Skip to main content
Erschienen in: BioDrugs 5/2008

01.09.2008 | Current Opinion

Application of Glatiramer Acetate to Neurodegenerative Diseases beyond Multiple Sclerosis

The Need for Disease-Specific Approaches

verfasst von: Michal Schwartz, Shay Bukshpan, Gilad Kurds

Erschienen in: BioDrugs | Ausgabe 5/2008

Einloggen, um Zugang zu erhalten

Abstract

Adaptive and innate immunity, if well controlled, contribute to the maintenance of the CNS, as well as to downregulation of adverse acute and chronic neurological conditions. T cells that recognize CNS antigens are needed to activate resident immune cells and to recruit blood-borne monocytes, which act to restore homeostasis and facilitate repair. However, boosting such a T-cell response in a risk-free way requires a careful choice of the antigen, carrier, and regimen. A single vaccination with CNS-derived peptides or their weak agonists reduces neuronal loss in animal models of acute neurodegeneration. Repeated injections are needed to maintain a long-lasting effect in chronic neurodegenerative conditions, yet the frequency of the injections seems to have a critical effect on the outcome.
An example is glatiramer acetate, a compound that is administered in a daily regimen to patients with multiple sclerosis. A single injection of glatiramer acetate, with or without an adjuvant, is neuroprotective in some animal models of acute CNS injuries. However, in an animal model of amyotrophic lateral sclerosis, a single injection of adjuvant-free glatiramer acetate is insufficient, while daily injections are not only ineffective but can carry an increased risk of mortality in female mice.
Thus, considering immune-based therapies as a single therapy, rather than as a family of therapies that are regimen dependent, may be misleading. Moreover, the vaccination regimen and administration of a compound, even one shown to be safe in humans for the treatment of a particular neurodegenerative disease, must be studied in preclinical experiments before it is tested in a clinical trial for a novel indication; otherwise, an effective drug in a certain regimen for one disease may be ineffective or even carry risks when used for another disorder.
Fußnoten
1
The use of trade names is for product identification purposes only and does not imply endorsement.
 
Literatur
1.
Zurück zum Zitat Hauben E, Schwartz M. Therapeutic vaccination for spinal cord injury: helping the body to cure itself. Trends Pharmacol Sci 2003; 24: 7–12PubMedCrossRef Hauben E, Schwartz M. Therapeutic vaccination for spinal cord injury: helping the body to cure itself. Trends Pharmacol Sci 2003; 24: 7–12PubMedCrossRef
2.
Zurück zum Zitat Schwartz M. Macrophages and microglia in central nervous system injury: are they helpful or harmful? J Cereb Blood Flow Metab 2003; 23: 385–94PubMedCrossRef Schwartz M. Macrophages and microglia in central nervous system injury: are they helpful or harmful? J Cereb Blood Flow Metab 2003; 23: 385–94PubMedCrossRef
3.
Zurück zum Zitat Griffin WS. Inflammation and neurodegenerative diseases. Am J Clin Nutr 2006; 83(2): 470S–4SPubMed Griffin WS. Inflammation and neurodegenerative diseases. Am J Clin Nutr 2006; 83(2): 470S–4SPubMed
4.
Zurück zum Zitat McGeer PL, McGeer EG. Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve 2002; 26(4): 459–70PubMedCrossRef McGeer PL, McGeer EG. Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve 2002; 26(4): 459–70PubMedCrossRef
5.
Zurück zum Zitat Minghetti L. Role of inflammation in neurodegenerative diseases. Curr Opin Neurol 2005; 18(3): 315–21PubMedCrossRef Minghetti L. Role of inflammation in neurodegenerative diseases. Curr Opin Neurol 2005; 18(3): 315–21PubMedCrossRef
6.
Zurück zum Zitat Wyss-Coray T, Mucke L. Inflammation in neurodegenerative disease: a double-edged sword. Neuron 2002; 35(3): 419–32PubMedCrossRef Wyss-Coray T, Mucke L. Inflammation in neurodegenerative disease: a double-edged sword. Neuron 2002; 35(3): 419–32PubMedCrossRef
7.
