webster MJ, et al. Sodium citrate ingestion enhances 30 km cycling performance. Int J Sports Med 1996; 17: 7–11PubMedCrossRef
111.
Zurück zum Zitat Spriet LL. Anaerobic metabolism during high-intensity exercise. In: Hargreaves M, editor. Exercise metabolism. Champaign (IL): Human Kinetics Publishers Inc., 1995: 1–40 Spriet LL. Anaerobic metabolism during high-intensity exercise. In: Hargreaves M, editor. Exercise metabolism. Champaign (IL): Human Kinetics Publishers Inc., 1995: 1–40
112.
Zurück zum Zitat Green HJ. Cation pumps in skeletal muscle: potential role in muscle fatigue. Acta Physiol Scand 1998; 162: 201–13PubMedCrossRef Green HJ. Cation pumps in skeletal muscle: potential role in muscle fatigue. Acta Physiol Scand 1998; 162: 201–13PubMedCrossRef
113.
Zurück zum Zitat Green HJ, Grange F, Chin C, et al. Exercise-induced decreases in sarcoplasmic reticulum Ca(2+)-ATPase activity attenuated by high-resistance training. Acta Physiol Scand 1998; 164: 141–6PubMedCrossRef Green HJ, Grange F, Chin C, et al. Exercise-induced decreases in sarcoplasmic reticulum Ca(2+)-ATPase activity attenuated by high-resistance training. Acta Physiol Scand 1998; 164: 141–6PubMedCrossRef
114.
Zurück zum Zitat Green H, MacDougall J, Tarnopolsky M, et al. Down regulation of Na+-K+-ATPase pumps in skeletal muscle with training in normobaric hypoxia. J Appl Physiol 1999; 86: 1745–8PubMed Green H, MacDougall J, Tarnopolsky M, et al. Down regulation of Na+-K+-ATPase pumps in skeletal muscle with training in normobaric hypoxia. J Appl Physiol 1999; 86: 1745–8PubMed
115.
Zurück zum Zitat Green H, Roy B, Grant S, et al. Downregulation in muscle Na+-K+-ATPase following a 21-day expedition to 6,194 m. J Appl Physiol 2000; 88: 634–40PubMed Green H, Roy B, Grant S, et al. Downregulation in muscle Na+-K+-ATPase following a 21-day expedition to 6,194 m. J Appl Physiol 2000; 88: 634–40PubMed
116.
Zurück zum Zitat Green H, Roy B, Grant S, et al. Effects of a 21-day expedition to 6,194 m on human skeletal muscle SR Ca2+-ATPase. High Alt Med Biol 2000; 1: 301–10PubMedCrossRef Green H, Roy B, Grant S, et al. Effects of a 21-day expedition to 6,194 m on human skeletal muscle SR Ca2+-ATPase. High Alt Med Biol 2000; 1: 301–10PubMedCrossRef
117.
Zurück zum Zitat Green HJ, Roy B, Grant S, et al. Increases in submaximal cycling efficiency mediated by altitude acclimatization. J Appl Physiol 2000; 89: 1189–97PubMed Green HJ, Roy B, Grant S, et al. Increases in submaximal cycling efficiency mediated by altitude acclimatization. J Appl Physiol 2000; 89: 1189–97PubMed
118.
Zurück zum Zitat MacDonald MJ, Green HJ, Naylor HL, et al. Reduced oxygen uptake during steady state exercise after 21-daymountain climbing expedition to 6,194 m. Can J Appl Physiol 2001; 26: 143–56PubMedCrossRef MacDonald MJ, Green HJ, Naylor HL, et al. Reduced oxygen uptake during steady state exercise after 21-daymountain climbing expedition to 6,194 m. Can J Appl Physiol 2001; 26: 143–56PubMedCrossRef
119.
Zurück zum Zitat Laursen PB, Rhodes EC, Langhill RH. Exercise induced hypoxemia (EIH): a review of proposed mechanisms and recent findings. Biol Sport 2001; 18: 87–105 Laursen PB, Rhodes EC, Langhill RH. Exercise induced hypoxemia (EIH): a review of proposed mechanisms and recent findings. Biol Sport 2001; 18: 87–105
120.
