Skip to main content
Erschienen in: BioDrugs 3/2002

01.05.2002 | Peptide Therapy

Gastric Inhibitory Polypeptide Analogues

Do They Have a Therapeutic Role in Diabetes Mellitus Similar to That of Glucagon-Like Peptide-1?

verfasst von: professor Jens J. Holst

Erschienen in: BioDrugs | Ausgabe 3/2002

Einloggen, um Zugang zu erhalten

Abstract

Gastric inhibitory polypeptide (GIP, also called glucose-dependent insulinotropic polypeptide) and glucagon-like peptide-1 (GLP-1) are peptide hormones from the gut that enhance nutrient-stimulated insulin secretion (the ‘incretin’ effect). Judging from experiments in mice with targeted deletions of GIP and GLP-1 receptors, the incretin effect is essential for normal glucose tolerance. In patients with type 2 diabetes mellitus it turns out that the incretin effect is severely impaired or abolished. The explanation seems to be that both the secretion of GLP-1 and the effect of GIP are impaired (whereas both the secretion of GIP and the effect of GLP-1 are near normal). The impaired GLP-1 secretion is probably a consequence of diabetic metabolic disturbances. The known genetic variations in the GIP receptor sequence are not associated with type 2 diabetes mellitus, but a defective insulinotropic effect of GIP may be found in first degree relatives of the patients, suggesting a genetic background for the defect. The molecular nature of the defect is not known and given the close similarity of the two receptors and their signalling, the dissociation of their effects is remarkable. Whereas GLP-1 and its analogues are attractive as therapeutic agents for type 2 diabetes mellitus, analogues of GIP are unlikely to be effective. On the other hand, GIP seems to play an important role in lipid metabolism, promoting the disposal of ingested lipids, and mice with a targeted deletion of the GIP receptor do not become obese when exposed to a high-fat diet. Therefore, antagonistic analogues of GIP may be speculated to have a role in the pharmaceutical management of obesity.
Literatur
1.
Zurück zum Zitat Brown JC. Gastric inhibitory polypeptide. Monogr Endocrinol 1982; 24: 1–88CrossRef Brown JC. Gastric inhibitory polypeptide. Monogr Endocrinol 1982; 24: 1–88CrossRef
2.
Zurück zum Zitat McIntyre N, Holdsworth CD, Turner DS. New interpretation of oral glucose tolerance. Lancet 1964; II: 20–1CrossRef McIntyre N, Holdsworth CD, Turner DS. New interpretation of oral glucose tolerance. Lancet 1964; II: 20–1CrossRef
3.
Zurück zum Zitat Zunz E, LaBarre J. Contributions a l’etude des variation physiologiques de la secretion interne de pancreas: relations entre les secretions externe et interne du pancreas. Arch Int Physiol Biochim 1929; 31: 20–44CrossRef Zunz E, LaBarre J. Contributions a l’etude des variation physiologiques de la secretion interne de pancreas: relations entre les secretions externe et interne du pancreas. Arch Int Physiol Biochim 1929; 31: 20–44CrossRef
4.
Zurück zum Zitat Ebert R. Gut signals for islet hormone release. Eur J Clin Invest 1990; 20 Suppl. 1: S20–6 Ebert R. Gut signals for islet hormone release. Eur J Clin Invest 1990; 20 Suppl. 1: S20–6
5.
Zurück zum Zitat Fieseler P, Bridenbaugh S, Nustede R, et al. Physiological augmentation of amino acid-induced insulin secretion by GIP and GLP-I but not by CCK-8. Am J Physiol 1995; 268 (5 Pt 1): E949–55PubMed Fieseler P, Bridenbaugh S, Nustede R, et al. Physiological augmentation of amino acid-induced insulin secretion by GIP and GLP-I but not by CCK-8. Am J Physiol 1995; 268 (5 Pt 1): E949–55PubMed
6.
Zurück zum Zitat Baum F, Nauck MA, Ebert R, et al. Role of endogenously released cholecystokinin in determining postprandial insulin levels in man: effects of loxiglumide, a specific cholecystokinin receptor antagonist. Digestion 2001; 53: 189–99CrossRef Baum F, Nauck MA, Ebert R, et al. Role of endogenously released cholecystokinin in determining postprandial insulin levels in man: effects of loxiglumide, a specific cholecystokinin receptor antagonist. Digestion 2001; 53: 189–99CrossRef
7.
Zurück zum Zitat Ahren B, Holst JJ, Efendic S. Antidiabetogenic action of cholecystokinin-8 in type 2 diabetes. J Clin Endocrinol Metab 2000; 85(3): 1043–8PubMedCrossRef Ahren B, Holst JJ, Efendic S. Antidiabetogenic action of cholecystokinin-8 in type 2 diabetes. J Clin Endocrinol Metab 2000; 85(3): 1043–8PubMedCrossRef
8.
Zurück zum Zitat Fehmann HC, Goke R, Goke B. Cell and molecular biology of the incretin hormones glucagon-like peptide-I and glucose-dependent insulin releasing polypeptide. Endocr Rev 1995; 16(3): 390–410PubMed Fehmann HC, Goke R, Goke B. Cell and molecular biology of the incretin hormones glucagon-like peptide-I and glucose-dependent insulin releasing polypeptide. Endocr Rev 1995; 16(3): 390–410PubMed
9.
