Skip to main content
Erschienen in: Sports Medicine 11/2002

01.09.2002 | Review Article

Short-Term Muscle Power During Growth and Maturation

verfasst von: Emmanuel Van Praagh, Eric Doré

Erschienen in: Sports Medicine | Ausgabe 11/2002

Einloggen, um Zugang zu erhalten

Abstract

During growth and maturation, the study of very brief high-intensity exercise has not received the same attention from researchers as, for instance, aerobic function. In anaerobic tasks or sports events such as sprint cycling, jumping or running, the children’s performance is distinctly lower than that of adults. This partly reflects children’s lesser ability to generate mechanical energy from chemical energy sources during short-term intensive activity. For many years, various attempts have been made to quantify the anaerobic energy yield in maximal-intensity exercise, but many assumptions have had to be made with respect to mechanical efficiency, lactate turnover, dilution space for lactate, and so on. During childhood and adolescence, direct measurements of the rate or capacity of anaerobic pathways for energy turnover presents several ethical and methodological difficulties. Thus, rather than measure energy supply, paediatric exercise scientists have concentrated on measuring short-term muscle power (STMP) by means of standardised tests. Previously, investigators have used various protocols such as short-term cycling power tests, vertical jump tests or running tests. Cycling ergometer tests are the most common. There is, however, no ideal test, and so it is important to acknowledge the limitations of each test. Progress has been made in assessing instantaneous cycling STMP from a single exercise bout. Several investigators have reported STMP increases with age and have suggested that late pubertal period may accentuate anaerobic glycolysis. Mass-related STMP was shown to increase dramatically during childhood and adolescence, whereas the corresponding increase in peak blood lactatewas considerably lower. The latter results support the hypothesis that the difference observed between children and adolescents during STMP testing is more related to neuromuscular factors, hormonal factors and improved motor coordination, rather than being an indicator of reduced lactate-producing glycolysis mechanism. Evidence suggesting a causal link between the ability to generate lactate during exercise and sexual maturation is weak. Despite the majority of research being focused on short-term power output, the study of anaerobic function warrants more investigation. Spectacular progress is being made at the moment in the development of molecular biology tools that can be used in, for example, the genetic dissection of human performance phenotypes. Noninvasive power tools like magnetic resonance imaging and magnetic resonance spectroscopy are presently used to determine possible differences in phosphorus compounds between fast and slow fibre types. Undoubtedly these tools will lead tomore information in the near future regarding STMP capabilities of the growing child.
Fußnoten
1
Winter and MacLaren[9] recently stated that power output is ‘only one measure of maximal intensity exercise’. In explosive activities such as jumping, the use of power is misleading.[58] Vertical velocity in jumping is determined by impulse (force x time). ‘Consequently, it is the impulse-generating capability of muscle which is the determinant of effective performance’.9
 
2
Winter and MacLaren[9] recently stated that power output is ‘only one measure of maximal intensity exercise’. In explosive activities such as jumping, the use of power is misleading.[58] Vertical velocity in jumping is determined by impulse (force x time). ‘Consequently, it is the impulse-generating capability of muscle which is the determinant of effective performance’.9
 
Literatur
1.
Zurück zum Zitat Armstrong N, Welsman JR. Development of aerobic fitness during childhood and adolescence. Pediatr Exerc Sci 2000; 12: 128–49 Armstrong N, Welsman JR. Development of aerobic fitness during childhood and adolescence. Pediatr Exerc Sci 2000; 12: 128–49
2.
Zurück zum Zitat Rowland TW. Developmental aspects of physiological function relating to aerobic exercise in children. Sports Med 1990; 10 (4): 255–66PubMedCrossRef Rowland TW. Developmental aspects of physiological function relating to aerobic exercise in children. Sports Med 1990; 10 (4): 255–66PubMedCrossRef
3.
Zurück zum Zitat Williams C. Short term activity. In: Macleod D, Maughan R, Nimmo M, et al., editors. Exercise: benefits, limits and adaptations, London: E & FN Spon, 1987: 59–62 Williams C. Short term activity. In: Macleod D, Maughan R, Nimmo M, et al., editors. Exercise: benefits, limits and adaptations, London: E & FN Spon, 1987: 59–62
4.
Zurück zum Zitat Cooper DM. New horizons in pediatric exercise research. In: Blimkie CR, Bar-Or O, editors. New horizons in pediatric exercise science. Champaign (IL): Human Kinetics, 1995: 1–24 Cooper DM. New horizons in pediatric exercise research. In: Blimkie CR, Bar-Or O, editors. New horizons in pediatric exercise science. Champaign (IL): Human Kinetics, 1995: 1–24
5.
Zurück zum Zitat Welk GJ, Corbin CB, Dale D. Measurement issues in the assessment of physical activity in children. Res Q Exerc Sport 2000; 71: 59–73 Welk GJ, Corbin CB, Dale D. Measurement issues in the assessment of physical activity in children. Res Q Exerc Sport 2000; 71: 59–73
6.
Zurück zum Zitat Bailey RC, Olson J, Pepper SL, et al. The level and tempo of children’s physical activities: an observational study. Med Sci Sports Exerc 1995; 27: 1033–41PubMedCrossRef Bailey RC, Olson J, Pepper SL, et al. The level and tempo of children’s physical activities: an observational study. Med Sci Sports Exerc 1995; 27: 1033–41PubMedCrossRef
7.
Zurück zum Zitat Green S. A definition and systems view of anaerobic capacity. Eur J Appl Physiol Occup Physiol 1994; 69 (2): 168–73PubMedCrossRef Green S. A definition and systems view of anaerobic capacity. Eur J Appl Physiol Occup Physiol 1994; 69 (2): 168–73PubMedCrossRef
8.
Zurück zum Zitat Malina RM, Bouchard C. Growth, maturation and physical activity. Champaign (IL): Human Kinetics, 1991 Malina RM, Bouchard C. Growth, maturation and physical activity. Champaign (IL): Human Kinetics, 1991
9.
Zurück zum Zitat Winter EM, MacLaren DP. Assessment of maximal-intensity exercise. In: Eston RG, Reilly T, editors. Kinanthropometry and exercise physiology laboratory manual: tests, procedures and data. Vol. 2. Exercise physiology. 2nd ed. London: Routledge, 2001: 263–88 Winter EM, MacLaren DP. Assessment of maximal-intensity exercise. In: Eston RG, Reilly T, editors. Kinanthropometry and exercise physiology laboratory manual: tests, procedures and data. Vol. 2. Exercise physiology. 2nd ed. London: Routledge, 2001: 263–88
10.
Zurück zum Zitat Wilkie DR. Man as a source of mechanical power. Ergonomics 1960; 3: 1–8CrossRef Wilkie DR. Man as a source of mechanical power. Ergonomics 1960; 3: 1–8CrossRef
11.
Zurück zum Zitat Ferretti G, Narici MV, Binzoni T, et al. Determinants of peak muscle power: effects of age and physical conditioning. Eur J Appl Physiol 1994; 68: 111–5CrossRef Ferretti G, Narici MV, Binzoni T, et al. Determinants of peak muscle power: effects of age and physical conditioning. Eur J Appl Physiol 1994; 68: 111–5CrossRef
12.
Zurück zum Zitat Martin JC, Wagner BM, Coyle EF. Inertial-load method determines maximal cycling power in a single exercise bout. Med Sci Sports Exerc 1997; 29 (11): 1505–12PubMedCrossRef Martin JC, Wagner BM, Coyle EF. Inertial-load method determines maximal cycling power in a single exercise bout. Med Sci Sports Exerc 1997; 29 (11): 1505–12PubMedCrossRef
13.
Zurück zum Zitat Ferretti G, GussoniM, di Prampero PE, et al. Effects of exercise on maximal instantaneous muscular power of humans. J Appl Physiol 1987; 62 (6): 2288–94PubMed Ferretti G, GussoniM, di Prampero PE, et al. Effects of exercise on maximal instantaneous muscular power of humans. J Appl Physiol 1987; 62 (6): 2288–94PubMed
14.
Zurück zum Zitat Lakomy HKA. Measurement of work and power output using friction loaded cycle ergometers. Ergonomics 1986; 29: 509–17PubMedCrossRef Lakomy HKA. Measurement of work and power output using friction loaded cycle ergometers. Ergonomics 1986; 29: 509–17PubMedCrossRef
15.
Zurück zum Zitat Doré E, França NM, Bedu M, et al. The effect of flywheel inertia on short-term cycling power output in children. Med Sci Sports Exerc 1997; 29 Suppl. 5: S170 Doré E, França NM, Bedu M, et al. The effect of flywheel inertia on short-term cycling power output in children. Med Sci Sports Exerc 1997; 29 Suppl. 5: S170
16.
Zurück zum Zitat Vandewalle H, Pérès G, Monod H. Standard anaerobic exercise tests. Sports Med 1987; 4: 268–89PubMedCrossRef Vandewalle H, Pérès G, Monod H. Standard anaerobic exercise tests. Sports Med 1987; 4: 268–89PubMedCrossRef
17.
Zurück zum Zitat Van Praagh E, Bedu M, Falgairette G, et al. Oxygen uptake during a 30-s supramaximal exercise in 7- to 15-year-old boys. In: Frenkl R, Szmodis I, editors. Children and exercise XV. Budapest: Nevi, 1991: 281–7 Van Praagh E, Bedu M, Falgairette G, et al. Oxygen uptake during a 30-s supramaximal exercise in 7- to 15-year-old boys. In: Frenkl R, Szmodis I, editors. Children and exercise XV. Budapest: Nevi, 1991: 281–7
18.
Zurück zum Zitat Hebestreit H, Mimura K, Bar-Or O. Recovery of anaerobic muscle power following 30-s supramaximal exercise: comparison between boys and men. J Appl Physiol 1993; 74: 2875–80PubMed Hebestreit H, Mimura K, Bar-Or O. Recovery of anaerobic muscle power following 30-s supramaximal exercise: comparison between boys and men. J Appl Physiol 1993; 74: 2875–80PubMed
19.