Zurück zum Zitat Hauben E, Gothilf A, Cohen A, et al. Vaccination with dendritic cells pulsed with peptides of myelin basic protein promotes functional recovery from spinal cord injury. J Neurosci 2003; 23(25): 8808–19PubMed Hauben E, Gothilf A, Cohen A, et al. Vaccination with dendritic cells pulsed with peptides of myelin basic protein promotes functional recovery from spinal cord injury. J Neurosci 2003; 23(25): 8808–19PubMed
8.
Zurück zum Zitat Noonan DM, De Lerma Barbaro A, Vannini N, et al. Inflammation, inflammatory cells and angiogenesis: decisions and indecisions. Cancer Metastasis Rev 2008; 27(1): 31–40PubMedCrossRef Noonan DM, De Lerma Barbaro A, Vannini N, et al. Inflammation, inflammatory cells and angiogenesis: decisions and indecisions. Cancer Metastasis Rev 2008; 27(1): 31–40PubMedCrossRef
9.
Zurück zum Zitat Ling C, Sandor M, Suresh M, et al. Traumatic injury and the presence of antigen differentially contribute to T-cell recruitment in the CNS. J Neurosci 2006; 26(3): 731–41PubMedCrossRef Ling C, Sandor M, Suresh M, et al. Traumatic injury and the presence of antigen differentially contribute to T-cell recruitment in the CNS. J Neurosci 2006; 26(3): 731–41PubMedCrossRef
10.
Zurück zum Zitat Beers DR, Henkel JS, Xiao Q, et al. Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2006; 103(43): 16021–6PubMedCrossRef Beers DR, Henkel JS, Xiao Q, et al. Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2006; 103(43): 16021–6PubMedCrossRef
11.
Zurück zum Zitat Boillee S, Vande Velde C, Cleveland DW. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 2006; 52(1): 39–59PubMedCrossRef Boillee S, Vande Velde C, Cleveland DW. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 2006; 52(1): 39–59PubMedCrossRef
12.
Zurück zum Zitat Frenkel D, Maron R, Burt DS, et al. Nasal vaccination with a proteosome-based adjuvant and glatiramer acetate clears beta-amyloid in a mouse model of Alzheimer disease. J Clin Invest 2005; 115(9): 2423–33PubMedCrossRef Frenkel D, Maron R, Burt DS, et al. Nasal vaccination with a proteosome-based adjuvant and glatiramer acetate clears beta-amyloid in a mouse model of Alzheimer disease. J Clin Invest 2005; 115(9): 2423–33PubMedCrossRef
13.
Zurück zum Zitat Simard AR, Soulet D, Gowing G, et al. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 2006; 49(4): 489–502PubMedCrossRef Simard AR, Soulet D, Gowing G, et al. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 2006; 49(4): 489–502PubMedCrossRef
14.
Zurück zum Zitat Rapalino O, Lazarov-Spiegler O, Agranov E, et al. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 1998; 4(7): 814–21PubMedCrossRef Rapalino O, Lazarov-Spiegler O, Agranov E, et al. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 1998; 4(7): 814–21PubMedCrossRef
15.
Zurück zum Zitat Moalem G, Leibowitz-Amit R, Yoles E, et al. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 1999; 5(1): 49–55PubMedCrossRef Moalem G, Leibowitz-Amit R, Yoles E, et al. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 1999; 5(1): 49–55PubMedCrossRef
16.
Zurück zum Zitat Hauben E, Agranov E, Gothilf A, et al. Posttraumatic therapeutic vaccination with modified myelin self-antigen prevents complete paralysis while avoiding autoimmune disease. J Clin Invest 2001; 108(4): 591–9PubMed Hauben E, Agranov E, Gothilf A, et al. Posttraumatic therapeutic vaccination with modified myelin self-antigen prevents complete paralysis while avoiding autoimmune disease. J Clin Invest 2001; 108(4): 591–9PubMed
17.