Zurück zum Zitat Holst JJ. Glucagon-like peptide 1(GLP-1): an intestinal hormone signalling nutritional abundance, with an unusual therapeutic potential. Trends Endocrinol Metab 1999; 10(6): 229–34PubMedCrossRef Holst JJ. Glucagon-like peptide 1(GLP-1): an intestinal hormone signalling nutritional abundance, with an unusual therapeutic potential. Trends Endocrinol Metab 1999; 10(6): 229–34PubMedCrossRef
10.
Zurück zum Zitat Bell GI, Sanchez-Pescador R, Laybourn PJ, et al. Exon duplication and divergence in the human preproglucagon gene. Nature 1983; 304(5924): 368–71PubMedCrossRef Bell GI, Sanchez-Pescador R, Laybourn PJ, et al. Exon duplication and divergence in the human preproglucagon gene. Nature 1983; 304(5924): 368–71PubMedCrossRef
11.
Zurück zum Zitat Mojsov S, Heinrich G, Wilson IB, et al. Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing. J Biol Chem 1986; 261(25): 11880–9PubMed Mojsov S, Heinrich G, Wilson IB, et al. Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing. J Biol Chem 1986; 261(25): 11880–9PubMed
12.
Zurück zum Zitat Orskov C, Holst JJ, Knuhtsen S, et al. Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinology 1986; 119(4): 1467–75PubMedCrossRef Orskov C, Holst JJ, Knuhtsen S, et al. Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinology 1986; 119(4): 1467–75PubMedCrossRef
13.
Zurück zum Zitat Orskov C, Wettergren A, Holst JJ. Secretion of the incretin hormones glucagon-like peptide-1 and gastric inhibitory polypeptide correlates with insulin secretion in normal man throughout the day. Scand J Gastroenterol 1996; 31(7): 665–70PubMedCrossRef Orskov C, Wettergren A, Holst JJ. Secretion of the incretin hormones glucagon-like peptide-1 and gastric inhibitory polypeptide correlates with insulin secretion in normal man throughout the day. Scand J Gastroenterol 1996; 31(7): 665–70PubMedCrossRef
14.
Zurück zum Zitat Kreymann B, Williams G, Ghatei MA, et al. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet 1987; II(8571): 1300–4CrossRef Kreymann B, Williams G, Ghatei MA, et al. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet 1987; II(8571): 1300–4CrossRef
15.
Zurück zum Zitat Kolligs F, Fehmann HC, Goke R, et al. Reduction of the incretin effect in rats by the glucagon-like peptide 1 receptor antagonist exendin (9-39) amide. Diabetes 1995; 44(1): 16–9PubMedCrossRef Kolligs F, Fehmann HC, Goke R, et al. Reduction of the incretin effect in rats by the glucagon-like peptide 1 receptor antagonist exendin (9-39) amide. Diabetes 1995; 44(1): 16–9PubMedCrossRef
16.
Zurück zum Zitat Wang Z, Wang RM, Owji AA, et al. Glucagon-like peptide-1 is a physiological incretin in rat. J Clin Invest 1995; 95(1): 417–21PubMedCrossRef Wang Z, Wang RM, Owji AA, et al. Glucagon-like peptide-1 is a physiological incretin in rat. J Clin Invest 1995; 95(1): 417–21PubMedCrossRef
17.
Zurück zum Zitat Scrocchi LA, Brown TJ, MaClusky N, et al. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat Med 1996; 2(11): 1254–8PubMedCrossRef Scrocchi LA, Brown TJ, MaClusky N, et al. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat Med 1996; 2(11): 1254–8PubMedCrossRef
18.
Zurück zum Zitat Takeda J, Seino Y, Tanaka K, et al. Sequence of an intestinal cDNA encoding human gastric inhibitory polypeptide precursor. Proc Natl Acad Sci U S A 1987; 84(20): 7005–8PubMedCrossRef Takeda J, Seino Y, Tanaka K, et al. Sequence of an intestinal cDNA encoding human gastric inhibitory polypeptide precursor. Proc Natl Acad Sci U S A 1987; 84(20): 7005–8PubMedCrossRef
19.
20.
Zurück zum Zitat Krarup T, Holst JJ, Larsen KL. Responses and molecular heterogeneity of IR-GIP after intraduodenal glucose and fat. Am J Physiol 1985; 249 (2 Pt 1): E195–200PubMed Krarup T, Holst JJ, Larsen KL. Responses and molecular heterogeneity of IR-GIP after intraduodenal glucose and fat. Am J Physiol 1985; 249 (2 Pt 1): E195–200PubMed
21.
Zurück zum Zitat Usdin TB, Mezey E, Button DC, et al. Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain. Endocrinology 1993; 133(6): 2861–70PubMedCrossRef Usdin TB, Mezey E, Button DC, et al. Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain. Endocrinology 1993; 133(6): 2861–70PubMedCrossRef
22.
Zurück zum Zitat Deacon CF, Nauck MA, Meier J, et al. Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide. J Clin Endocrinol Metab 2000; 85(10): 3575–81PubMedCrossRef Deacon CF, Nauck MA, Meier J, et al. Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide. J Clin Endocrinol Metab 2000; 85(10): 3575–81PubMedCrossRef
23.