Zurück zum Zitat Saltin B, Gollnick PD, Eriksson BO, et al. Metabolic and circulatory adjustments at onset of work. In: Gilbert A, Guille P, editors. Proceedings from meeting on Physiological Changes at Onset of Work; 1971 Jun 1–3; Toulouse, 46–58 Saltin B, Gollnick PD, Eriksson BO, et al. Metabolic and circulatory adjustments at onset of work. In: Gilbert A, Guille P, editors. Proceedings from meeting on Physiological Changes at Onset of Work; 1971 Jun 1–3; Toulouse, 46–58
20.
Zurück zum Zitat Mercier B, Granier P, Mercier J, et al. Noninvasive skeletal muscle lactate detection between periods of intense exercise in humans. Eur J Appl Physiol 1998; 78: 20–7CrossRef Mercier B, Granier P, Mercier J, et al. Noninvasive skeletal muscle lactate detection between periods of intense exercise in humans. Eur J Appl Physiol 1998; 78: 20–7CrossRef
21.
Zurück zum Zitat Sargeant AJ. Problems in, and approaches to, the measurement of short term power output in children and adolescents. In: Coudert J, Van Praagh E, editors. Pediatric work physiology XVI. Children and exercise. Paris: Masson, 1992: 11–7 Sargeant AJ. Problems in, and approaches to, the measurement of short term power output in children and adolescents. In: Coudert J, Van Praagh E, editors. Pediatric work physiology XVI. Children and exercise. Paris: Masson, 1992: 11–7
22.
Zurück zum Zitat Van Praagh E. Developmental aspects of anaerobic function. In: Armstrong N, Kirby B, Welsman JR, editors. Children and exercise XIX. London: E & FN Spon, 1997: 267–90 Van Praagh E. Developmental aspects of anaerobic function. In: Armstrong N, Kirby B, Welsman JR, editors. Children and exercise XIX. London: E & FN Spon, 1997: 267–90
23.
Zurück zum Zitat Bar-Or O, Inbar O. Relationships among anaerobic capacity, sprint and middle distance running of school children. In: Shephard RJ, Lavallée H, editors. Physical fitness assessment. Springfield (IL): Charles C Thomas, 1978: 142–7 Bar-Or O, Inbar O. Relationships among anaerobic capacity, sprint and middle distance running of school children. In: Shephard RJ, Lavallée H, editors. Physical fitness assessment. Springfield (IL): Charles C Thomas, 1978: 142–7
24.
Zurück zum Zitat Sargeant AJ, Dolan P, Thorne A. Isokinetic measurement of maximal leg force and anaerobic power output in children. In: Ilmarinen J, Välimäki I, editors. Children and sport XII. Berlin: Springer Verlag, 1984: 93–8CrossRef Sargeant AJ, Dolan P, Thorne A. Isokinetic measurement of maximal leg force and anaerobic power output in children. In: Ilmarinen J, Välimäki I, editors. Children and sport XII. Berlin: Springer Verlag, 1984: 93–8CrossRef
25.
Zurück zum Zitat Van Praagh E, Falgairette G, Bedu M, et al. Laboratory and field tests in 7-year-old boys. In: Oseid S, Carlsen K-H, editors. Children and exercise XIII. Champaign (IL): Human Kinetics, 1989: 11–7 Van Praagh E, Falgairette G, Bedu M, et al. Laboratory and field tests in 7-year-old boys. In: Oseid S, Carlsen K-H, editors. Children and exercise XIII. Champaign (IL): Human Kinetics, 1989: 11–7
26.
Zurück zum Zitat Williams CA. Children’s and adolescents’ anaerobic performance during cycle ergometry. Sport Med 1997; 24: 227–40CrossRef Williams CA. Children’s and adolescents’ anaerobic performance during cycle ergometry. Sport Med 1997; 24: 227–40CrossRef
27.
Zurück zum Zitat Davies CTM, Young K. Effects of external loading on short term power output in children and young male adults. Eur J Appl Physiol 1984; 52: 351–4CrossRef Davies CTM, Young K. Effects of external loading on short term power output in children and young male adults. Eur J Appl Physiol 1984; 52: 351–4CrossRef
28.
Zurück zum Zitat Fargeas MA, Van Praagh E, Léger L, et al. Comparison of cycling and running power outputs in trained children [abstract]. Pediatr Exerc Sci 1993; 5: 415 Fargeas MA, Van Praagh E, Léger L, et al. Comparison of cycling and running power outputs in trained children [abstract]. Pediatr Exerc Sci 1993; 5: 415
29.
Zurück zum Zitat Sutton NC, Childs DJ, Bar-Or O, et al. A nonmotorized treadmill test to assess children’s short-term power output. Pediatr Exerc Sci 2000; 1: 91–100 Sutton NC, Childs DJ, Bar-Or O, et al. A nonmotorized treadmill test to assess children’s short-term power output. Pediatr Exerc Sci 2000; 1: 91–100
30.
Zurück zum Zitat Lakomy HKA, Wootton S. Discrimination of rapid changes in pedal frequency. J Physiol 1984; 316: 1P Lakomy HKA, Wootton S. Discrimination of rapid changes in pedal frequency. J Physiol 1984; 316: 1P
31.
Zurück zum Zitat Monger LS, Allchom A, Doust J. An automated bicycle ergometer system for the measurement of Wingate Test indices with allowance for inertial and accelerative influences. J Sports Sci 1993; 7: 77–8 Monger LS, Allchom A, Doust J. An automated bicycle ergometer system for the measurement of Wingate Test indices with allowance for inertial and accelerative influences. J Sports Sci 1993; 7: 77–8
32.
Zurück zum Zitat Chia M, Armstrong N, Childs D. The assessment of children’s anaerobic performance using modifications of the Wingate anaerobic test. Pediatr Exerc Sci 1997; 9: 80–9 Chia M, Armstrong N, Childs D. The assessment of children’s anaerobic performance using modifications of the Wingate anaerobic test. Pediatr Exerc Sci 1997; 9: 80–9
33.
Zurück zum Zitat Doré E, Bedu M, França NM, et al. Testing peak cycling performance: effects of braking force during growth. Med Sci Sports Exerc 2000; 32: 493–8PubMedCrossRef Doré E, Bedu M, França NM, et al. Testing peak cycling performance: effects of braking force during growth. Med Sci Sports Exerc 2000; 32: 493–8PubMedCrossRef
34.
Zurück zum Zitat Blimkie CJR, Roache P, Hay JT, et al. Anaerobic power of arms in teenage boys and girls: relationship to lean tissue. Eur J Appl Physiol 1988; 57: 677–83CrossRef Blimkie CJR, Roache P, Hay JT, et al. Anaerobic power of arms in teenage boys and girls: relationship to lean tissue. Eur J Appl Physiol 1988; 57: 677–83CrossRef
35.
Zurück zum Zitat Nindl BC, Mahar MT, Harman EA. Lower and upper body anaerobic performance in male and female adolescent athletes. Med Sci Sports Exerc 1995; 27: 235–41PubMed Nindl BC, Mahar MT, Harman EA. Lower and upper body anaerobic performance in male and female adolescent athletes. Med Sci Sports Exerc 1995; 27: 235–41PubMed
36.
Zurück zum Zitat Bar-Or O. Anaerobic performance. In: Docherty D, editor. Measurement in pediatric exercise science. Champaign (IL): Human Kinetics, 1996: 161–82 Bar-Or O. Anaerobic performance. In: Docherty D, editor. Measurement in pediatric exercise science. Champaign (IL): Human Kinetics, 1996: 161–82
37.
Zurück zum Zitat Bedu M, Fellmann N, Spielvogel H, et al. Force-velocity and 30-s Wingate tests in boys at high and low altitudes. J Appl Physiol 1991; 70: 1031–7PubMedCrossRef Bedu M, Fellmann N, Spielvogel H, et al. Force-velocity and 30-s Wingate tests in boys at high and low altitudes. J Appl Physiol 1991; 70: 1031–7PubMedCrossRef
38.
Zurück zum Zitat Van Praagh E. Testing of anaerobic performance. In: Bar-Or O, editor. The encyclopaedia of sports medicine: the child and adolescent athlete. London: Blackwell Science, 1996: 602–16 Van Praagh E. Testing of anaerobic performance. In: Bar-Or O, editor. The encyclopaedia of sports medicine: the child and adolescent athlete. London: Blackwell Science, 1996: 602–16
39.
Zurück zum Zitat Williams CA, Keen P. Isokinetic measurement of maximal power during leg cycling: a comparison of adolescent boys and adult men. Pediatr Exerc Sci 2001; 13: 154–66 Williams CA, Keen P. Isokinetic measurement of maximal power during leg cycling: a comparison of adolescent boys and adult men. Pediatr Exerc Sci 2001; 13: 154–66
40.
Zurück zum Zitat Kyle CR, Mastropaolo J. Predicting racing bicyclist performance using the unbraked flywheel method of bicycle ergometry. In: Landry F, Orban W, editors. Biomechanics of sport and kinanthropometry. Miami: Symposia Specialists, 1976: 211–20 Kyle CR, Mastropaolo J. Predicting racing bicyclist performance using the unbraked flywheel method of bicycle ergometry. In: Landry F, Orban W, editors. Biomechanics of sport and kinanthropometry. Miami: Symposia Specialists, 1976: 211–20
41.
Zurück zum Zitat Baron R. Aerobic and anaerobic power characteristics of offroad cyclists. Med Sci Sports Exerc 2001; 8: 1387–93 Baron R. Aerobic and anaerobic power characteristics of offroad cyclists. Med Sci Sports Exerc 2001; 8: 1387–93
42.