Zurück zum Zitat Jones TB, Ankeny DP, Guan Z, et al. Passive or active immunization with myelin basic protein impairs neurological function and exacerbates neuropathology after spinal cord injury in rats. J Neurosci 2004; 24(15): 3752–61PubMedCrossRef Jones TB, Ankeny DP, Guan Z, et al. Passive or active immunization with myelin basic protein impairs neurological function and exacerbates neuropathology after spinal cord injury in rats. J Neurosci 2004; 24(15): 3752–61PubMedCrossRef
18.
Zurück zum Zitat Fisher J, Levkovitch-Verbin H, Schori H, et al. Vaccination for neuroprotection in the mouse optic nerve: implications for optic neuropathies. J Neurosci 2001; 21(1): 136–42PubMed Fisher J, Levkovitch-Verbin H, Schori H, et al. Vaccination for neuroprotection in the mouse optic nerve: implications for optic neuropathies. J Neurosci 2001; 21(1): 136–42PubMed
19.
Zurück zum Zitat Ziv Y, Avidan H, Pluchino S, et al. Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proc Natl Acad Sci U S A 2006; 103(35): 13174–9PubMedCrossRef Ziv Y, Avidan H, Pluchino S, et al. Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proc Natl Acad Sci U S A 2006; 103(35): 13174–9PubMedCrossRef
20.
Zurück zum Zitat Kipnis J, Yoles E, Schori H, et al. Neuronal survival after CNS insult is determined by a genetically encoded autoimmune response. J Neurosci 2001; 21(13): 4564–71PubMed Kipnis J, Yoles E, Schori H, et al. Neuronal survival after CNS insult is determined by a genetically encoded autoimmune response. J Neurosci 2001; 21(13): 4564–71PubMed
21.
Zurück zum Zitat Yoles E, Hauben E, Palgi O, et al. Protective autoimmunity is a physiological response to CNS trauma. J Neurosci 2001; 21(11): 3740–8PubMed Yoles E, Hauben E, Palgi O, et al. Protective autoimmunity is a physiological response to CNS trauma. J Neurosci 2001; 21(11): 3740–8PubMed
22.
Zurück zum Zitat Hofstetter HH, Sewell DL, Liu F, et al. Autoreactive T cells promote post-traumatic healing in the central nervous system. J Neuroimmunol 2003; 134(1–2): 25–34PubMedCrossRef Hofstetter HH, Sewell DL, Liu F, et al. Autoreactive T cells promote post-traumatic healing in the central nervous system. J Neuroimmunol 2003; 134(1–2): 25–34PubMedCrossRef
23.
Zurück zum Zitat Schori H, Shechter R, Shachar I, et al. Genetic manipulation of CD74 in mouse strains of different backgrounds can result in opposite responses to central nervous system injury. J Immunol 2007; 178(1): 163–71PubMed Schori H, Shechter R, Shachar I, et al. Genetic manipulation of CD74 in mouse strains of different backgrounds can result in opposite responses to central nervous system injury. J Immunol 2007; 178(1): 163–71PubMed
24.
Zurück zum Zitat Kipnis J, Yoles E, Porat Z, et al. T cell immunity to copolymer 1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies. Proc Natl Acad Sci U S A 2000; 97(13): 7446–51PubMedCrossRef Kipnis J, Yoles E, Porat Z, et al. T cell immunity to copolymer 1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies. Proc Natl Acad Sci U S A 2000; 97(13): 7446–51PubMedCrossRef
25.
Zurück zum Zitat Schwartz M, Kipnis J. Autoimmunity on alert: naturally occurring regulatory CD4(+)CD25(+) T cells as part of the evolutionary compromise between a ‘need’ and a ‘risk’. Trends Immunol 2002; 23(11): 530–4PubMedCrossRef Schwartz M, Kipnis J. Autoimmunity on alert: naturally occurring regulatory CD4(+)CD25(+) T cells as part of the evolutionary compromise between a ‘need’ and a ‘risk’. Trends Immunol 2002; 23(11): 530–4PubMedCrossRef
26.