Zurück zum Zitat Deacon CF, Danielsen P, Klarskov L, et al. Dipeptidyl peptidase IV inhibition reduces the degradation and clearance of GIP and potentiates its insulinotropic and antihyperglycemic effects in anesthetized pigs. Diabetes 2001; 50(7): 1588–97PubMedCrossRef Deacon CF, Danielsen P, Klarskov L, et al. Dipeptidyl peptidase IV inhibition reduces the degradation and clearance of GIP and potentiates its insulinotropic and antihyperglycemic effects in anesthetized pigs. Diabetes 2001; 50(7): 1588–97PubMedCrossRef
24.
Zurück zum Zitat O’Harte FP, Mooney MH, Flatt PR. NH2-terminally modified gastric inhibitory polypeptide exhibits amino-peptidase resistance and enhanced antihyperglycemic activity. Diabetes 1999; 48(4): 758–65PubMedCrossRef O’Harte FP, Mooney MH, Flatt PR. NH2-terminally modified gastric inhibitory polypeptide exhibits amino-peptidase resistance and enhanced antihyperglycemic activity. Diabetes 1999; 48(4): 758–65PubMedCrossRef
25.
Zurück zum Zitat Kuhn-Wache K, Manhart S, Hoffmann T, et al. Analogs of glucose-dependent insulinotropic polypeptide with increased dipeptidyl peptidase IV resistance. Adv Exp Med Biol 2000; 477: 187–95PubMedCrossRef Kuhn-Wache K, Manhart S, Hoffmann T, et al. Analogs of glucose-dependent insulinotropic polypeptide with increased dipeptidyl peptidase IV resistance. Adv Exp Med Biol 2000; 477: 187–95PubMedCrossRef
26.
Zurück zum Zitat Mortensen K, Petersen LL, Orskov C. Colocalization of GLP-1 and GIP in human and porcine intestine. Ann N Y Acad Sci 2000; 921: 469–72PubMedCrossRef Mortensen K, Petersen LL, Orskov C. Colocalization of GLP-1 and GIP in human and porcine intestine. Ann N Y Acad Sci 2000; 921: 469–72PubMedCrossRef
27.
Zurück zum Zitat Pederson RA. Gastric inhibitory polypeptide. In: Walsh JH, Dockray GJ, editors. Gut peptides: biochemistry and physiology. New York: Raven Press, 1994: 217–60 Pederson RA. Gastric inhibitory polypeptide. In: Walsh JH, Dockray GJ, editors. Gut peptides: biochemistry and physiology. New York: Raven Press, 1994: 217–60
28.
Zurück zum Zitat Ding WG, Renstrom E, Rorsman P, et al. Glucagon-like peptide I and glucose-dependent insulinotropic polypeptide stimulate Ca2+-induced secretion in rat alpha-cells by a protein kinase A-mediated mechanism. Diabetes 1997; 46(5): 792–800PubMedCrossRef Ding WG, Renstrom E, Rorsman P, et al. Glucagon-like peptide I and glucose-dependent insulinotropic polypeptide stimulate Ca2+-induced secretion in rat alpha-cells by a protein kinase A-mediated mechanism. Diabetes 1997; 46(5): 792–800PubMedCrossRef
29.
Zurück zum Zitat Dupre J, Ross SA, Watson D, et al. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab 1973; 37: 826–8PubMedCrossRef Dupre J, Ross SA, Watson D, et al. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab 1973; 37: 826–8PubMedCrossRef
30.
Zurück zum Zitat Andersen DK, Elahi D, Brown JC, et al. Oral glucose augmentation of insulin secretion: interactions of gastric inhibitory polypeptide with ambient glucose and insulin levels. J Clin Invest 1978; 49: 152–61CrossRef Andersen DK, Elahi D, Brown JC, et al. Oral glucose augmentation of insulin secretion: interactions of gastric inhibitory polypeptide with ambient glucose and insulin levels. J Clin Invest 1978; 49: 152–61CrossRef
31.
Zurück zum Zitat Lauritsen KB, Holst JJ, Moody AJ. Depression of insulin release by anti-GIP serum after oral glucose in rats. Scand J Gastroenterol 1981; 16: 417–20PubMedCrossRef Lauritsen KB, Holst JJ, Moody AJ. Depression of insulin release by anti-GIP serum after oral glucose in rats. Scand J Gastroenterol 1981; 16: 417–20PubMedCrossRef
32.
Zurück zum Zitat Ebert R, Creutzfeldt W. Influence of gastric inhibitory polypeptide antiserum on glucose-induced insulin secretion in rats. Endocrinology 1982; 111: 1601–6PubMedCrossRef Ebert R, Creutzfeldt W. Influence of gastric inhibitory polypeptide antiserum on glucose-induced insulin secretion in rats. Endocrinology 1982; 111: 1601–6PubMedCrossRef
33.
Zurück zum Zitat Tseng CC, Kieffer TJ, Jarboe LA, et al. Postprandial stimulation of insulin release by glucose-dependent insulinotropic polypeptide (GIP): effect of a specific glucose-dependent insulinotropic polypeptide receptor antagonist in the rat. J Clin Invest 1996; 98(11): 2440–5PubMedCrossRef Tseng CC, Kieffer TJ, Jarboe LA, et al. Postprandial stimulation of insulin release by glucose-dependent insulinotropic polypeptide (GIP): effect of a specific glucose-dependent insulinotropic polypeptide receptor antagonist in the rat. J Clin Invest 1996; 98(11): 2440–5PubMedCrossRef
34.