Zurück zum Zitat Bar-Or O. The Wingate anaerobic test, an update on methodology, reliability and validity. Sports Med 1987; 4: 381–94PubMedCrossRef Bar-Or O. The Wingate anaerobic test, an update on methodology, reliability and validity. Sports Med 1987; 4: 381–94PubMedCrossRef
43.
Zurück zum Zitat Inbar O, Bar-Or O, Skinner JS. The Wingate anaerobic test: development, characteristics, and application. Champaign (IL): Human Kinetics, 1996 Inbar O, Bar-Or O, Skinner JS. The Wingate anaerobic test: development, characteristics, and application. Champaign (IL): Human Kinetics, 1996
44.
Zurück zum Zitat Brookes C, Kidd D, Maynard D, et al. Modifications to the Wingate anaerobic power test protocol. J Sports Sci 1983; 1: 150–1 Brookes C, Kidd D, Maynard D, et al. Modifications to the Wingate anaerobic power test protocol. J Sports Sci 1983; 1: 150–1
45.
Zurück zum Zitat Tirosh E, Rosenbaum P, Bar-Or O. A new muscle power test in neuromuscular disease: feasibility and reliability. Am J Dis Child 1990; 144: 1083–7PubMed Tirosh E, Rosenbaum P, Bar-Or O. A new muscle power test in neuromuscular disease: feasibility and reliability. Am J Dis Child 1990; 144: 1083–7PubMed
46.
Zurück zum Zitat Dickinson S. The efficiency of bicycle pedalling as affected by speed and load. J Physiol 1929; 67: 242–55PubMed Dickinson S. The efficiency of bicycle pedalling as affected by speed and load. J Physiol 1929; 67: 242–55PubMed
47.
Zurück zum Zitat Fenn WO, Marsh BS. Muscular force at different speeds of shortening. J Physiol (Lond) 1935; 85: 277–97 Fenn WO, Marsh BS. Muscular force at different speeds of shortening. J Physiol (Lond) 1935; 85: 277–97
48.
Zurück zum Zitat Hill AV. The heat of shortening and the dynamic constants of muscle. Proc R Soc B 1938; 126: 136–95CrossRef Hill AV. The heat of shortening and the dynamic constants of muscle. Proc R Soc B 1938; 126: 136–95CrossRef
49.
Zurück zum Zitat Van Praagh E, Fellmann N, Bedu M, et al. Gender difference in the relationship of anaerobic power output to body composition in children. Pediatr Exerc Sci 1990; 2: 336–48 Van Praagh E, Fellmann N, Bedu M, et al. Gender difference in the relationship of anaerobic power output to body composition in children. Pediatr Exerc Sci 1990; 2: 336–48
50.
Zurück zum Zitat Williams CA. Anaerobic performance of prepubescent and adolescent children [thesis]. Exeter: University of Exeter, 1995 Williams CA. Anaerobic performance of prepubescent and adolescent children [thesis]. Exeter: University of Exeter, 1995
51.
Zurück zum Zitat Sargeant AJ, Hoinville E, Young A. Maximum leg force and power output during short-term dynamic exercise. J Appl Physiol 1981; 51: 1175–82PubMed Sargeant AJ, Hoinville E, Young A. Maximum leg force and power output during short-term dynamic exercise. J Appl Physiol 1981; 51: 1175–82PubMed
52.
Zurück zum Zitat Doré E, Diallo O, França NM, et al. Dimensional changes cannot account for all differences in short-term cycling power during growth. Int J Sports Med 2000; 21: 360–5PubMedCrossRef Doré E, Diallo O, França NM, et al. Dimensional changes cannot account for all differences in short-term cycling power during growth. Int J Sports Med 2000; 21: 360–5PubMedCrossRef
53.
Zurück zum Zitat Hill AV. The maximal work and mechanical efficiency of human muscles and their economical speed. J Physiol 1922; 56: 19–41PubMed Hill AV. The maximal work and mechanical efficiency of human muscles and their economical speed. J Physiol 1922; 56: 19–41PubMed
54.
Zurück zum Zitat Martin JC, Farrar RP, Wagner BM, et al. Maximal power across the lifespan. J Gerontol 2000; 6: M311–6 Martin JC, Farrar RP, Wagner BM, et al. Maximal power across the lifespan. J Gerontol 2000; 6: M311–6
55.
Zurück zum Zitat Dotan R, Bar-Or O. Load optimization for the Wingate anaerobic test. Eur J Appl Physiol 1983; 51: 409–17CrossRef Dotan R, Bar-Or O. Load optimization for the Wingate anaerobic test. Eur J Appl Physiol 1983; 51: 409–17CrossRef
56.
Zurück zum Zitat Carlson J, Naughton G. Performance characteristics of children using various braking resistances on the Wingate anaerobic test. J Sports Med Phys Fitness 1993; 34: 362–9 Carlson J, Naughton G. Performance characteristics of children using various braking resistances on the Wingate anaerobic test. J Sports Med Phys Fitness 1993; 34: 362–9
57.
Zurück zum Zitat Sargent DA. The physical test of a man. Am Phys Educ Rev 1921; 26: 188–94 Sargent DA. The physical test of a man. Am Phys Educ Rev 1921; 26: 188–94
58.
Zurück zum Zitat Adamson GT, Whitney RJ. Critical appraisal of jumping as a measure of human power. In: Vredenbregt J, Wartenweiler J, editors. Medicine and sport 6: biomechanics II. Basel: Karger, 1971: 208–11 Adamson GT, Whitney RJ. Critical appraisal of jumping as a measure of human power. In: Vredenbregt J, Wartenweiler J, editors. Medicine and sport 6: biomechanics II. Basel: Karger, 1971: 208–11
59.
Zurück zum Zitat Kirby RF. Kirby’s guide for fitness and motor performance tests. Cape Girardeau (MI): Ben Oak, 1991 Kirby RF. Kirby’s guide for fitness and motor performance tests. Cape Girardeau (MI): Ben Oak, 1991
60.
Zurück zum Zitat Glencross DJ. The nature of the vertical jump test and the standing broad jump. Res Q 1966; 37: 353–9PubMed Glencross DJ. The nature of the vertical jump test and the standing broad jump. Res Q 1966; 37: 353–9PubMed
61.
Zurück zum Zitat Safrit MJ. The validity and reliability of fitness tests for children. Pediatr Exerc Sci 1990; 2: 9–28 Safrit MJ. The validity and reliability of fitness tests for children. Pediatr Exerc Sci 1990; 2: 9–28
62.
Zurück zum Zitat Baumgartner TA, Jackson AS. Measurement for evaluation in physical education and exercise science. Dubuque (IL): William C Brown, 1991 Baumgartner TA, Jackson AS. Measurement for evaluation in physical education and exercise science. Dubuque (IL): William C Brown, 1991
63.
Zurück zum Zitat Bosco C, Luhtanen P, Komi PV. A simple method for measurement of mechanical power in jumping. Eur J Appl Physiol 1983; 50: 273–82CrossRef Bosco C, Luhtanen P, Komi PV. A simple method for measurement of mechanical power in jumping. Eur J Appl Physiol 1983; 50: 273–82CrossRef
65.
Zurück zum Zitat Wilkie DR. The relation between force and velocity in human muscle. J Physiol (Lond) 1950; 110: 249–80 Wilkie DR. The relation between force and velocity in human muscle. J Physiol (Lond) 1950; 110: 249–80
66.
Zurück zum Zitat Johnson BL, Nelson, JK. Practical measurements for evaluation in physical education. 4th ed. Edina (MN): Burgess International, 1986 Johnson BL, Nelson, JK. Practical measurements for evaluation in physical education. 4th ed. Edina (MN): Burgess International, 1986
67.
Zurück zum Zitat Falgairette G, Bedu M, Fellmann N, et al. Evaluation of physical fitness from field tests at high altitude in circumpubertal boys: comparison with laboratory data. Eur J Appl Physiol 1994; 69: 36–43CrossRef Falgairette G, Bedu M, Fellmann N, et al. Evaluation of physical fitness from field tests at high altitude in circumpubertal boys: comparison with laboratory data. Eur J Appl Physiol 1994; 69: 36–43CrossRef
68.
Zurück zum Zitat Margaria R, Aghemo P, Rovelli E. Measurement of muscular power (anaerobic) in man. J Appl Physiol 1966; 21: 1662–4PubMed Margaria R, Aghemo P, Rovelli E. Measurement of muscular power (anaerobic) in man. J Appl Physiol 1966; 21: 1662–4PubMed
69.
Zurück zum Zitat Davies CTM, Barnes C, Godfrey S. Body composition and maximal exercise performance in children. Hum Biol 1972; 44: 195–214PubMed Davies CTM, Barnes C, Godfrey S. Body composition and maximal exercise performance in children. Hum Biol 1972; 44: 195–214PubMed
70.
Zurück zum Zitat Bell RD, MacDougall JD, Billeter R, et al. Muscle fiber types and morphometric analysis of skeletal muscle in six-year-old children. Med Sci Sports Exerc 1980; 12: 28–31PubMed Bell RD, MacDougall JD, Billeter R, et al. Muscle fiber types and morphometric analysis of skeletal muscle in six-year-old children. Med Sci Sports Exerc 1980; 12: 28–31PubMed
71.
Zurück zum Zitat Van Praagh E, de França NM. Measuring maximal short-term power output during growth. In: Van Praagh E, editor. Pediatric anaerobic performance. Champaign (IL): Human Kinetics, 1998: 155–89 Van Praagh E, de França NM. Measuring maximal short-term power output during growth. In: Van Praagh E, editor. Pediatric anaerobic performance. Champaign (IL): Human Kinetics, 1998: 155–89
72.
Zurück zum Zitat Nielsen B, Nielsen K, Behrendt Hansen M, et al. Training of ’functional muscle strength’ in girls 7–19 years old. In: Bergh K, Eriksson BO, editors. Children and exercise IX. Baltimore (MD): University Park Press, 1980: 69–78 Nielsen B, Nielsen K, Behrendt Hansen M, et al. Training of ’functional muscle strength’ in girls 7–19 years old. In: Bergh K, Eriksson BO, editors. Children and exercise IX. Baltimore (MD): University Park Press, 1980: 69–78
73.