Zurück zum Zitat Schwartz M, Ziv Y. Immunity to self and self-maintenance: a unified theory of brain pathologies. Trends Immunol 2008; 29(5): 211–9PubMedCrossRef Schwartz M, Ziv Y. Immunity to self and self-maintenance: a unified theory of brain pathologies. Trends Immunol 2008; 29(5): 211–9PubMedCrossRef
27.
Zurück zum Zitat Brynskikh A, Warren T, Zhu J, et al. Adaptive immunity affects learning behavior in mice. Brain Behav Immun 2008; 22(6): 861–9PubMedCrossRef Brynskikh A, Warren T, Zhu J, et al. Adaptive immunity affects learning behavior in mice. Brain Behav Immun 2008; 22(6): 861–9PubMedCrossRef
28.
Zurück zum Zitat Ziv Y, Ron N, Butovsky O, et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 2006; 9(2): 268–75PubMedCrossRef Ziv Y, Ron N, Butovsky O, et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 2006; 9(2): 268–75PubMedCrossRef
29.
Zurück zum Zitat Kipnis J, Cohen H, Cardon M, et al. T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc Natl Acad Sci U S A 2004; 101(21): 8180–5PubMedCrossRef Kipnis J, Cohen H, Cardon M, et al. T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc Natl Acad Sci U S A 2004; 101(21): 8180–5PubMedCrossRef
30.
Zurück zum Zitat Schwartz M, Kipnis J. Multiple sclerosis as a by-product of the failure to sustain protective autoimmunity: a paradigm shift. Neuroscientist 2002; 8(5): 405–13PubMedCrossRef Schwartz M, Kipnis J. Multiple sclerosis as a by-product of the failure to sustain protective autoimmunity: a paradigm shift. Neuroscientist 2002; 8(5): 405–13PubMedCrossRef
31.
Zurück zum Zitat Jones TB, Basso DM, Sodhi A, et al. Pathological CNS autoimmune disease triggered by traumatic spinal cord injury: implications for autoimmune vaccine therapy. J Neurosci 2002; 22(7): 2690–700PubMed Jones TB, Basso DM, Sodhi A, et al. Pathological CNS autoimmune disease triggered by traumatic spinal cord injury: implications for autoimmune vaccine therapy. J Neurosci 2002; 22(7): 2690–700PubMed
32.
Zurück zum Zitat Butovsky O, Kunis G, Koronyo-Hamaoui M, et al. Selective ablation of bone marrow-derived dendritic cells increases amyloid plaques in a mouse Alzheimer’s disease model. Eur J Neurosci 2007; 26(2): 413–6PubMedCrossRef Butovsky O, Kunis G, Koronyo-Hamaoui M, et al. Selective ablation of bone marrow-derived dendritic cells increases amyloid plaques in a mouse Alzheimer’s disease model. Eur J Neurosci 2007; 26(2): 413–6PubMedCrossRef
33.
Zurück zum Zitat Butovsky O, Koronyo-Hamaoui M, Kunis G, et al. Glatiramer acetate fights against Alzheimer’s disease by inducing dendritic-like microglia expressing insulin-like growth factor 1. Proc Natl Acad Sci U S A 2006; 103(31): 11784–9PubMedCrossRef Butovsky O, Koronyo-Hamaoui M, Kunis G, et al. Glatiramer acetate fights against Alzheimer’s disease by inducing dendritic-like microglia expressing insulin-like growth factor 1. Proc Natl Acad Sci U S A 2006; 103(31): 11784–9PubMedCrossRef
34.
Zurück zum Zitat Butovsky O, Hauben E, Schwartz M. Morphological aspects of spinal cord autoimmune neuroprotection: colocalization of T cells with B7-2 (CD86) and prevention of cyst formation. Faseb J 2001; 15(6): 1065–7PubMed Butovsky O, Hauben E, Schwartz M. Morphological aspects of spinal cord autoimmune neuroprotection: colocalization of T cells with B7-2 (CD86) and prevention of cyst formation. Faseb J 2001; 15(6): 1065–7PubMed
35.