Zurück zum Zitat Medbo JI, Tabata I. Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise. J Appl Physiol 1989; 67: 1881–6PubMed Medbo JI, Tabata I. Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise. J Appl Physiol 1989; 67: 1881–6PubMed
121.
Zurück zum Zitat Neufer PD, Ordway GA, Williams RS. Transient regulation of c-fos, alpha B-crystallin, and hsp70 in muscle during recovery from contractile activity. Am J Physiol 1998; 274: C341–6 Neufer PD, Ordway GA, Williams RS. Transient regulation of c-fos, alpha B-crystallin, and hsp70 in muscle during recovery from contractile activity. Am J Physiol 1998; 274: C341–6
122.
Zurück zum Zitat Goodman C, Henry G, Dawson B, et al. Biochemical and ultra-structural indices of muscle damage after a twenty-one kilometre run. Aust J Sci Med Sport 1997; 29: 95–8PubMed Goodman C, Henry G, Dawson B, et al. Biochemical and ultra-structural indices of muscle damage after a twenty-one kilometre run. Aust J Sci Med Sport 1997; 29: 95–8PubMed
123.
Zurück zum Zitat Kyrolainen H, Takala TE, Komi PV. Muscle damage induced by stretch-shortening cycle exercise. Med Sci Sports Exerc 1998; 30: 415–20PubMedCrossRef Kyrolainen H, Takala TE, Komi PV. Muscle damage induced by stretch-shortening cycle exercise. Med Sci Sports Exerc 1998; 30: 415–20PubMedCrossRef
124.
Zurück zum Zitat Kim CK, Takala TE, Seger J, et al. Training effects of electrically induced dynamic contractions in human quadriceps muscle. Aviat Space Environ Med 1995; 66: 251–5PubMed Kim CK, Takala TE, Seger J, et al. Training effects of electrically induced dynamic contractions in human quadriceps muscle. Aviat Space Environ Med 1995; 66: 251–5PubMed
125.
Zurück zum Zitat Billat VL, Slawinski J, Bocquet V, et al. Intermittent runs at the velocity associated with maximal oxygen uptake enables subjects to remain at maximal oxygen uptake for a longer time than intense but submaximal runs. Eur J Appl Physiol 2000; 81: 188–96PubMedCrossRef Billat VL, Slawinski J, Bocquet V, et al. Intermittent runs at the velocity associated with maximal oxygen uptake enables subjects to remain at maximal oxygen uptake for a longer time than intense but submaximal runs. Eur J Appl Physiol 2000; 81: 188–96PubMedCrossRef
126.
Zurück zum Zitat Astrand I, Astrand PO, Christensen EH. Myohemoglobin as an oxygen-store in man. Acta Physiol Scand 1960; 48: 454–60PubMedCrossRef Astrand I, Astrand PO, Christensen EH. Myohemoglobin as an oxygen-store in man. Acta Physiol Scand 1960; 48: 454–60PubMedCrossRef
127.
Zurück zum Zitat Terrados N. Altitude training and muscular metabolism. Int J Sports Med 1992; 13 Suppl 1: S206–9CrossRef Terrados N. Altitude training and muscular metabolism. Int J Sports Med 1992; 13 Suppl 1: S206–9CrossRef
128.
Zurück zum Zitat Saltin B, Gollnick PD. Skeletal muscle adaptability: significance for metabolism and performance. Baltimore (MD): Williams and Wilkins, 1983 Saltin B, Gollnick PD. Skeletal muscle adaptability: significance for metabolism and performance. Baltimore (MD): Williams and Wilkins, 1983
129.
Zurück zum Zitat Svedenhag J, Henriksson J, Juhlin-Dannfelt A. Beta-adrenergic blockade and training in human subjects: effects on muscle metabolic capacity. Am J Physiol 1984; 247: E305–11 Svedenhag J, Henriksson J, Juhlin-Dannfelt A. Beta-adrenergic blockade and training in human subjects: effects on muscle metabolic capacity. Am J Physiol 1984; 247: E305–11
130.
Zurück zum Zitat Bishop D, Jenkins DG, McEniery M, et al. Relationship between plasma lactate parameters and muscle characteristics in female cyclists. Med Sci Sports Exerc 2000; 32: 1088–93PubMedCrossRef Bishop D, Jenkins DG, McEniery M, et al. Relationship between plasma lactate parameters and muscle characteristics in female cyclists. Med Sci Sports Exerc 2000; 32: 1088–93PubMedCrossRef
131.