Zurück zum Zitat Miyawaki K, Yamada Y, Yano H, et al. Glucose intolerance caused by a defect in the entero-insular axis: a study in gastric inhibitory polypeptide receptor knockout mice. Proc Natl Acad Sci U S A 1999; 96(26): 14843–7PubMedCrossRef Miyawaki K, Yamada Y, Yano H, et al. Glucose intolerance caused by a defect in the entero-insular axis: a study in gastric inhibitory polypeptide receptor knockout mice. Proc Natl Acad Sci U S A 1999; 96(26): 14843–7PubMedCrossRef
35.
Zurück zum Zitat Lewis JT, Dayanandan B, Habener JF, et al. Glucose-dependent insulinotropic polypeptide confers early phase insulin release to oral glucose in rats: demonstration by a receptor antagonist. Endocrinology 2000; 141(10): 3710–6PubMedCrossRef Lewis JT, Dayanandan B, Habener JF, et al. Glucose-dependent insulinotropic polypeptide confers early phase insulin release to oral glucose in rats: demonstration by a receptor antagonist. Endocrinology 2000; 141(10): 3710–6PubMedCrossRef
36.
Zurück zum Zitat Nauck M, Schmidt WE, Ebert R, et al. Insulinotropic properties of synthetic human gastric inhibitory polypeptide in man: interactions with glucose, phenylalanine, and cholecystokinin-8. J Clin Endocrinol Metab 1989; 69(3): 654–62PubMedCrossRef Nauck M, Schmidt WE, Ebert R, et al. Insulinotropic properties of synthetic human gastric inhibitory polypeptide in man: interactions with glucose, phenylalanine, and cholecystokinin-8. J Clin Endocrinol Metab 1989; 69(3): 654–62PubMedCrossRef
37.
Zurück zum Zitat Qualmann C, Nauck MA, Holst JJ, et al. Glucagon-like peptide 1 (7-36 amide) secretion in response to luminal sucrose from the upper and lower gut: a study using alpha-glucosidase inhibition (acarbose). Scand J Gastroenterol 1995; 30(9): 892–6PubMedCrossRef Qualmann C, Nauck MA, Holst JJ, et al. Glucagon-like peptide 1 (7-36 amide) secretion in response to luminal sucrose from the upper and lower gut: a study using alpha-glucosidase inhibition (acarbose). Scand J Gastroenterol 1995; 30(9): 892–6PubMedCrossRef
38.
Zurück zum Zitat Nauck MA, Bartels E, Orskov C, et al. Additive insulinotropic effects of exogenous synthetic human gastric inhibitory polypeptide and glucagon-like peptide-1-(7-36) amide infused at near-physiological insulinotropic hormone and glucose concentrations. J Clin Endocrinol Metab 1993; 76(4): 912–7PubMedCrossRef Nauck MA, Bartels E, Orskov C, et al. Additive insulinotropic effects of exogenous synthetic human gastric inhibitory polypeptide and glucagon-like peptide-1-(7-36) amide infused at near-physiological insulinotropic hormone and glucose concentrations. J Clin Endocrinol Metab 1993; 76(4): 912–7PubMedCrossRef
39.
Zurück zum Zitat Baggio L, Kieffer TJ, Drucker DJ. Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, regulates fasting glycemia and nonenteral glucose clearance in mice. Endocrinology 2000; 141(10): 3703–9PubMedCrossRef Baggio L, Kieffer TJ, Drucker DJ. Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, regulates fasting glycemia and nonenteral glucose clearance in mice. Endocrinology 2000; 141(10): 3703–9PubMedCrossRef
40.
Zurück zum Zitat Nauck M, Stockmann F, Ebert R, et al. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 1986; 29(1): 46–52PubMedCrossRef Nauck M, Stockmann F, Ebert R, et al. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 1986; 29(1): 46–52PubMedCrossRef
41.
Zurück zum Zitat Tronier B, Dejgaard A, Andersen T, et al. Absence of incretin effect in obese type 2 and diminished effect in lean type 2 and obese subjects [abstract]. Diabetes Res Clin Pract 1985; Suppl. 1: S568 Tronier B, Dejgaard A, Andersen T, et al. Absence of incretin effect in obese type 2 and diminished effect in lean type 2 and obese subjects [abstract]. Diabetes Res Clin Pract 1985; Suppl. 1: S568
42.
Zurück zum Zitat Orskov C, Vilsboll T, Krarup T, et al. Lack of germ-line mutations in the GIP-coding region of the pro-GIP in type II diabetic patients [abstract]. Diabetes 1999; 48 Suppl. 1: A427 Orskov C, Vilsboll T, Krarup T, et al. Lack of germ-line mutations in the GIP-coding region of the pro-GIP in type II diabetic patients [abstract]. Diabetes 1999; 48 Suppl. 1: A427
43.
Zurück zum Zitat Toft-Nielsen MB, Damholt MB, Madsbad S, et al. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab 2001; 86(8): 3717–23PubMedCrossRef Toft-Nielsen MB, Damholt MB, Madsbad S, et al. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab 2001; 86(8): 3717–23PubMedCrossRef
44.