Zurück zum Zitat Rolls A, Shechter R, London A, et al. Two faces of chondroitin sulfate proteogly-can in spinal cord repair: a role in micrglia/macrophage activation. PLoS Med 2008; 5(8): e171PubMedCrossRef Rolls A, Shechter R, London A, et al. Two faces of chondroitin sulfate proteogly-can in spinal cord repair: a role in micrglia/macrophage activation. PLoS Med 2008; 5(8): e171PubMedCrossRef
36.
Zurück zum Zitat Shechter R, Ziv Y, Schwartz M. New GABAergic interneurons supported by myelin-specific T cells are formed in intact adult spinal cord. Stem Cells 2007; 25(9): 2277–82PubMedCrossRef Shechter R, Ziv Y, Schwartz M. New GABAergic interneurons supported by myelin-specific T cells are formed in intact adult spinal cord. Stem Cells 2007; 25(9): 2277–82PubMedCrossRef
37.
Zurück zum Zitat Pluchino S, Martino G. The therapeutic plasticity of neural stem/precursor cells in multiple sclerosis. J Neurol Sci 2008; 265(1–2): 105–10PubMedCrossRef Pluchino S, Martino G. The therapeutic plasticity of neural stem/precursor cells in multiple sclerosis. J Neurol Sci 2008; 265(1–2): 105–10PubMedCrossRef
38.
39.
Zurück zum Zitat Shaked I, Porat Z, Gersner R, et al. Early activation of microglia as antigen-presenting cells correlates with T cell-mediated protection and repair of the injured central nervous system. J Neuroimmunol 2004; 146: 84–93PubMedCrossRef Shaked I, Porat Z, Gersner R, et al. Early activation of microglia as antigen-presenting cells correlates with T cell-mediated protection and repair of the injured central nervous system. J Neuroimmunol 2004; 146: 84–93PubMedCrossRef
40.
Zurück zum Zitat Bakalash S, Shlomo GB, Aloni E, et al. T-cell-based vaccination for morphological and functional neuroprotection in a rat model of chronically elevated intraocular pressure. J Mol Med 2005; 83(11): 904–16PubMedCrossRef Bakalash S, Shlomo GB, Aloni E, et al. T-cell-based vaccination for morphological and functional neuroprotection in a rat model of chronically elevated intraocular pressure. J Mol Med 2005; 83(11): 904–16PubMedCrossRef
41.
Zurück zum Zitat Arnold L, Henry A, Poron F, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 2007; 204(5): 1057–69PubMedCrossRef Arnold L, Henry A, Poron F, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 2007; 204(5): 1057–69PubMedCrossRef
42.
Zurück zum Zitat Aharoni R, Teitelbaum D, Arnon R, et al. Copolymer 1 acts against the immunodominant epitope 82-100 of myelin basic protein by T cell receptor antagonism in addition to major histocompatibility complex blocking. Proc Natl Acad Sci U S A 1999; 96(2): 634–9PubMedCrossRef Aharoni R, Teitelbaum D, Arnon R, et al. Copolymer 1 acts against the immunodominant epitope 82-100 of myelin basic protein by T cell receptor antagonism in addition to major histocompatibility complex blocking. Proc Natl Acad Sci U S A 1999; 96(2): 634–9PubMedCrossRef
43.
Zurück zum Zitat Hafler DA, Weiner HL. Antigen specific therapies for the treatment of autoimmune diseases. Agents Actions Suppl 1995; 47: 59–77PubMed Hafler DA, Weiner HL. Antigen specific therapies for the treatment of autoimmune diseases. Agents Actions Suppl 1995; 47: 59–77PubMed
44.
Zurück zum Zitat Aharoni R, Teitelbaum D, Sela M, et al. Bystander suppression of experimental autoimmune encephalomyelitis by T cell lines and clones of the Th2 type induced by copolymer 1. J Neuroimmunol 1998; 91(1–2): 135–46PubMedCrossRef Aharoni R, Teitelbaum D, Sela M, et al. Bystander suppression of experimental autoimmune encephalomyelitis by T cell lines and clones of the Th2 type induced by copolymer 1. J Neuroimmunol 1998; 91(1–2): 135–46PubMedCrossRef
45.