Zurück zum Zitat Asmussen E. Growth in muscular strength and power. In: Rarick GL, editor. Physical activity-human growth and development. New York: Academic Press, 1973: 60–79 Asmussen E. Growth in muscular strength and power. In: Rarick GL, editor. Physical activity-human growth and development. New York: Academic Press, 1973: 60–79
74.
Zurück zum Zitat Patterson DH, Cunningham DA. Development of anaerobic capacity in early and late maturing boys. In: Binkhorst RA, Kemper HCG, Saris WH, editors. Children and exercise XI. Champaign (IL): Human Kinetics, 1985: 119–28 Patterson DH, Cunningham DA. Development of anaerobic capacity in early and late maturing boys. In: Binkhorst RA, Kemper HCG, Saris WH, editors. Children and exercise XI. Champaign (IL): Human Kinetics, 1985: 119–28
75.
Zurück zum Zitat Saltin B. Anaerobic capacity: past, present, and prospective. In: Taylor AW, Gollnick PD, Green HJ, et al., editors. Biochemistry of exercise VII. Champaign (IL): Human Kinetics Publishers, 1990: 387–412 Saltin B. Anaerobic capacity: past, present, and prospective. In: Taylor AW, Gollnick PD, Green HJ, et al., editors. Biochemistry of exercise VII. Champaign (IL): Human Kinetics Publishers, 1990: 387–412
76.
Zurück zum Zitat Amar J. The human motor. London: Routledge and Sons, 1920 Amar J. The human motor. London: Routledge and Sons, 1920
77.
Zurück zum Zitat Lakomy HKA. An ergometer for measuring the power generated during sprinting. J Physiol 1984; 354: 33P Lakomy HKA. An ergometer for measuring the power generated during sprinting. J Physiol 1984; 354: 33P
78.
Zurück zum Zitat Van Praagh E, Fargeas MA, Léger L, et al. Short-term power output in children measured on a computerized treadmill ergometer [abstract]. Pediatr Exerc Sci 1993; 5: 482 Van Praagh E, Fargeas MA, Léger L, et al. Short-term power output in children measured on a computerized treadmill ergometer [abstract]. Pediatr Exerc Sci 1993; 5: 482
79.
Zurück zum Zitat 79. Fargeas MA, Van Praagh E, Lauron B, et al. A computerized treadmill ergometer to measure short-term power output [abstract]. Proceedings of 14th International Congress of Biomechanics; 1993 Jul 4–8; Paris, 394–5 79. Fargeas MA, Van Praagh E, Lauron B, et al. A computerized treadmill ergometer to measure short-term power output [abstract]. Proceedings of 14th International Congress of Biomechanics; 1993 Jul 4–8; Paris, 394–5
80.
Zurück zum Zitat Lakomy HKA. The use of a non-motorized treadmill for analysing sprint performance. Ergonomics 1987; 30: 627–38CrossRef Lakomy HKA. The use of a non-motorized treadmill for analysing sprint performance. Ergonomics 1987; 30: 627–38CrossRef
81.
Zurück zum Zitat Bar-Or O. Pediatric sports medicine for the practitioner: from physiologic principles to clinical applications. New York: Springer, 1983CrossRef Bar-Or O. Pediatric sports medicine for the practitioner: from physiologic principles to clinical applications. New York: Springer, 1983CrossRef
82.
Zurück zum Zitat Doré E, Bedu M, França NM, et al. Anaerobic cycling performance characteristics in prepubescent, adolescent and young adult females. Eur J Appl Physiol 2001; 84: 476–81PubMedCrossRef Doré E, Bedu M, França NM, et al. Anaerobic cycling performance characteristics in prepubescent, adolescent and young adult females. Eur J Appl Physiol 2001; 84: 476–81PubMedCrossRef
83.
Zurück zum Zitat Bosco C. Force assessment by means of the Bosco test [in French]. Rome: Società Stampa Sportiva, 1992 Bosco C. Force assessment by means of the Bosco test [in French]. Rome: Società Stampa Sportiva, 1992
84.
Zurück zum Zitat Pääsuke M, Ereline J, Gapeyeva H. Knee extensor muscle strength and vertical jumping performance characteristics in pre- and post-pubertal boys. Pediatr Exerc Sci 2001; 1: 60–9 Pääsuke M, Ereline J, Gapeyeva H. Knee extensor muscle strength and vertical jumping performance characteristics in pre- and post-pubertal boys. Pediatr Exerc Sci 2001; 1: 60–9
85.
Zurück zum Zitat Doré E, Diallo O, Bedu M, et al. Vertical jump performance in girls and boys aged 8–18 years: relationship with cycling peak power [abstract]. Pediatr Exerc Sci 2001; 3: 331 Doré E, Diallo O, Bedu M, et al. Vertical jump performance in girls and boys aged 8–18 years: relationship with cycling peak power [abstract]. Pediatr Exerc Sci 2001; 3: 331
86.
Zurück zum Zitat Diallo O, Doré E, Duché P, et al. Effects of plyometric training followed by a reduced training programme on physical performance in prepubescent soccer players. J Sports Med Phys Fitness 2001; 41: 342–8PubMed Diallo O, Doré E, Duché P, et al. Effects of plyometric training followed by a reduced training programme on physical performance in prepubescent soccer players. J Sports Med Phys Fitness 2001; 41: 342–8PubMed
87.
Zurück zum Zitat Amano Y, Mizutani S, Hoshikawa T. Longitudinal study of running of 58 children over a four-year period. In: Matsui H, Kobayashi K, editors. Biomechanics VIII-B. Champaign (IL): Human Kinetics, 1983: 663–8 Amano Y, Mizutani S, Hoshikawa T. Longitudinal study of running of 58 children over a four-year period. In: Matsui H, Kobayashi K, editors. Biomechanics VIII-B. Champaign (IL): Human Kinetics, 1983: 663–8
88.
Zurück zum Zitat Grassi B, Cerretelli P, Narici MV, et al. Peak anaerobic power in master athletes. Eur J Appl Physiol 1991; 62: 394–9CrossRef Grassi B, Cerretelli P, Narici MV, et al. Peak anaerobic power in master athletes. Eur J Appl Physiol 1991; 62: 394–9CrossRef
89.
Zurück zum Zitat Simoneau J-A, Lortie G, Leblanc C, et al. Anaerobic alactacid work capacity in adopted and biological siblings. In: Malina RM, Bouchard C, editors. Sport and human genetics. Champaign (IL): Human Kinetics, 1986: 165–71 Simoneau J-A, Lortie G, Leblanc C, et al. Anaerobic alactacid work capacity in adopted and biological siblings. In: Malina RM, Bouchard C, editors. Sport and human genetics. Champaign (IL): Human Kinetics, 1986: 165–71
90.
Zurück zum Zitat Malina RM, Mueller WH. Genetic and environmental influences on the strength and motor performance of Philadelphia school children. Hum Biol 1981; 53: 163–79PubMed Malina RM, Mueller WH. Genetic and environmental influences on the strength and motor performance of Philadelphia school children. Hum Biol 1981; 53: 163–79PubMed
91.
Zurück zum Zitat Simoneau J-A, Bouchard C. The effects of genetic variation of anaerobic performance. In: Van Praagh E, editor. Pediatric anaerobic performance. Champaign (IL): Human Kinetics, 1998: 5–21 Simoneau J-A, Bouchard C. The effects of genetic variation of anaerobic performance. In: Van Praagh E, editor. Pediatric anaerobic performance. Champaign (IL): Human Kinetics, 1998: 5–21
92.
Zurück zum Zitat Komi PV, Klissouras V, Karvinen E. Genetic variation in neuromuscular performance. Int Z Angew Physiol 1973; 31: 289–304PubMed Komi PV, Klissouras V, Karvinen E. Genetic variation in neuromuscular performance. Int Z Angew Physiol 1973; 31: 289–304PubMed
93.
Zurück zum Zitat Bouchard C, Malina RM, Pérusse L. Genetics of fitness and physical performance. Champaign (IL): Human Kinetics, 1997 Bouchard C, Malina RM, Pérusse L. Genetics of fitness and physical performance. Champaign (IL): Human Kinetics, 1997
94.
Zurück zum Zitat Sargeant AJ. The determinants of anaerobic muscle function during growth. In: Van Praagh E, editor. Pediatric anaerobic performance. Champaign (IL): Human Kinetics, 1998: 97–117 Sargeant AJ. The determinants of anaerobic muscle function during growth. In: Van Praagh E, editor. Pediatric anaerobic performance. Champaign (IL): Human Kinetics, 1998: 97–117
95.
Zurück zum Zitat Sale DG, Spriet LL. Skeletal muscle function and energy metabolism. In: Bar-Or O, Lamb DR, Clarkson PM, editors. Exercise and the female: a life span approach. Perspectives in exercise science and sports medicine 9. Carmel (IN): Cooper Publishing Group, 1996: 289–359 Sale DG, Spriet LL. Skeletal muscle function and energy metabolism. In: Bar-Or O, Lamb DR, Clarkson PM, editors. Exercise and the female: a life span approach. Perspectives in exercise science and sports medicine 9. Carmel (IN): Cooper Publishing Group, 1996: 289–359
96.
Zurück zum Zitat Blimkie CJR, Sale DG. Strength development and trainability during childhood. In: Van Praagh E, editor. Pediatric anaerobic performance. Champaign (IL): Human Kinetics, 1998: 193–224 Blimkie CJR, Sale DG. Strength development and trainability during childhood. In: Van Praagh E, editor. Pediatric anaerobic performance. Champaign (IL): Human Kinetics, 1998: 193–224
97.
Zurück zum Zitat Van Praagh E. Development of anaerobic function during childhood and adolescence. Pediatr Exerc Sci 2000; 12 (2): 150–73 Van Praagh E. Development of anaerobic function during childhood and adolescence. Pediatr Exerc Sci 2000; 12 (2): 150–73
98.