Zurück zum Zitat Vaag AA, Holst JJ, Volund A, et al. Gut incretin hormones in identical twins discordant for non-insulin-dependent diabetes mellitus (NIDDM)-evidence for decreased glucagon-like peptide 1 secretion during oral glucose ingestion in NIDDM twins. Eur J Endocrinol 1996; 135(4): 425–32PubMedCrossRef Vaag AA, Holst JJ, Volund A, et al. Gut incretin hormones in identical twins discordant for non-insulin-dependent diabetes mellitus (NIDDM)-evidence for decreased glucagon-like peptide 1 secretion during oral glucose ingestion in NIDDM twins. Eur J Endocrinol 1996; 135(4): 425–32PubMedCrossRef
45.
Zurück zum Zitat Nauck MA, Heimesaat MM, Orskov C, et al. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 1993; 91(1): 301–7PubMedCrossRef Nauck MA, Heimesaat MM, Orskov C, et al. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 1993; 91(1): 301–7PubMedCrossRef
46.
Zurück zum Zitat Elahi D, McAloon Dyke M, Fukagawa NK, et al. The insulinotropic actions of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (7-37) in normal and diabetic subjects. Regul Pept 1994; 51(1): 63–74PubMedCrossRef Elahi D, McAloon Dyke M, Fukagawa NK, et al. The insulinotropic actions of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (7-37) in normal and diabetic subjects. Regul Pept 1994; 51(1): 63–74PubMedCrossRef
47.
Zurück zum Zitat Nauck MA, Kleine N, Orskov C, et al. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 1993; 36(8): 741–4PubMedCrossRef Nauck MA, Kleine N, Orskov C, et al. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7-36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 1993; 36(8): 741–4PubMedCrossRef
48.
Zurück zum Zitat Nauck MA, Holst JJ, Willms B. Glucagon-like peptide 1 and its potential in the treatment of non-insulin-dependent diabetes mellitus. Horm Metab Res 1997; 29(9): 411–6PubMedCrossRef Nauck MA, Holst JJ, Willms B. Glucagon-like peptide 1 and its potential in the treatment of non-insulin-dependent diabetes mellitus. Horm Metab Res 1997; 29(9): 411–6PubMedCrossRef
49.
Zurück zum Zitat Fehmann HC, Habener JF. Insulinotropic hormone glucagon-like peptide-I(7-37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma beta TC-1 cells. Endocrinology 1992; 130(1): 159–66PubMedCrossRef Fehmann HC, Habener JF. Insulinotropic hormone glucagon-like peptide-I(7-37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma beta TC-1 cells. Endocrinology 1992; 130(1): 159–66PubMedCrossRef
50.
Zurück zum Zitat Buteau J, Roduit R, Susini S, et al. Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-l)-cells. Diabetologia 1999; 42(7): 856–64PubMedCrossRef Buteau J, Roduit R, Susini S, et al. Glucagon-like peptide-1 promotes DNA synthesis, activates phosphatidylinositol 3-kinase and increases transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) DNA binding activity in beta (INS-l)-cells. Diabetologia 1999; 42(7): 856–64PubMedCrossRef
51.
Zurück zum Zitat Xu G, Stoffers DA, Habener JF, et al. Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 1999; 48(12): 2270–6PubMedCrossRef Xu G, Stoffers DA, Habener JF, et al. Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 1999; 48(12): 2270–6PubMedCrossRef
52.
Zurück zum Zitat Stoffers DA, Kieffer TJ, Hussain MA, et al. Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes 2000; 49(5): 741–8PubMedCrossRef Stoffers DA, Kieffer TJ, Hussain MA, et al. Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes 2000; 49(5): 741–8PubMedCrossRef
53.
Zurück zum Zitat Zhou J, Wang X, Pineyro MA, et al. Glucagon-like peptide 1 and exendin-4 convert pancreatic AR42J cells into glucagon-and insulin-producing cells. Diabetes 1999; 48(12): 2358–66PubMedCrossRef Zhou J, Wang X, Pineyro MA, et al. Glucagon-like peptide 1 and exendin-4 convert pancreatic AR42J cells into glucagon-and insulin-producing cells. Diabetes 1999; 48(12): 2358–66PubMedCrossRef
54.
Zurück zum Zitat Perfetti R, Zhou J, Doyle ME, et al. Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats. Endocrinology 2000; 141(12): 4600–5PubMedCrossRef Perfetti R, Zhou J, Doyle ME, et al. Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats. Endocrinology 2000; 141(12): 4600–5PubMedCrossRef
55.
Zurück zum Zitat Trümper A, Trümper KTH, Arnold R, et al. Protein kinase B activation by glucose-dependent insulinotropic polypeptide and growth hormone in β-(INS-1)-cells [abstract]. Diabetologia 2000; 43Suppl. 1: A136 Trümper A, Trümper KTH, Arnold R, et al. Protein kinase B activation by glucose-dependent insulinotropic polypeptide and growth hormone in β-(INS-1)-cells [abstract]. Diabetologia 2000; 43Suppl. 1: A136
56.
Zurück zum Zitat Creutzfeldt WO, Kleine N, Willms B, et al. Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagon-like peptide I(7-36) amide in type I diabetic patients. Diabetes Care 1996; 19(6): 580–6PubMedCrossRef Creutzfeldt WO, Kleine N, Willms B, et al. Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagon-like peptide I(7-36) amide in type I diabetic patients. Diabetes Care 1996; 19(6): 580–6PubMedCrossRef
57.