Zurück zum Zitat Noakes TD, Myburgh KH, Schall R. Peak treadmill running velocity during the V̇O2max test predicts running performance. J Sports Sci 1990; 8: 35–45PubMedCrossRef Noakes TD, Myburgh KH, Schall R. Peak treadmill running velocity during the V̇O2max test predicts running performance. J Sports Sci 1990; 8: 35–45PubMedCrossRef
132.
Zurück zum Zitat Billat V, Bernard O, Pinoteau J, et al. Time to exhaustion at V̇O2max and lactate steady state velocity in sub elite long-distance runners. Arch Int Physiol Biochim Biophys 1994; 102: 215–9PubMedCrossRef Billat V, Bernard O, Pinoteau J, et al. Time to exhaustion at V̇O2max and lactate steady state velocity in sub elite long-distance runners. Arch Int Physiol Biochim Biophys 1994; 102: 215–9PubMedCrossRef
133.
Zurück zum Zitat McLellan TM, Cheung KS. A comparative evaluation of the individual anaerobic threshold and the critical power. Med Sci Sports Exerc 1992; 24: 543–50PubMed McLellan TM, Cheung KS. A comparative evaluation of the individual anaerobic threshold and the critical power. Med Sci Sports Exerc 1992; 24: 543–50PubMed
134.
Zurück zum Zitat Davis JA. Anaerobic threshold: review of the concept and directions for future research. Med Sci Sports Exerc 1985; 17: 6–21PubMed Davis JA. Anaerobic threshold: review of the concept and directions for future research. Med Sci Sports Exerc 1985; 17: 6–21PubMed
135.
Zurück zum Zitat Billat LV. Use of blood lactate measurements for prediction of exercise performance and for control of training. Recommendations for long-distance running. Sports Med 1996; 22: 157–75PubMedCrossRef Billat LV. Use of blood lactate measurements for prediction of exercise performance and for control of training. Recommendations for long-distance running. Sports Med 1996; 22: 157–75PubMedCrossRef
136.
Zurück zum Zitat Poole DC, Gaesser GA. Response of ventilatory and lactate thresholds to continuous and interval training. J Appl Physiol 1985; 58: 1115–21PubMed Poole DC, Gaesser GA. Response of ventilatory and lactate thresholds to continuous and interval training. J Appl Physiol 1985; 58: 1115–21PubMed
137.
Zurück zum Zitat Frangolias DD, Rhodes EC. Comparison of the lactate and ventilatory thresholds during prolonged work. Sports Med 1996; 22: 38–53PubMedCrossRef Frangolias DD, Rhodes EC. Comparison of the lactate and ventilatory thresholds during prolonged work. Sports Med 1996; 22: 38–53PubMedCrossRef
138.
Zurück zum Zitat Feriche B, Chicharro JL, Vaquero AF, et al. The use of a fixed value of RPE during a ramp protocol: comparison with the ventilatory threshold. J Sports Med Phys Fitness 1998; 38: 35–8PubMed Feriche B, Chicharro JL, Vaquero AF, et al. The use of a fixed value of RPE during a ramp protocol: comparison with the ventilatory threshold. J Sports Med Phys Fitness 1998; 38: 35–8PubMed
139.
Zurück zum Zitat Denis C, Dormois D, Lacour JR. Endurance training, V̇O2max, and OBLA: a longitudinal study of two different age groups. Int J Sports Med 1984; 5: 167–73PubMedCrossRef Denis C, Dormois D, Lacour JR. Endurance training, V̇O2max, and OBLA: a longitudinal study of two different age groups. Int J Sports Med 1984; 5: 167–73PubMedCrossRef
140.
Zurück zum Zitat Chicharro JL, Carvajal A, Pardo J, et al. Physiological parameters determined at OBLA vs. a fixed heart rate of 175 beats × min-1 in an incremental test performed by amateur and professional cyclists. Jpn J Physiol 1999; 49: 63–9PubMedCrossRef Chicharro JL, Carvajal A, Pardo J, et al. Physiological parameters determined at OBLA vs. a fixed heart rate of 175 beats × min-1 in an incremental test performed by amateur and professional cyclists. Jpn J Physiol 1999; 49: 63–9PubMedCrossRef
141.