Zurück zum Zitat Allen RE, Merkel RA, Young RB. Cellular aspects of muscle growth: myogenic cell proliferation. J Anim Sci 1979; 49 (1): 115–27PubMed Allen RE, Merkel RA, Young RB. Cellular aspects of muscle growth: myogenic cell proliferation. J Anim Sci 1979; 49 (1): 115–27PubMed
99.
Zurück zum Zitat Colling-Saltin A-S. Skeletal muscle development in the human fetus and during childhood. In: Berg K, Eriksson BO, editors. Children and exercise. Baltimore (MD): University Park Press, 1980: 193–207 Colling-Saltin A-S. Skeletal muscle development in the human fetus and during childhood. In: Berg K, Eriksson BO, editors. Children and exercise. Baltimore (MD): University Park Press, 1980: 193–207
100.
Zurück zum Zitat Lexell J, Sjoström M, Nordlund A-S. Growth and development of human muscle: a quantitative morphological study of whole vastus lateralis from childhood to adult age. Muscle Nerve 1992; 15: 404–9PubMedCrossRef Lexell J, Sjoström M, Nordlund A-S. Growth and development of human muscle: a quantitative morphological study of whole vastus lateralis from childhood to adult age. Muscle Nerve 1992; 15: 404–9PubMedCrossRef
101.
Zurück zum Zitat Close RI. Dynamic properties of mammalian skeletal muscles. Physiol Rev 1972; 52: 129–97PubMed Close RI. Dynamic properties of mammalian skeletal muscles. Physiol Rev 1972; 52: 129–97PubMed
102.
Zurück zum Zitat Elder GCB, Kakulas BA. Histochemical and contractile property changes during human development. Muscle Nerve 1993; 16: 1246–53PubMedCrossRef Elder GCB, Kakulas BA. Histochemical and contractile property changes during human development. Muscle Nerve 1993; 16: 1246–53PubMedCrossRef
103.
Zurück zum Zitat Jansson E. Age-related fiber type changes in human skeletal muscle. In: Maughan RJ, Shirreffs SM, editors. Biochemistry of exercise IX. Champaign (IL): Human Kinetics, 1996: 297–307 Jansson E. Age-related fiber type changes in human skeletal muscle. In: Maughan RJ, Shirreffs SM, editors. Biochemistry of exercise IX. Champaign (IL): Human Kinetics, 1996: 297–307
104.
Zurück zum Zitat 104. Hedberg G, Jansson E. Skeletal muscle fibre distribution, capacity and interest in different physical activities among students in high school [Swedish with English abstract]. Pedagogiska Rapporter 1976; 54: 104. Hedberg G, Jansson E. Skeletal muscle fibre distribution, capacity and interest in different physical activities among students in high school [Swedish with English abstract]. Pedagogiska Rapporter 1976; 54:
105.
Zurück zum Zitat Fournier M, Ricca J, Taylor AW, et al. Skeletal muscle adaptation in adolescent boys: sprint and endurance training and detraining. Med Sci Sports Exerc 1982; 14 (6): 453–6PubMedCrossRef Fournier M, Ricca J, Taylor AW, et al. Skeletal muscle adaptation in adolescent boys: sprint and endurance training and detraining. Med Sci Sports Exerc 1982; 14 (6): 453–6PubMedCrossRef
106.
Zurück zum Zitat Jansson E, Hedberg G. Skeletal muscle fibre types in teenagers: relationship to physical performance and activity. Scand J Med Sci Sports 1991; 1: 31–44CrossRef Jansson E, Hedberg G. Skeletal muscle fibre types in teenagers: relationship to physical performance and activity. Scand J Med Sci Sports 1991; 1: 31–44CrossRef
107.
Zurück zum Zitat Eriksson BO, Saltin B. Muscle metabolism during exercise in boys aged 11 to 16 compared to adults. Acta Paediatr Belg 1974; 28 Suppl.: 257–65PubMed Eriksson BO, Saltin B. Muscle metabolism during exercise in boys aged 11 to 16 compared to adults. Acta Paediatr Belg 1974; 28 Suppl.: 257–65PubMed
108.
Zurück zum Zitat Lundberg A, Eriksson BO, Mellgren G. Metabolic substrates, muscle fibre composition and fibre size in late walking and normal children. Eur J Pediatr 1979; 130: 79–92PubMedCrossRef Lundberg A, Eriksson BO, Mellgren G. Metabolic substrates, muscle fibre composition and fibre size in late walking and normal children. Eur J Pediatr 1979; 130: 79–92PubMedCrossRef
109.
Zurück zum Zitat du Plessis MP, Smit PJ, du Plessis LAS, et al. The composition of muscle fibers in a group of adolescents. In: Binkhorst RA, Kemper HCG, Saris WHM, editors. Children and exercise XI. Champaign (IL): Human Kinetics Publishers, 1985: 323–8 du Plessis MP, Smit PJ, du Plessis LAS, et al. The composition of muscle fibers in a group of adolescents. In: Binkhorst RA, Kemper HCG, Saris WHM, editors. Children and exercise XI. Champaign (IL): Human Kinetics Publishers, 1985: 323–8
110.
Zurück zum Zitat Glenmark B, Hedberg G, Kaijser L, et al. Muscle strength from adolescence to adulthood-relationship to muscle fibre types. Eur J Appl Physiol 1994; 68: 9–19CrossRef Glenmark B, Hedberg G, Kaijser L, et al. Muscle strength from adolescence to adulthood-relationship to muscle fibre types. Eur J Appl Physiol 1994; 68: 9–19CrossRef
111.
Zurück zum Zitat Aherne W, Ayyar DR, Clarke PA, et al. Muscle fibre size in normal infants, children and adolescents: an autopsy study. J Neurol Sci 1971; 14: 171–82PubMedCrossRef Aherne W, Ayyar DR, Clarke PA, et al. Muscle fibre size in normal infants, children and adolescents: an autopsy study. J Neurol Sci 1971; 14: 171–82PubMedCrossRef
112.
Zurück zum Zitat Glenmark B, Hedberg G, Jansson E. Changes in muscle fibre type from adolescence to adulthood in women and men. Acta Physiol Scand 1992; 146: 251–9PubMedCrossRef Glenmark B, Hedberg G, Jansson E. Changes in muscle fibre type from adolescence to adulthood in women and men. Acta Physiol Scand 1992; 146: 251–9PubMedCrossRef
113.
Zurück zum Zitat Vogler C, Bove KE. Morphology of skeletal muscles in children. Arch Pathol Lab Med 1985; 109: 238–42PubMed Vogler C, Bove KE. Morphology of skeletal muscles in children. Arch Pathol Lab Med 1985; 109: 238–42PubMed
114.
Zurück zum Zitat Costill DL, Daniels J, Evans W, et al. Skeletal muscle enzymes and fiber composition in male and female track athletes. J Appl Physiol 1976; 40: 149–54PubMed Costill DL, Daniels J, Evans W, et al. Skeletal muscle enzymes and fiber composition in male and female track athletes. J Appl Physiol 1976; 40: 149–54PubMed
115.
Zurück zum Zitat Oertel G. Morphometric analysis of normal skeletal muscles in infancy, childhood and adolescence: an autopsy study. J Neurol Sci 1988; 88: 303–13PubMedCrossRef Oertel G. Morphometric analysis of normal skeletal muscles in infancy, childhood and adolescence: an autopsy study. J Neurol Sci 1988; 88: 303–13PubMedCrossRef
116.
Zurück zum Zitat Gutman E, Hanzlikova-Lojdaz V. Effects of androgens on histochemical fibre type. Histochemie 1970; 24: 287–91 Gutman E, Hanzlikova-Lojdaz V. Effects of androgens on histochemical fibre type. Histochemie 1970; 24: 287–91
117.
Zurück zum Zitat Round JM, Jones DA, Honour JW, et al. Hormonal factors in the development of differences in strength between boys and girls during adolescence: a longitudinal study. Ann Hum Biol 1999; 26: 49–62PubMedCrossRef Round JM, Jones DA, Honour JW, et al. Hormonal factors in the development of differences in strength between boys and girls during adolescence: a longitudinal study. Ann Hum Biol 1999; 26: 49–62PubMedCrossRef
118.
Zurück zum Zitat Brooke MH, Engel WK. The histographic analysis of human muscle biopsies with regard to fiber types: children’s biopsies. Neurology 1969; 19: 591–605PubMedCrossRef Brooke MH, Engel WK. The histographic analysis of human muscle biopsies with regard to fiber types: children’s biopsies. Neurology 1969; 19: 591–605PubMedCrossRef
119.
Zurück zum Zitat Lundberg AE. Normal and delayed walking age: a clinical and muscle morphological and metabolic study. In: Berg K, Eriksson BO, editors. Children and exercise. Baltimore (MD): University Park Press, 1980: 23–31 Lundberg AE. Normal and delayed walking age: a clinical and muscle morphological and metabolic study. In: Berg K, Eriksson BO, editors. Children and exercise. Baltimore (MD): University Park Press, 1980: 23–31
120.
Zurück zum Zitat Simoneau J-A, Lortie G, Boulay MR, et al. Skeletal muscle histochemical and biochemical characteristics in sedentary male and female subjects. Can J Physiol Pharmacol 1985; 63: 30–5PubMedCrossRef Simoneau J-A, Lortie G, Boulay MR, et al. Skeletal muscle histochemical and biochemical characteristics in sedentary male and female subjects. Can J Physiol Pharmacol 1985; 63: 30–5PubMedCrossRef
121.
Zurück zum Zitat Ikai M, Fukunaga T. Calculations of muscle strength per unit cross-sectional area of human muscle by means of ultrasonic measurement. Int Z Angew Physiol 1968; 26: 26–32PubMed Ikai M, Fukunaga T. Calculations of muscle strength per unit cross-sectional area of human muscle by means of ultrasonic measurement. Int Z Angew Physiol 1968; 26: 26–32PubMed
122.