Zurück zum Zitat Hvidberg A, Nielsen MT, Hilsted J, et al. Effect of glucagon-like peptide-1 (pro-glucagon 78-107amide) on hepatic glucose production in healthy man. Metabolism 1994; 43(1): 104–8PubMedCrossRef Hvidberg A, Nielsen MT, Hilsted J, et al. Effect of glucagon-like peptide-1 (pro-glucagon 78-107amide) on hepatic glucose production in healthy man. Metabolism 1994; 43(1): 104–8PubMedCrossRef
58.
Zurück zum Zitat Wettergren A, Schjoldager B, Mortensen PE, et al. Truncated GLP-1 (proglucagon 78-107-amide) inhibits gastric and pancreatic functions in man. Dig Dis Sci 1993; 38(4): 665–73PubMedCrossRef Wettergren A, Schjoldager B, Mortensen PE, et al. Truncated GLP-1 (proglucagon 78-107-amide) inhibits gastric and pancreatic functions in man. Dig Dis Sci 1993; 38(4): 665–73PubMedCrossRef
59.
Zurück zum Zitat Nauck MA, Niedereichholz U, Ettler R, et al. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol 1997; 273 (5 Pt 1): E981–8PubMed Nauck MA, Niedereichholz U, Ettler R, et al. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol 1997; 273 (5 Pt 1): E981–8PubMed
60.
Zurück zum Zitat Young A, Denaro M. Roles of amylin in diabetes and in regulation of nutrient load [editorial]. Nutrition 1998; 14(6): 524–7PubMedCrossRef Young A, Denaro M. Roles of amylin in diabetes and in regulation of nutrient load [editorial]. Nutrition 1998; 14(6): 524–7PubMedCrossRef
61.
Zurück zum Zitat Flint A, Raben A, Astrup A, et al. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest 1998; 101(3): 515–20PubMedCrossRef Flint A, Raben A, Astrup A, et al. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest 1998; 101(3): 515–20PubMedCrossRef
62.
Zurück zum Zitat Naslund E, Barkeling B, King N, et al. Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men. Int J Obes Relat Metab Disord 1999; 23(3): 304–11PubMedCrossRef Naslund E, Barkeling B, King N, et al. Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men. Int J Obes Relat Metab Disord 1999; 23(3): 304–11PubMedCrossRef
63.
Zurück zum Zitat Gutzwiller JP, Drewe J, Goke B, et al. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am J Physiol 1999;276 (5 Pt 2): R1541–4PubMed Gutzwiller JP, Drewe J, Goke B, et al. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am J Physiol 1999;276 (5 Pt 2): R1541–4PubMed
64.
Zurück zum Zitat Rachman J, Barrow BA, Levy JC, et al. Near-normalisation of diurnal glucose concentrations by continuous administration of glucagon-like peptide-1 (GLP-1) in subjects with NIDDM. Diabetologia 1997; 40(2): 205–11PubMedCrossRef Rachman J, Barrow BA, Levy JC, et al. Near-normalisation of diurnal glucose concentrations by continuous administration of glucagon-like peptide-1 (GLP-1) in subjects with NIDDM. Diabetologia 1997; 40(2): 205–11PubMedCrossRef
65.
Zurück zum Zitat Larsen J, Hylleberg B, Ng K, et al. Glucagon-like peptide-1 infusion must be maintained for 24 h/day to obtain acceptable glycemia in type 2 diabetic patients who are poorly controlled on sulphonylurea treatment. Diabetes Care 2001; 24(8): 1416–21PubMedCrossRef Larsen J, Hylleberg B, Ng K, et al. Glucagon-like peptide-1 infusion must be maintained for 24 h/day to obtain acceptable glycemia in type 2 diabetic patients who are poorly controlled on sulphonylurea treatment. Diabetes Care 2001; 24(8): 1416–21PubMedCrossRef
66.
Zurück zum Zitat Krarup T, Saurbrey N, Moody AJ, et al. Effect of porcine gastric inhibitory polypeptide on beta-cell function in type I and type II diabetes mellitus. Metabolism 1987; 36(7): 677–82PubMedCrossRef Krarup T, Saurbrey N, Moody AJ, et al. Effect of porcine gastric inhibitory polypeptide on beta-cell function in type I and type II diabetes mellitus. Metabolism 1987; 36(7): 677–82PubMedCrossRef
67.
Zurück zum Zitat Gutniak M, Orskov C, Holst JJ, et al. Antidiabetogenic effect of glucagon-like peptide-1 (7-36)amide in normal subjects and patients with diabetes mellitus. N Engl J Med 1992; 326(20): 1316–22PubMedCrossRef Gutniak M, Orskov C, Holst JJ, et al. Antidiabetogenic effect of glucagon-like peptide-1 (7-36)amide in normal subjects and patients with diabetes mellitus. N Engl J Med 1992; 326(20): 1316–22PubMedCrossRef
68.