Zurück zum Zitat Billat V, Beillot J, Jan J, et al. Gender effect on the relationship of time limit at 100% V̇O2max with other bioenergetic characteristics. Med Sci Sports Exerc 1996; 28: 1049–55PubMedCrossRef Billat V, Beillot J, Jan J, et al. Gender effect on the relationship of time limit at 100% V̇O2max with other bioenergetic characteristics. Med Sci Sports Exerc 1996; 28: 1049–55PubMedCrossRef
142.
Zurück zum Zitat Jenkins DG, Quigley BM. The y-intercept of the critical power function as a measure of anaerobic work capacity. Ergonomics 1991; 34: 13–22PubMedCrossRef Jenkins DG, Quigley BM. The y-intercept of the critical power function as a measure of anaerobic work capacity. Ergonomics 1991; 34: 13–22PubMedCrossRef
143.
Zurück zum Zitat Jenkins DG, Quigley BM. Blood lactate in trained cyclists during cycle ergometry at critical power. Eur J Appl Physiol Occup Physiol 1990; 61: 278–83PubMedCrossRef Jenkins DG, Quigley BM. Blood lactate in trained cyclists during cycle ergometry at critical power. Eur J Appl Physiol Occup Physiol 1990; 61: 278–83PubMedCrossRef
144.
Zurück zum Zitat Volkov NI, Shirkovets EA, Borilkevich VE. Assessment of aerobic and anaerobic capacity of athletes in treadmill running tests. Eur J Appl Physiol 1975; 34: 121–30CrossRef Volkov NI, Shirkovets EA, Borilkevich VE. Assessment of aerobic and anaerobic capacity of athletes in treadmill running tests. Eur J Appl Physiol 1975; 34: 121–30CrossRef
146.
Zurück zum Zitat Hill DW, Smith JC. Determination of critical power by pulmonary gas exchange. Can J Appl Physiol 1999; 24: 74–86PubMedCrossRef Hill DW, Smith JC. Determination of critical power by pulmonary gas exchange. Can J Appl Physiol 1999; 24: 74–86PubMedCrossRef
147.
Zurück zum Zitat Smith JC, Dangelmaier BS, Hill DW. Critical power is related to cycling time trial performance. Int J Sports Med 1999; 20: 374–8PubMedCrossRef Smith JC, Dangelmaier BS, Hill DW. Critical power is related to cycling time trial performance. Int J Sports Med 1999; 20: 374–8PubMedCrossRef
148.
Zurück zum Zitat Vandewalle H, Vautier JF, Kachouri M, et al. Work-exhaustion time relationships and the critical power concept: a critical review. J Sports Med Phys Fitness 1997; 37: 89–102PubMed Vandewalle H, Vautier JF, Kachouri M, et al. Work-exhaustion time relationships and the critical power concept: a critical review. J Sports Med Phys Fitness 1997; 37: 89–102PubMed
149.
Zurück zum Zitat Pepper ML, Housh TJ, Johnson GO. The accuracy of the critical velocity test for predicting time to exhaustion during treadmill running. Int J Sports Med 1992; 13: 121–4PubMedCrossRef Pepper ML, Housh TJ, Johnson GO. The accuracy of the critical velocity test for predicting time to exhaustion during treadmill running. Int J Sports Med 1992; 13: 121–4PubMedCrossRef
150.
Zurück zum Zitat Hill DW, Rowell AL. Responses to exercise at the velocity associated with V̇O2max. Med Sci Sports Exerc 1997; 29: 113–6PubMed Hill DW, Rowell AL. Responses to exercise at the velocity associated with V̇O2max. Med Sci Sports Exerc 1997; 29: 113–6PubMed
151.
Zurück zum Zitat Hill DW, Rowell AL. Running velocity at V̇O2max. Med Sci Sports Exerc 1996; 28: 114–9PubMed Hill DW, Rowell AL. Running velocity at V̇O2max. Med Sci Sports Exerc 1996; 28: 114–9PubMed
152.