Zurück zum Zitat Schori H, Kipnis J, Yoles E, et al. Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: implications for glaucoma. Proc Natl Acad Sci U S A 2001; 98(6): 3398–403PubMedCrossRef Schori H, Kipnis J, Yoles E, et al. Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: implications for glaucoma. Proc Natl Acad Sci U S A 2001; 98(6): 3398–403PubMedCrossRef
46.
Zurück zum Zitat Bakalash S, Kessler A, Mizrahi T, et al. Antigenic specificity of immunoprotective therapeutic vaccination for glaucoma. Invest Ophthalmol Vis Sci 2003; 44: 3374–81PubMedCrossRef Bakalash S, Kessler A, Mizrahi T, et al. Antigenic specificity of immunoprotective therapeutic vaccination for glaucoma. Invest Ophthalmol Vis Sci 2003; 44: 3374–81PubMedCrossRef
47.
Zurück zum Zitat WoldeMussie E, Yoles E, Schwartz M, et al. Neuroprotective effect of memantine in different retinal injury models in rats. J Glaucoma 2002; 11(6): 474–80PubMedCrossRef WoldeMussie E, Yoles E, Schwartz M, et al. Neuroprotective effect of memantine in different retinal injury models in rats. J Glaucoma 2002; 11(6): 474–80PubMedCrossRef
48.
Zurück zum Zitat Blair M, Pease ME, Hammond J, et al. Effect of glatiramer acetate on primary and secondary degeneration of retinal ganglion cells in the rat. Invest Ophthalmol Vis Sci 2005; 46(3): 884–90PubMedCrossRef Blair M, Pease ME, Hammond J, et al. Effect of glatiramer acetate on primary and secondary degeneration of retinal ganglion cells in the rat. Invest Ophthalmol Vis Sci 2005; 46(3): 884–90PubMedCrossRef
49.
Zurück zum Zitat Angelov DN, Waibel S, Guntinas-Lichius O, et al. Therapeutic vaccine for acute and chronic motor neuron diseases: implications for ALS. Proc Natl Acad Sci U S A 2003; 100: 4790–5PubMedCrossRef Angelov DN, Waibel S, Guntinas-Lichius O, et al. Therapeutic vaccine for acute and chronic motor neuron diseases: implications for ALS. Proc Natl Acad Sci U S A 2003; 100: 4790–5PubMedCrossRef
50.
Zurück zum Zitat Haenggeli C, Julien JP, Mosley RL, et al. Therapeutic immunization with a glatiramer acetate derivative does not alter survival in G93A and G37R SOD1 mouse models of familial ALS. Neurobiol Dis 2007; 26(1): 146–52PubMedCrossRef Haenggeli C, Julien JP, Mosley RL, et al. Therapeutic immunization with a glatiramer acetate derivative does not alter survival in G93A and G37R SOD1 mouse models of familial ALS. Neurobiol Dis 2007; 26(1): 146–52PubMedCrossRef
51.
Zurück zum Zitat Habisch HJ, Schwalenstocker B, Danzeisen R, et al. Limited effects of glatiramer acetate in the high-copy number hSODl-G93A mouse model of ALS. Exp Neurol 2007; 206(2): 288–95PubMedCrossRef Habisch HJ, Schwalenstocker B, Danzeisen R, et al. Limited effects of glatiramer acetate in the high-copy number hSODl-G93A mouse model of ALS. Exp Neurol 2007; 206(2): 288–95PubMedCrossRef
52.
Zurück zum Zitat Gordon PH, Moore DH, Miller RG, et al. Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol 2007; 6(12): 1045–53PubMedCrossRef Gordon PH, Moore DH, Miller RG, et al. Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol 2007; 6(12): 1045–53PubMedCrossRef
53.