Zurück zum Zitat Davies CTM. Strength and mechanical properties of muscle in children and young adults. Scand J Sports Sci 1985; 7: 11–5 Davies CTM. Strength and mechanical properties of muscle in children and young adults. Scand J Sports Sci 1985; 7: 11–5
123.
Zurück zum Zitat Kanehisa H, Ikegawa S, Tsunoda N, et al. Strength and crosssectional area of reciprocal muscle groups in the upper arm and thigh during adolescence. Int J Sports Med 1995; 16: 54–60PubMedCrossRef Kanehisa H, Ikegawa S, Tsunoda N, et al. Strength and crosssectional area of reciprocal muscle groups in the upper arm and thigh during adolescence. Int J Sports Med 1995; 16: 54–60PubMedCrossRef
124.
Zurück zum Zitat Bäckmann E, Henriksson KG. Skeletal muscle characteristics in children 9–15 years old: force, relaxation rate and contraction time. Clin Physiol 1988; 8: 521–7CrossRef Bäckmann E, Henriksson KG. Skeletal muscle characteristics in children 9–15 years old: force, relaxation rate and contraction time. Clin Physiol 1988; 8: 521–7CrossRef
125.
Zurück zum Zitat Ullman M, Alameddine H, Skottner A, et al. Effects of growth hormone on skeletal muscle. I: studies on normal adult rats. Acta Physiol Scand 1989; 135: 531–6PubMedCrossRef Ullman M, Alameddine H, Skottner A, et al. Effects of growth hormone on skeletal muscle. I: studies on normal adult rats. Acta Physiol Scand 1989; 135: 531–6PubMedCrossRef
126.
Zurück zum Zitat Belanger AY, McComas AJ. Contractile properties of human skeletal muscle in childhood and adolescence. Eur J Appl Physiol 1989; 58: 563–7CrossRef Belanger AY, McComas AJ. Contractile properties of human skeletal muscle in childhood and adolescence. Eur J Appl Physiol 1989; 58: 563–7CrossRef
127.
128.
Zurück zum Zitat Malina RM. Quantification of fat, muscle and bone in man. Clin Orthop 1969; 65: 9–38PubMed Malina RM. Quantification of fat, muscle and bone in man. Clin Orthop 1969; 65: 9–38PubMed
129.
Zurück zum Zitat Falgairette G, Bedu M, Fellmann N, et al. Bio-energetic profile in 144 boys aged from 6 to 15 years with special reference to sexual maturation. Eur J Appl Physiol 1991; 62: 151–6CrossRef Falgairette G, Bedu M, Fellmann N, et al. Bio-energetic profile in 144 boys aged from 6 to 15 years with special reference to sexual maturation. Eur J Appl Physiol 1991; 62: 151–6CrossRef
130.
Zurück zum Zitat Falk B, Bar-Or O. Longitudinal changes in peak mechanical power (aerobic and anaerobic) of circumpubertal boys. Pediatr Exerc 1993; 5: 318–31 Falk B, Bar-Or O. Longitudinal changes in peak mechanical power (aerobic and anaerobic) of circumpubertal boys. Pediatr Exerc 1993; 5: 318–31
131.
Zurück zum Zitat Welsman JR, Armstrong N. Statistical techniques for interpreting body size-related exercise performance during growth. Pediatr Exerc Sci 2000; 12: 112–27 Welsman JR, Armstrong N. Statistical techniques for interpreting body size-related exercise performance during growth. Pediatr Exerc Sci 2000; 12: 112–27
132.
Zurück zum Zitat Bergström J. Muscle electrolytes in man. Scand J Clin Lab Invest 1962; Suppl. 68: 1–110 Bergström J. Muscle electrolytes in man. Scand J Clin Lab Invest 1962; Suppl. 68: 1–110
133.
Zurück zum Zitat Eriksson BO, Karlsson J, Saltin B. Muscle metabolites during exercise in pubertal boys. Acta Paediatr Scand Suppl 1971; 217: 154–7PubMedCrossRef Eriksson BO, Karlsson J, Saltin B. Muscle metabolites during exercise in pubertal boys. Acta Paediatr Scand Suppl 1971; 217: 154–7PubMedCrossRef
134.
Zurück zum Zitat Eriksson BO. Muscle metabolism in children: a review. Acta Paediatr Scand Suppl 1980; 283: 20–7PubMedCrossRef Eriksson BO. Muscle metabolism in children: a review. Acta Paediatr Scand Suppl 1980; 283: 20–7PubMedCrossRef
135.
Zurück zum Zitat Haralambie G. Enzyme activities in skeletal muscle of 13–15- years-old adolescents. Bull Eur Physiopathol Respir 1982; 18: 65–74PubMed Haralambie G. Enzyme activities in skeletal muscle of 13–15- years-old adolescents. Bull Eur Physiopathol Respir 1982; 18: 65–74PubMed
136.
Zurück zum Zitat Berg A, Kim SS, Keul J. Skeletal muscle enzyme activities in healthy young subjects. Int J Sports Med 1986; 7: 236–9PubMedCrossRef Berg A, Kim SS, Keul J. Skeletal muscle enzyme activities in healthy young subjects. Int J Sports Med 1986; 7: 236–9PubMedCrossRef
137.
Zurück zum Zitat Cooper DM, Barstow TJ. Magnetic resonance imaging and spectroscopy in studying exercise in children. In: Holloszy JO, editor. Exercise and sports science reviews. Baltimore (MD): Williams and Wilkins, 1996: 475–99 Cooper DM, Barstow TJ. Magnetic resonance imaging and spectroscopy in studying exercise in children. In: Holloszy JO, editor. Exercise and sports science reviews. Baltimore (MD): Williams and Wilkins, 1996: 475–99
138.
Zurück zum Zitat Zanconato S, Buchtal S, Barstow TJ, et al. 31P-magnetic resonance spectroscopy of leg muscle metabolism during exercise in children and adults. J Appl Physiol 1993; 74: 2214–8PubMed Zanconato S, Buchtal S, Barstow TJ, et al. 31P-magnetic resonance spectroscopy of leg muscle metabolism during exercise in children and adults. J Appl Physiol 1993; 74: 2214–8PubMed
139.
Zurück zum Zitat Kuno S, Miyamaru M, Itai Y. Muscle energetics during exercise of elite sprinter in children by 31P NMR [abstract]. Med Sci Sports Exerc 1993; 25: S175 Kuno S, Miyamaru M, Itai Y. Muscle energetics during exercise of elite sprinter in children by 31P NMR [abstract]. Med Sci Sports Exerc 1993; 25: S175
140.
Zurück zum Zitat Kuno S, Takahashi H, Fujimoto K, et al. Muscle metabolism during exercise using phosphorus-31 nuclear magnetic resonance spectroscopy in adolescents. Eur J Appl Physiol 1995; 70: 301–4CrossRef Kuno S, Takahashi H, Fujimoto K, et al. Muscle metabolism during exercise using phosphorus-31 nuclear magnetic resonance spectroscopy in adolescents. Eur J Appl Physiol 1995; 70: 301–4CrossRef
141.
Zurück zum Zitat Taylor DJ, Kemp GJ, Thompson CH, et al. Ageing: effects on oxidative function of skeletal muscle in vivo. Mol Cell Biochem 1997; 174: 321–4PubMedCrossRef Taylor DJ, Kemp GJ, Thompson CH, et al. Ageing: effects on oxidative function of skeletal muscle in vivo. Mol Cell Biochem 1997; 174: 321–4PubMedCrossRef
142.
Zurück zum Zitat Petersen SR, Gaul CA, Stanton MM, et al. Skeletal muscle metabolism during short-term, high-intensity exercise in prepubertal and pubertal girls. J Appl Physiol 1999; 87 (6): 2151–6PubMed Petersen SR, Gaul CA, Stanton MM, et al. Skeletal muscle metabolism during short-term, high-intensity exercise in prepubertal and pubertal girls. J Appl Physiol 1999; 87 (6): 2151–6PubMed
143.
Zurück zum Zitat Mero A. Blood lactate production and recovery from anaerobic exercise in trained and untrained boys. Eur J Appl Physiol 1988; 57: 660–6CrossRef Mero A. Blood lactate production and recovery from anaerobic exercise in trained and untrained boys. Eur J Appl Physiol 1988; 57: 660–6CrossRef
144.
Zurück zum Zitat Stanley WC, Gertz EW, Wisneski JA, et al. Systematic lactate turnover during graded exercise in man. Am J Physiol 1985; 249: E595–602 Stanley WC, Gertz EW, Wisneski JA, et al. Systematic lactate turnover during graded exercise in man. Am J Physiol 1985; 249: E595–602
145.
Zurück zum Zitat Welsman JR, Armstrong N, Kirby BJ. Serumtestosterone is not related to peak V̇O2 and submaximal lactate responses in 12- to 16-year-old males. Pediatr Exerc Sci 1994; 6: 120–7 Welsman JR, Armstrong N, Kirby BJ. Serumtestosterone is not related to peak V̇O2 and submaximal lactate responses in 12- to 16-year-old males. Pediatr Exerc Sci 1994; 6: 120–7
146.
Zurück zum Zitat Armstrong N, Welsman JR, Kirby BJ. Performance on the Wingate anaerobic test and maturation. Pediatr Exerc Sci 1997; 9: 253–61 Armstrong N, Welsman JR, Kirby BJ. Performance on the Wingate anaerobic test and maturation. Pediatr Exerc Sci 1997; 9: 253–61
147.
Zurück zum Zitat Green S, Dawson B. Measurement of anaerobic capacities in humans: definitions, limitations and unsolved problems. Sports Med 1993; 15: 312–27PubMedCrossRef Green S, Dawson B. Measurement of anaerobic capacities in humans: definitions, limitations and unsolved problems. Sports Med 1993; 15: 312–27PubMedCrossRef
148.