Zurück zum Zitat Hill DW, Rowell AL. Significance of time to exhaustion during exercise at the velocity associated with V̇O2max. Eur J Appl Physiol 1996; 72: 383–6CrossRef Hill DW, Rowell AL. Significance of time to exhaustion during exercise at the velocity associated with V̇O2max. Eur J Appl Physiol 1996; 72: 383–6CrossRef
153.
Zurück zum Zitat Billat V, Renoux JC, Pinoteau J, et al. Reproducibility of running time to exhaustion at V̇O2max in subelite runners. Med Sci Sports Exerc 1994; 26: 254–7PubMedCrossRef Billat V, Renoux JC, Pinoteau J, et al. Reproducibility of running time to exhaustion at V̇O2max in subelite runners. Med Sci Sports Exerc 1994; 26: 254–7PubMedCrossRef
154.
Zurück zum Zitat Billat V, Renoux JC, Pinoteau J, et al. Times to exhaustion at 100% of velocity at V̇O2max and modelling of the time-limit/velocity relationship in elite long-distance runners. Eur J Appl Physiol 1994; 69: 271–3CrossRef Billat V, Renoux JC, Pinoteau J, et al. Times to exhaustion at 100% of velocity at V̇O2max and modelling of the time-limit/velocity relationship in elite long-distance runners. Eur J Appl Physiol 1994; 69: 271–3CrossRef
155.
Zurück zum Zitat Billat LV, Koralsztein JP. Significance of the velocity at V̇O2max and time to exhaustion at this velocity. Sports Med 1996; 22: 90–108PubMedCrossRef Billat LV, Koralsztein JP. Significance of the velocity at V̇O2max and time to exhaustion at this velocity. Sports Med 1996; 22: 90–108PubMedCrossRef
156.
Zurück zum Zitat Billat VL, Hill DW, Pinoteau J, et al. Effect of protocol on determination of velocity at V̇O2max and on its time to exhaustion. Arch Physiol Biochem 1996; 104: 313–21PubMedCrossRef Billat VL, Hill DW, Pinoteau J, et al. Effect of protocol on determination of velocity at V̇O2max and on its time to exhaustion. Arch Physiol Biochem 1996; 104: 313–21PubMedCrossRef
157.
Zurück zum Zitat Billat VL, Blondel N, Berthoin S. Determination of the velocity associated with the longest time to exhaustion at maximal oxygen uptake. Eur J Appl Physiol 1999; 80: 159–61CrossRef Billat VL, Blondel N, Berthoin S. Determination of the velocity associated with the longest time to exhaustion at maximal oxygen uptake. Eur J Appl Physiol 1999; 80: 159–61CrossRef
158.
Zurück zum Zitat Berthoin S, Pelayo P, Lensel-Corbeil G, et al. Comparison of maximal aerobic speed as assessed with laboratory and field measurements in moderately trained subjects. Int J Sports Med 1996; 17: 525–9PubMedCrossRef Berthoin S, Pelayo P, Lensel-Corbeil G, et al. Comparison of maximal aerobic speed as assessed with laboratory and field measurements in moderately trained subjects. Int J Sports Med 1996; 17: 525–9PubMedCrossRef
159.
Zurück zum Zitat Morgan DW, Baldini FD, Martin PE, et al. Ten kilometer performance and predicted velocity at V̇O2max among well-trained male runners. Med Sci Sports Exerc 1989; 21: 78–83PubMedCrossRef Morgan DW, Baldini FD, Martin PE, et al. Ten kilometer performance and predicted velocity at V̇O2max among well-trained male runners. Med Sci Sports Exerc 1989; 21: 78–83PubMedCrossRef
160.
Zurück zum Zitat Billat VL, Pinoteau J, Petit B. Calibration de la durée des répétitions d’une séance d’interval training à la vitesse associée a V̇O2max en référence au temps limite continu. Sci Motricite 1996; 28: 13–20 Billat VL, Pinoteau J, Petit B. Calibration de la durée des répétitions d’une séance d’interval training à la vitesse associée a V̇O2max en référence au temps limite continu. Sci Motricite 1996; 28: 13–20
161.
Zurück zum Zitat Basset DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 2000; 32: 70–84 Basset DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 2000; 32: 70–84
162.