Zurück zum Zitat Vilsboll T, Toft-Nielsen MB, Krarup T, et al. Evaluation of beta-cell secretory capacity using glucagon-like peptide 1. Diabetes Care 2000; 23(6): 807–12PubMedCrossRef Vilsboll T, Toft-Nielsen MB, Krarup T, et al. Evaluation of beta-cell secretory capacity using glucagon-like peptide 1. Diabetes Care 2000; 23(6): 807–12PubMedCrossRef
69.
Zurück zum Zitat Vilsboll T, Krarup T, Madsbad S, et al. The pathogenesis of type 2 diabetes may involve a defective second phase insulin response to GIP [abstract]. Diabetes 2001; 50Suppl. 2: A11 Vilsboll T, Krarup T, Madsbad S, et al. The pathogenesis of type 2 diabetes may involve a defective second phase insulin response to GIP [abstract]. Diabetes 2001; 50Suppl. 2: A11
70.
Zurück zum Zitat Hücking K, Meier J, Holst JJ, et al. Reduced otropic effect of gastric inhibitory polypeptide (GIP) in first-degree relatives of type 2 diabetic patients [abstract]. Diabetes 2001; 49Suppl. 1: A227 Hücking K, Meier J, Holst JJ, et al. Reduced otropic effect of gastric inhibitory polypeptide (GIP) in first-degree relatives of type 2 diabetic patients [abstract]. Diabetes 2001; 49Suppl. 1: A227
71.
Zurück zum Zitat Kubota A, Yamada Y, Hayami T, et al. Identification of two missense mutations in the GIP receptor gene: a functional study and association analysis with NIDDM: no evidence of association with Japanese NIDDM subjects. Diabetes 1996; 45(12): 1701–5PubMedCrossRef Kubota A, Yamada Y, Hayami T, et al. Identification of two missense mutations in the GIP receptor gene: a functional study and association analysis with NIDDM: no evidence of association with Japanese NIDDM subjects. Diabetes 1996; 45(12): 1701–5PubMedCrossRef
72.
Zurück zum Zitat Almind K, Ambye L, Urhammer SA, et al. Discovery of amino acid variants in the human glucose-dependent insulinotropic polypeptide (GIP) receptor: the impact on the pancreatic beta cell responses and functional expression studies in Chinese hamster fibroblast cells. Diabetologia 1998; 41(10): 1194–8PubMedCrossRef Almind K, Ambye L, Urhammer SA, et al. Discovery of amino acid variants in the human glucose-dependent insulinotropic polypeptide (GIP) receptor: the impact on the pancreatic beta cell responses and functional expression studies in Chinese hamster fibroblast cells. Diabetologia 1998; 41(10): 1194–8PubMedCrossRef
73.
Zurück zum Zitat Lynn FC, Pamir N, Ng EH, et al. Defective glucose-dependent insulinotropic polypeptide receptor expression in diabetic fatty Zucker rats. Diabetes 2001; 50(5): 1004–11PubMedCrossRef Lynn FC, Pamir N, Ng EH, et al. Defective glucose-dependent insulinotropic polypeptide receptor expression in diabetic fatty Zucker rats. Diabetes 2001; 50(5): 1004–11PubMedCrossRef
74.
Zurück zum Zitat Meneilly GS, Ryan AS, Minaker KL, et al. The effect of age and glycemic level on the response of the beta-cell to glucose-dependent insulinotropic polypeptide and peripheral tissue sensitivity to endogenously released insulin. J Clin Endocrinol Metab 1998; 83(8): 2925–32PubMedCrossRef Meneilly GS, Ryan AS, Minaker KL, et al. The effect of age and glycemic level on the response of the beta-cell to glucose-dependent insulinotropic polypeptide and peripheral tissue sensitivity to endogenously released insulin. J Clin Endocrinol Metab 1998; 83(8): 2925–32PubMedCrossRef
75.
Zurück zum Zitat Marks V. GIP: the obesity hormone. In: James WPT, Parker SW, editors. Current approaches: obesity. Southampton: Duphar Medical Relations, 1988: 13–9 Marks V. GIP: the obesity hormone. In: James WPT, Parker SW, editors. Current approaches: obesity. Southampton: Duphar Medical Relations, 1988: 13–9
77.
Zurück zum Zitat Elliott RM, Morgan LM, Tredger JA, et al. Glucagon-like peptide-1 (7-36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J Endocrinol 1993; 138(1): 159–66PubMedCrossRef Elliott RM, Morgan LM, Tredger JA, et al. Glucagon-like peptide-1 (7-36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J Endocrinol 1993; 138(1): 159–66PubMedCrossRef
78.
Zurück zum Zitat Yip RG, Boylan MO, Kieffer TJ, et al. Functional GIP receptors are present on adipocytes. Endocrinology 1998; 139(9): 4004–7PubMedCrossRef Yip RG, Boylan MO, Kieffer TJ, et al. Functional GIP receptors are present on adipocytes. Endocrinology 1998; 139(9): 4004–7PubMedCrossRef
79.
Zurück zum Zitat Wasada T, McCorkle K, Harris V, et al. Effect of gastric inhibitory polypeptide on plasma levels of chylomicron triglycerides in dogs. J Clin Invest 1981; 68(4): 1106–7PubMedCrossRef Wasada T, McCorkle K, Harris V, et al. Effect of gastric inhibitory polypeptide on plasma levels of chylomicron triglycerides in dogs. J Clin Invest 1981; 68(4): 1106–7PubMedCrossRef
80.