Zurück zum Zitat Welsman JR, Armstrong N. Assessing postexercise lactates in children and adolescents. In: Van Praagh E, editor. Pediatric anaerobic performance. Champaign (IL): Human Kinetics, 1998: 137–53 Welsman JR, Armstrong N. Assessing postexercise lactates in children and adolescents. In: Van Praagh E, editor. Pediatric anaerobic performance. Champaign (IL): Human Kinetics, 1998: 137–53
149.
Zurück zum Zitat Harnoncourt K, Gaisl G. Stress acidosis as a criterion for work capacity in 11-year-old school children. Acta Paediatr 1974; 28: 266–73 Harnoncourt K, Gaisl G. Stress acidosis as a criterion for work capacity in 11-year-old school children. Acta Paediatr 1974; 28: 266–73
150.
Zurück zum Zitat Matejkova J, Koprivova Z, Placheta Z. Changes in acid-base balance after maximal exercise. In: Placheta Z, Brno JE, editors. Youth and physical activity. Ústí nad Labem: Jan Evangelista Purkyne University, 1980: 191–200 Matejkova J, Koprivova Z, Placheta Z. Changes in acid-base balance after maximal exercise. In: Placheta Z, Brno JE, editors. Youth and physical activity. Ústí nad Labem: Jan Evangelista Purkyne University, 1980: 191–200
151.
Zurück zum Zitat Dotan R, Falk B, Raz A. Intensity effect of active recovery from glycolytic exercise on decreasing blood lactate concentration in prepubertal children. Med Sci Sports Exerc 2000; 32: 564–70PubMedCrossRef Dotan R, Falk B, Raz A. Intensity effect of active recovery from glycolytic exercise on decreasing blood lactate concentration in prepubertal children. Med Sci Sports Exerc 2000; 32: 564–70PubMedCrossRef
152.
Zurück zum Zitat Ratel S, Duche P, Hennegrave A, et al. Acid-base balance during repeated cycling sprints in boys and men. J Appl Physiol 2002; 92: 479–85PubMed Ratel S, Duche P, Hennegrave A, et al. Acid-base balance during repeated cycling sprints in boys and men. J Appl Physiol 2002; 92: 479–85PubMed
153.
Zurück zum Zitat Kraemer WJ, Fry AC, Frykman PN, et al. Resistance training and youth. Pediatr Exerc Sci 1989; 1: 336–50 Kraemer WJ, Fry AC, Frykman PN, et al. Resistance training and youth. Pediatr Exerc Sci 1989; 1: 336–50
154.
Zurück zum Zitat Sale DG. Strength training in children. In: Gisolfi CV, Lamb DR, editors. Perspectives in exercise science and sports medicine, 2. Youth, exercise and sport. Indianapolis (IN): Benchmark Press, 1989: 165–222 Sale DG. Strength training in children. In: Gisolfi CV, Lamb DR, editors. Perspectives in exercise science and sports medicine, 2. Youth, exercise and sport. Indianapolis (IN): Benchmark Press, 1989: 165–222
155.
Zurück zum Zitat Belanger AY, McComas AJ. Extent of motor unit activation during effort. J Appl Physiol 51; 1131–5 Belanger AY, McComas AJ. Extent of motor unit activation during effort. J Appl Physiol 51; 1131–5
156.
Zurück zum Zitat Åstrand PO. Children and adolescents: performance, measurements, education. In: Coudert J, Van Praagh E, editors. Pediatric work physiology XVI: children and exercise. Paris: Masson, 1992: 3–7 Åstrand PO. Children and adolescents: performance, measurements, education. In: Coudert J, Van Praagh E, editors. Pediatric work physiology XVI: children and exercise. Paris: Masson, 1992: 3–7
157.
Zurück zum Zitat Lodder MAN, de Haan A, Sargeant AJ. Effect of shortening velocity on work output and energy cost during repeated contractions of the rat EDL muscle. Eur J Appl Physiol 1991; 62: 430–5CrossRef Lodder MAN, de Haan A, Sargeant AJ. Effect of shortening velocity on work output and energy cost during repeated contractions of the rat EDL muscle. Eur J Appl Physiol 1991; 62: 430–5CrossRef
158.
Zurück zum Zitat Goldspink G. Alterations in myofibril size and structure during growth, exercise and changes in environmental temperature. In: Peachy LD, editor. Handbook of physiology. Bethesda (MD): American Physiological Society, 1983: 539 Goldspink G. Alterations in myofibril size and structure during growth, exercise and changes in environmental temperature. In: Peachy LD, editor. Handbook of physiology. Bethesda (MD): American Physiological Society, 1983: 539
159.
Zurück zum Zitat Larsson L, Moss RL. Maximum velocity of shortening in relation to myosin isoform composition in single fibres from human skeletal muscles. J Physiol 1993; 472: 595–614PubMed Larsson L, Moss RL. Maximum velocity of shortening in relation to myosin isoform composition in single fibres from human skeletal muscles. J Physiol 1993; 472: 595–614PubMed
160.
Zurück zum Zitat Sant’Ana Pereira JA, Sargeant AJ, de Haan AW, et al. Myosin heavy chain isoform expression and high energy phosphate content of human muscle fibres at rest and post-exercise. J Physiol 1996; 496: 1–6 Sant’Ana Pereira JA, Sargeant AJ, de Haan AW, et al. Myosin heavy chain isoform expression and high energy phosphate content of human muscle fibres at rest and post-exercise. J Physiol 1996; 496: 1–6
161.
Zurück zum Zitat 161. Saltin B. Values of sport: a biological perspective [abstract]. In: Marconnet P, editor. First Annual Congress Frontiers in Sport Science; 1996 Jun 1–4; Nice, 19 161. Saltin B. Values of sport: a biological perspective [abstract]. In: Marconnet P, editor. First Annual Congress Frontiers in Sport Science; 1996 Jun 1–4; Nice, 19
162.
Zurück zum Zitat Preece MA. Prepubertal and pubertal endocrinology. In: Falkner F, Tanner JM, editors. Human growth 2. Postnatal growth neurobiology. New York: Plenum Press, 1986: 211–24 Preece MA. Prepubertal and pubertal endocrinology. In: Falkner F, Tanner JM, editors. Human growth 2. Postnatal growth neurobiology. New York: Plenum Press, 1986: 211–24
163.
164.
Zurück zum Zitat Beunen G, Thomis M. Muscular strength development in children and adolescents. Pediatr Exerc Sci 2000; 12 (2): 174–97 Beunen G, Thomis M. Muscular strength development in children and adolescents. Pediatr Exerc Sci 2000; 12 (2): 174–97
165.
Zurück zum Zitat Costin G, Kaufman FR, Brasel J. Growth hormone secretory dynamics in subjects with normal stature. J Pediatr 1989; 115: 537–44PubMedCrossRef Costin G, Kaufman FR, Brasel J. Growth hormone secretory dynamics in subjects with normal stature. J Pediatr 1989; 115: 537–44PubMedCrossRef
166.
Zurück zum Zitat Poehlman ET, Copeland KC. Influence of physical activity on insulin-like growth factor-1 in healthy younger and older men. J Clin Endocrinol Metab 1990; 71: 1468–73PubMedCrossRef Poehlman ET, Copeland KC. Influence of physical activity on insulin-like growth factor-1 in healthy younger and older men. J Clin Endocrinol Metab 1990; 71: 1468–73PubMedCrossRef
167.
Zurück zum Zitat Eliakim A, Brasel JA, Mohan S, et al. Increased physical activity and the growth hormone-IGF-I axis in adolescent males. Am J Physiol 1998; 275: R308–14 Eliakim A, Brasel JA, Mohan S, et al. Increased physical activity and the growth hormone-IGF-I axis in adolescent males. Am J Physiol 1998; 275: R308–14
168.
Zurück zum Zitat Eliakim A, Scheett TP, Newcomb R, et al. Fitness, training, and the growth hormone-insulin-like growth factor I axis in prepubertal girls. J Clin Endocrinol Metab 2001; 86: 2797–802PubMedCrossRef Eliakim A, Scheett TP, Newcomb R, et al. Fitness, training, and the growth hormone-insulin-like growth factor I axis in prepubertal girls. J Clin Endocrinol Metab 2001; 86: 2797–802PubMedCrossRef
169.
Zurück zum Zitat Deyssig R, Frisch H, Blum WF, et al. Effect of growth hormone treatment on hormonal parameters, body composition and strength in athletes. Acta Endocrinol (Copenh) 1988; 128: 313–6 Deyssig R, Frisch H, Blum WF, et al. Effect of growth hormone treatment on hormonal parameters, body composition and strength in athletes. Acta Endocrinol (Copenh) 1988; 128: 313–6
170.
Zurück zum Zitat Parker DF, Round JM, Sacco P, et al. A cross-sectional survey of upper and lower limb strength in boys and girls during childhood and adolescence. Ann Hum Biol 1990; 17: 199–211PubMedCrossRef Parker DF, Round JM, Sacco P, et al. A cross-sectional survey of upper and lower limb strength in boys and girls during childhood and adolescence. Ann Hum Biol 1990; 17: 199–211PubMedCrossRef
171.
Zurück zum Zitat Froberg K, Lammert O. Development of muscle strength during childhood. In: Bar-Or O, editor. The encyclopaedia of sports medicine: the child and adolescent athlete. London: Blackwell Science, 1996: 25–41 Froberg K, Lammert O. Development of muscle strength during childhood. In: Bar-Or O, editor. The encyclopaedia of sports medicine: the child and adolescent athlete. London: Blackwell Science, 1996: 25–41
172.
Zurück zum Zitat Miyashita M, Kanehisa H. Dynamic peak torque related to age, sex, and performance. Res Q 1979; 48: 249–55 Miyashita M, Kanehisa H. Dynamic peak torque related to age, sex, and performance. Res Q 1979; 48: 249–55
173.