Zurück zum Zitat James DV, Doust JH. Time to exhaustion during severe intensity running: response following a single bout of interval training. Eur J Appl Physiol 2000; 81: 337–45PubMedCrossRef James DV, Doust JH. Time to exhaustion during severe intensity running: response following a single bout of interval training. Eur J Appl Physiol 2000; 81: 337–45PubMedCrossRef
163.
Zurück zum Zitat Noakes TD. The lore of running. Champaign (IL): Leisure Press, 1991 Noakes TD. The lore of running. Champaign (IL): Leisure Press, 1991
164.
Zurück zum Zitat Hill DW, Ferguson CS. A physiological description of critical velocity. Eur J Appl Physiol 1999; 79: 290–3CrossRef Hill DW, Ferguson CS. A physiological description of critical velocity. Eur J Appl Physiol 1999; 79: 290–3CrossRef
165.
Zurück zum Zitat Lucia A, Hoyos J, Chicharro JL. The slow component of V̇O2 in professional cyclists. Br J Sports Med 2000; 34: 367–74PubMedCrossRef Lucia A, Hoyos J, Chicharro JL. The slow component of V̇O2 in professional cyclists. Br J Sports Med 2000; 34: 367–74PubMedCrossRef
166.
Zurück zum Zitat Billat VL, Mille-Hamard L, Petit B, et al. The role of cadence on the V̇O2 slow component in cycling and running in tri-athletes. Int J Sports Med 1999; 20: 429–37PubMedCrossRef Billat VL, Mille-Hamard L, Petit B, et al. The role of cadence on the V̇O2 slow component in cycling and running in tri-athletes. Int J Sports Med 1999; 20: 429–37PubMedCrossRef
167.
Zurück zum Zitat Billat V, Binsse V, Petit B, et al. High level runners are able to maintain a V̇O2 steady-state below V̇O2max in an all-out run over their critical velocity. Arch Physiol Biochem 1998; 106: 38–45PubMedCrossRef Billat V, Binsse V, Petit B, et al. High level runners are able to maintain a V̇O2 steady-state below V̇O2max in an all-out run over their critical velocity. Arch Physiol Biochem 1998; 106: 38–45PubMedCrossRef
168.
Zurück zum Zitat Casaburi R, Storer TW, Ben-Dov I, et al. Effect of endurance training on possible determinants of V̇O2 during heavy exercise. J Appl Physiol 1987; 62: 199–207PubMed Casaburi R, Storer TW, Ben-Dov I, et al. Effect of endurance training on possible determinants of V̇O2 during heavy exercise. J Appl Physiol 1987; 62: 199–207PubMed
169.
Zurück zum Zitat Carter H, Jones AM, Barstow TJ, et al. Effect of endurance training on oxygen uptake kinetics during treadmill running. J Appl Physiol 2000; 89: 1744–52PubMed Carter H, Jones AM, Barstow TJ, et al. Effect of endurance training on oxygen uptake kinetics during treadmill running. J Appl Physiol 2000; 89: 1744–52PubMed
170.
Zurück zum Zitat Jenkins DG, Quigley BM. The influence of high-intensity exercise training on the Wlim-Tlim relationship. Med Sci Sports Exerc 1993; 25: 275–82PubMed Jenkins DG, Quigley BM. The influence of high-intensity exercise training on the Wlim-Tlim relationship. Med Sci Sports Exerc 1993; 25: 275–82PubMed
171.
Zurück zum Zitat Jenkins DG, Quigley BM. Endurance training enhances critical power. Med Sci Sports Exerc 1992; 24: 1283–9PubMed Jenkins DG, Quigley BM. Endurance training enhances critical power. Med Sci Sports Exerc 1992; 24: 1283–9PubMed
172.
Zurück zum Zitat Demarie S, Koralsztein JP, Billat V. Time limit and time at V̇O2max during a continuous and an intermittent run. J Sports Med Phys Fitness 2000; 40: 96–102PubMed Demarie S, Koralsztein JP, Billat V. Time limit and time at V̇O2max during a continuous and an intermittent run. J Sports Med Phys Fitness 2000; 40: 96–102PubMed
173.