Zurück zum Zitat Ebert R, Nauck M, Creutzfeldt W. Effect of exogenous or endogenous gastric inhibitory polypeptide (GIP) on plasma triglyceride responses in rats. Horm Metab Res 1991; 23(11): 517–21PubMedCrossRef Ebert R, Nauck M, Creutzfeldt W. Effect of exogenous or endogenous gastric inhibitory polypeptide (GIP) on plasma triglyceride responses in rats. Horm Metab Res 1991; 23(11): 517–21PubMedCrossRef
81.
Zurück zum Zitat Starich GH, Bar RS, Mazzaferri EL. GIP increases insulin receptor affinity and cellular sensitivity in adipocytes. Am J Physiol 1985; 249 (6 Pt 1): E603–7PubMed Starich GH, Bar RS, Mazzaferri EL. GIP increases insulin receptor affinity and cellular sensitivity in adipocytes. Am J Physiol 1985; 249 (6 Pt 1): E603–7PubMed
82.
Zurück zum Zitat Beck B, Max JP. Gastric inhibitory polypeptide enhancement of the insulin effect on fatty acid incorporation into adipose tissue in the rat. Regul Pept 1983; 7(1): 3–8PubMedCrossRef Beck B, Max JP. Gastric inhibitory polypeptide enhancement of the insulin effect on fatty acid incorporation into adipose tissue in the rat. Regul Pept 1983; 7(1): 3–8PubMedCrossRef
83.
Zurück zum Zitat Oben J, Morgan L, Fletcher J, et al. Effect of the entero-pancreatic hormones, gastric inhibitory polypeptide and glucagon-like polypeptide-1(7-36) amide, on fatty acid synthesis in expiants of rat adipose tissue. J Endocrinol 1991; 130(2): 267–72PubMedCrossRef Oben J, Morgan L, Fletcher J, et al. Effect of the entero-pancreatic hormones, gastric inhibitory polypeptide and glucagon-like polypeptide-1(7-36) amide, on fatty acid synthesis in expiants of rat adipose tissue. J Endocrinol 1991; 130(2): 267–72PubMedCrossRef
84.
Zurück zum Zitat Baba AS, Harper JM, Buttery PJ. Effects of gastric inhibitory polypeptide, somatostatin and epidermal growth factor on lipogenesis in ovine adipose explants. Comp Biochem Physiol B Biochem Mol Biol 2000; 127(2): 173–82PubMedCrossRef Baba AS, Harper JM, Buttery PJ. Effects of gastric inhibitory polypeptide, somatostatin and epidermal growth factor on lipogenesis in ovine adipose explants. Comp Biochem Physiol B Biochem Mol Biol 2000; 127(2): 173–82PubMedCrossRef
85.
Zurück zum Zitat Knapper JM, Puddicombe SM, Morgan LM, et al. Investigations into the actions of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 (7-36)amide on lipoprotein lipase activity in expiants of rat adipose tissue. J Nutr 1995; 125(2): 183–8PubMed Knapper JM, Puddicombe SM, Morgan LM, et al. Investigations into the actions of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 (7-36)amide on lipoprotein lipase activity in expiants of rat adipose tissue. J Nutr 1995; 125(2): 183–8PubMed
86.
Zurück zum Zitat Dawson JM, Greathead HM, Sessions VA, et al. Effect of gastric inhibitory polypeptide on bovine fat metabolism. Comp Biochem Physiol B Biochem Mol Biol 1999; 123(1): 79–88PubMedCrossRef Dawson JM, Greathead HM, Sessions VA, et al. Effect of gastric inhibitory polypeptide on bovine fat metabolism. Comp Biochem Physiol B Biochem Mol Biol 1999; 123(1): 79–88PubMedCrossRef
87.
Zurück zum Zitat Ranganath LR, Beety JM, Morgan LM. Inhibition of insulin, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) secretion by octreotide has no effect on post-heparin plasma lipoprotein lipase activity. Horm Metab Res 1999; 31(4): 262–6PubMedCrossRef Ranganath LR, Beety JM, Morgan LM. Inhibition of insulin, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) secretion by octreotide has no effect on post-heparin plasma lipoprotein lipase activity. Horm Metab Res 1999; 31(4): 262–6PubMedCrossRef
88.
Zurück zum Zitat Miyawaki K, Yamada Y, Jomori T, et al. Inhibition of GIP prevents obesity. Diabetes 2001; 50Suppl. 2: A83–4 Miyawaki K, Yamada Y, Jomori T, et al. Inhibition of GIP prevents obesity. Diabetes 2001; 50Suppl. 2: A83–4
Metadaten
Titel
Gastric Inhibitory Polypeptide Analogues
Do They Have a Therapeutic Role in Diabetes Mellitus Similar to That of Glucagon-Like Peptide-1?
verfasst von
professor Jens J. Holst
Publikationsdatum
01.05.2002
Verlag
Springer International Publishing
Erschienen in
BioDrugs / Ausgabe 3/2002
Print ISSN: 1173-8804
Elektronische ISSN: 1179-190X
DOI
https://doi.org/10.2165/00063030-200216030-00002

Weitere Artikel der Ausgabe 3/2002

BioDrugs 3/2002 Zur Ausgabe

Company Profile

CellControl AG

Adis R&D Profile

Exendin 4