Zurück zum Zitat Gaul CA. Muscular strength and endurance. In: Docherty D, editor. Measurement in pediatric exercise science. Champaign (IL): Human Kinetics, 1996: 225–58 Gaul CA. Muscular strength and endurance. In: Docherty D, editor. Measurement in pediatric exercise science. Champaign (IL): Human Kinetics, 1996: 225–58
174.
Zurück zum Zitat Baltzopoulos V, Kellis E. Isokinetic strength during childhood and adolescence. In: Van Praagh E, editor. Pediatric anaerobic performance. Champaign (IL): Human Kinetics, 1998: 225–40 Baltzopoulos V, Kellis E. Isokinetic strength during childhood and adolescence. In: Van Praagh E, editor. Pediatric anaerobic performance. Champaign (IL): Human Kinetics, 1998: 225–40
175.
Zurück zum Zitat Martin JC, Malina RM. Developmental variations in anaerobic performance associated with age and sex. In: Van Praagh E, editor. Pediatric anaerobic performance. Champaign (IL): Human Kinetics, 1998: 97–117 Martin JC, Malina RM. Developmental variations in anaerobic performance associated with age and sex. In: Van Praagh E, editor. Pediatric anaerobic performance. Champaign (IL): Human Kinetics, 1998: 97–117
176.
177.
Zurück zum Zitat Eriksson BO, Gollnick PB, Saltin B. Muscle metabolism and enzyme activity after training in boys 11–13 years old. Acta Physiol Scand 1973; 87: 485–7PubMedCrossRef Eriksson BO, Gollnick PB, Saltin B. Muscle metabolism and enzyme activity after training in boys 11–13 years old. Acta Physiol Scand 1973; 87: 485–7PubMedCrossRef
178.
Zurück zum Zitat Jansson E, Esbjörnsson M, Holm I, et al. Increase in the proportion of fast-twitch muscle fibres by sprint training in males. Acta Physiol Scand 1990; 140: 359–63PubMedCrossRef Jansson E, Esbjörnsson M, Holm I, et al. Increase in the proportion of fast-twitch muscle fibres by sprint training in males. Acta Physiol Scand 1990; 140: 359–63PubMedCrossRef
179.
Zurück zum Zitat Almeida-Silveira MI, Pérot C, Pousson M, et al. Effects of stretch-shortening cycle training on mechanical properties and fibre type transition in the rat soleus muscle. Pflugers Arch 1994; 427: 289–94PubMedCrossRef Almeida-Silveira MI, Pérot C, Pousson M, et al. Effects of stretch-shortening cycle training on mechanical properties and fibre type transition in the rat soleus muscle. Pflugers Arch 1994; 427: 289–94PubMedCrossRef
180.
Zurück zum Zitat Yarasheski KE, Aroniadou V, Lemon PWR. Effect of heavy resistance training on skeletal muscle hypertrophy in rats [abstract]. Med Sci Sports Exerc 1987; 19: S15 Yarasheski KE, Aroniadou V, Lemon PWR. Effect of heavy resistance training on skeletal muscle hypertrophy in rats [abstract]. Med Sci Sports Exerc 1987; 19: S15
181.
Zurück zum Zitat Blimkie CJR, Ramsay JA, Sale DG, et al. Effects of 10 weeks of resistance training on strength development in prepubertal boys. In: Oseid S, Carlsen K-H, editors. Children and exercise XIII. Champaign (IL): Human Kinetics, 1989: 183–97 Blimkie CJR, Ramsay JA, Sale DG, et al. Effects of 10 weeks of resistance training on strength development in prepubertal boys. In: Oseid S, Carlsen K-H, editors. Children and exercise XIII. Champaign (IL): Human Kinetics, 1989: 183–97
182.
Zurück zum Zitat Ramsay JA, Blimkie CJR, Smith K, et al. Strength training effects in prepubescent boys. Med Sci Sports Exerc 1990; 22: 605–14PubMedCrossRef Ramsay JA, Blimkie CJR, Smith K, et al. Strength training effects in prepubescent boys. Med Sci Sports Exerc 1990; 22: 605–14PubMedCrossRef
183.
Zurück zum Zitat Ozmun JC, Mikesky AE, Surburg PR. Neuromuscular adaptations following prepubescent strength training. Med Sci Sports Exerc 1994; 26: 510–4PubMed Ozmun JC, Mikesky AE, Surburg PR. Neuromuscular adaptations following prepubescent strength training. Med Sci Sports Exerc 1994; 26: 510–4PubMed
184.
Zurück zum Zitat Naughton G, Farpour-Lambert NJ, Carlson J, et al. Physiological issues surrounding the performance of adolescent athletes. Sports Med 2000; 30 (5): 309–25PubMedCrossRef Naughton G, Farpour-Lambert NJ, Carlson J, et al. Physiological issues surrounding the performance of adolescent athletes. Sports Med 2000; 30 (5): 309–25PubMedCrossRef
185.
Zurück zum Zitat Schmidt-Nielsen K. Scaling: why is animal size so important?. Cambridge: Cambridge University Press, 1984CrossRef Schmidt-Nielsen K. Scaling: why is animal size so important?. Cambridge: Cambridge University Press, 1984CrossRef
186.
Zurück zum Zitat Winter EM, Nevill AM. Scaling: adjusting for differences in body size. In: Eston RG, Reilly T, editors. Kinanthropometry and exercise physiology laboratory manual: tests, procedures and data. Vol. 1. Exercise physiology. 2nd ed. London: Routledge, 2001: 275–93 Winter EM, Nevill AM. Scaling: adjusting for differences in body size. In: Eston RG, Reilly T, editors. Kinanthropometry and exercise physiology laboratory manual: tests, procedures and data. Vol. 1. Exercise physiology. 2nd ed. London: Routledge, 2001: 275–93
187.
Zurück zum Zitat Tanner JM. Fallacy of per-weight and per-surface area standards and their relation to spurious correlation. J Appl Physiol 1949; 2: 1–15PubMed Tanner JM. Fallacy of per-weight and per-surface area standards and their relation to spurious correlation. J Appl Physiol 1949; 2: 1–15PubMed
188.
Zurück zum Zitat Hebestreit H, Hilpert S, Strassburg V. Comparison of muscle power between legs. In: Armstrong N, Kirby B, Welsman JR, editors. Children and exercise XIX. London: E and FN Spon, 1997: 291–6 Hebestreit H, Hilpert S, Strassburg V. Comparison of muscle power between legs. In: Armstrong N, Kirby B, Welsman JR, editors. Children and exercise XIX. London: E and FN Spon, 1997: 291–6
189.
Zurück zum Zitat Chia M, Armstrong N, Welsman JR, et al. Wingate anaerobic test performance in relation to thigh muscle volume. In: Armstrong N, Kirby B, Welsman JR, editors. Children and exercise XIX. London: E and FN Spon 1997, 300 Chia M, Armstrong N, Welsman JR, et al. Wingate anaerobic test performance in relation to thigh muscle volume. In: Armstrong N, Kirby B, Welsman JR, editors. Children and exercise XIX. London: E and FN Spon 1997, 300
190.
Zurück zum Zitat Winter EM. Scaling: partitioning out differences in body size. Pediatr Exerc Sci 1992; 4: 296–301 Winter EM. Scaling: partitioning out differences in body size. Pediatr Exerc Sci 1992; 4: 296–301
191.
Zurück zum Zitat Welsman JR. Interpreting young people’s exercise performance: sizing up the problem. In: Armstrong N, Kirby B, Welsman JR, editors. Children and exercise XIX. London: E and FN Spon 1997, 203 Welsman JR. Interpreting young people’s exercise performance: sizing up the problem. In: Armstrong N, Kirby B, Welsman JR, editors. Children and exercise XIX. London: E and FN Spon 1997, 203
192.
Zurück zum Zitat Nevill AM, Ramsbottom R, Williams C. Scaling physiological measurements for individuals of different body size. Eur J Appl Physiol 1992; 65: 110–7CrossRef Nevill AM, Ramsbottom R, Williams C. Scaling physiological measurements for individuals of different body size. Eur J Appl Physiol 1992; 65: 110–7CrossRef
193.
Zurück zum Zitat Sargeant AJ. Short-term muscle power in children and adolescents. In: Bar-Or O, editor. Advances in pediatric sports sciences 3: biological issues. Champaign (IL): Human Kinetics, 1989: 41–63 Sargeant AJ. Short-term muscle power in children and adolescents. In: Bar-Or O, editor. Advances in pediatric sports sciences 3: biological issues. Champaign (IL): Human Kinetics, 1989: 41–63
194.
Zurück zum Zitat Goldspink G. Cloning of local growth factors involved in the determination of muscle mass. Br J Sports Med 2000; 34: 159–61PubMedCrossRef Goldspink G. Cloning of local growth factors involved in the determination of muscle mass. Br J Sports Med 2000; 34: 159–61PubMedCrossRef
Metadaten
Titel
Short-Term Muscle Power During Growth and Maturation
verfasst von
Emmanuel Van Praagh
Eric Doré
Publikationsdatum
01.09.2002
Verlag
Springer International Publishing
Erschienen in
Sports Medicine / Ausgabe 11/2002
Print ISSN: 0112-1642
Elektronische ISSN: 1179-2035
DOI
https://doi.org/10.2165/00007256-200232110-00003

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Arthroskopie kann Knieprothese nicht hinauszögern

25.04.2024 Gonarthrose Nachrichten

Ein arthroskopischer Eingriff bei Kniearthrose macht im Hinblick darauf, ob und wann ein Gelenkersatz fällig wird, offenbar keinen Unterschied.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Ärztliche Empathie hilft gegen Rückenschmerzen

23.04.2024 Leitsymptom Rückenschmerzen Nachrichten

Personen mit chronischen Rückenschmerzen, die von einfühlsamen Ärzten und Ärztinnen betreut werden, berichten über weniger Beschwerden und eine bessere Lebensqualität.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.