Zurück zum Zitat Norris SR, Petersen SR. Effects of endurance training on transient oxygen uptake responses in cyclists. J Sports Sci 1998; 16: 733–8PubMedCrossRef Norris SR, Petersen SR. Effects of endurance training on transient oxygen uptake responses in cyclists. J Sports Sci 1998; 16: 733–8PubMedCrossRef
174.
Zurück zum Zitat Billat V, Faina M, Sardella F, et al. A comparison of time to exhaustion at V̇O2max in elite cyclists, kayak paddlers, swimmers and runners. Ergonomics 1996; 39: 267–77PubMedCrossRef Billat V, Faina M, Sardella F, et al. A comparison of time to exhaustion at V̇O2max in elite cyclists, kayak paddlers, swimmers and runners. Ergonomics 1996; 39: 267–77PubMedCrossRef
175.
Zurück zum Zitat Balsom PD, Seger JY, Sjodin B, et al. Maximal-intensity intermittent exercise: effect of recovery duration. Int J Sports Med 1992; 13: 528–33PubMedCrossRef Balsom PD, Seger JY, Sjodin B, et al. Maximal-intensity intermittent exercise: effect of recovery duration. Int J Sports Med 1992; 13: 528–33PubMedCrossRef
176.
Zurück zum Zitat Belcastro AN, Bonen A. Lactic acid removal rates during controlled and uncontrolled recovery exercise. J Appl Physiol 1975; 39: 932–6PubMed Belcastro AN, Bonen A. Lactic acid removal rates during controlled and uncontrolled recovery exercise. J Appl Physiol 1975; 39: 932–6PubMed
177.
Zurück zum Zitat Hermansen L, Stensvold I. Production and removal of lactate during exercise in man. Acta Physiol Scand 1972; 86: 191–201PubMedCrossRef Hermansen L, Stensvold I. Production and removal of lactate during exercise in man. Acta Physiol Scand 1972; 86: 191–201PubMedCrossRef
178.
Zurück zum Zitat Oosthuyse T, Carter RN. Plasma lactate decline during passive recovery from high-intensity exercise. Med Sci Sports Exerc 1999; 31: 670–4PubMedCrossRef Oosthuyse T, Carter RN. Plasma lactate decline during passive recovery from high-intensity exercise. Med Sci Sports Exerc 1999; 31: 670–4PubMedCrossRef
179.
Zurück zum Zitat Banister EW, Carter JB, Zarkadas PC. Training theory and taper: validation in triathlon athletes. Eur J Appl Physiol Occup Physiol 1999; 79: 182–91PubMedCrossRef Banister EW, Carter JB, Zarkadas PC. Training theory and taper: validation in triathlon athletes. Eur J Appl Physiol Occup Physiol 1999; 79: 182–91PubMedCrossRef
180.
Zurück zum Zitat Mujika I, Goya A, Padilla S, et al. Physiological responses to a 6-d taper in middle-distance runners: influence of training intensity and volume. Med Sci Sports Exerc 2000; 32: 511–7PubMedCrossRef Mujika I, Goya A, Padilla S, et al. Physiological responses to a 6-d taper in middle-distance runners: influence of training intensity and volume. Med Sci Sports Exerc 2000; 32: 511–7PubMedCrossRef
Metadaten
Titel
The Scientific Basis for High-Intensity Interval Training
Optimising Training Programmes and Maximising Performance in Highly Trained Endurance Athletes
verfasst von
Paul B. Laursen
David G. Jenkins
Publikationsdatum
01.01.2002
Verlag
Springer International Publishing
Erschienen in
Sports Medicine / Ausgabe 1/2002
Print ISSN: 0112-1642
Elektronische ISSN: 1179-2035
DOI
https://doi.org/10.2165/00007256-200232010-00003

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Arthroskopie kann Knieprothese nicht hinauszögern

25.04.2024 Gonarthrose Nachrichten

Ein arthroskopischer Eingriff bei Kniearthrose macht im Hinblick darauf, ob und wann ein Gelenkersatz fällig wird, offenbar keinen Unterschied.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Ärztliche Empathie hilft gegen Rückenschmerzen

23.04.2024 Leitsymptom Rückenschmerzen Nachrichten

Personen mit chronischen Rückenschmerzen, die von einfühlsamen Ärzten und Ärztinnen betreut werden, berichten über weniger Beschwerden und eine bessere Lebensqualität.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.