Zurück zum Zitat Wolinsky JS, Narayana PA, O’Connor P, et al. Glatiramer acetate in primary progressive multiple sclerosis: results of a multinational, multicenter, doubleblind, placebo-controlled trial. Ann Neurol 2007; 61(1): 14–24PubMedCrossRef Wolinsky JS, Narayana PA, O’Connor P, et al. Glatiramer acetate in primary progressive multiple sclerosis: results of a multinational, multicenter, doubleblind, placebo-controlled trial. Ann Neurol 2007; 61(1): 14–24PubMedCrossRef
54.
Zurück zum Zitat Mor F, Cohen IR. How special is a pathogenic CNS autoantigen? Immunization to many CNS self-antigens does not induce autoimmune disease. J Neuroimmunol 2006; 174(1–2): 3–11PubMedCrossRef Mor F, Cohen IR. How special is a pathogenic CNS autoantigen? Immunization to many CNS self-antigens does not induce autoimmune disease. J Neuroimmunol 2006; 174(1–2): 3–11PubMedCrossRef
55.
Zurück zum Zitat Mosley RL, Gordon PH, Hasiak CM, et al. Glatiramer acetate immunization induces specific antibody and cytokine responses in ALS patients. Amyotroph Lateral Scler 2007; 8(4): 235–42PubMedCrossRef Mosley RL, Gordon PH, Hasiak CM, et al. Glatiramer acetate immunization induces specific antibody and cytokine responses in ALS patients. Amyotroph Lateral Scler 2007; 8(4): 235–42PubMedCrossRef
56.
Zurück zum Zitat Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299(5609): 1057–61PubMedCrossRef Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299(5609): 1057–61PubMedCrossRef
57.
Zurück zum Zitat Khattri R, Cox T, Yasayko SA, et al. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 2003; 4(4): 337–42PubMedCrossRef Khattri R, Cox T, Yasayko SA, et al. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 2003; 4(4): 337–42PubMedCrossRef
58.
Zurück zum Zitat Ben Simon GJ, Bakalash S, Aloni E, et al. A rat model for acute rise in intraocular pressure: immune modulation as a therapeutic strategy. Am J Ophthalmol 2006; 141(6): 1105–11PubMedCrossRef Ben Simon GJ, Bakalash S, Aloni E, et al. A rat model for acute rise in intraocular pressure: immune modulation as a therapeutic strategy. Am J Ophthalmol 2006; 141(6): 1105–11PubMedCrossRef
59.
Zurück zum Zitat Benner EJ, Mosley RL, Destache CJ, et al. Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 2004; 101(25): 9435–40PubMedCrossRef Benner EJ, Mosley RL, Destache CJ, et al. Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 2004; 101(25): 9435–40PubMedCrossRef
60.
Zurück zum Zitat Ibarra A, Avendano H, Cruz Y. Copolymer-1 (Cop-1) improves neurological recovery after middle cerebral artery occlusion in rats. Neurosci Lett 2007; 425(2): 110–3PubMedCrossRef Ibarra A, Avendano H, Cruz Y. Copolymer-1 (Cop-1) improves neurological recovery after middle cerebral artery occlusion in rats. Neurosci Lett 2007; 425(2): 110–3PubMedCrossRef
61.
Zurück zum Zitat Liu J, Johnson TV, Lin J, et al. T cell independent mechanism for copolymer-1-induced neuroprotection. Eur J Immunol 2007; 37(11): 3143–54PubMedCrossRef Liu J, Johnson TV, Lin J, et al. T cell independent mechanism for copolymer-1-induced neuroprotection. Eur J Immunol 2007; 37(11): 3143–54PubMedCrossRef
62.
Zurück zum Zitat Gordon PH, Doorish C, Montes J, et al. Randomized controlled phase II trial of glatiramer acetate in ALS. Neurology 2006; 66(7): 1117–9PubMedCrossRef Gordon PH, Doorish C, Montes J, et al. Randomized controlled phase II trial of glatiramer acetate in ALS. Neurology 2006; 66(7): 1117–9PubMedCrossRef
63.
Zurück zum Zitat Fiala M, Cribbs DH, Rosenthal M, et al. Phagocytosis of amyloid-beta and inflammation: two faces of innate immunity in Alzheimer’s disease. J Alzheimers Dis 2007; 11(4): 457–63PubMed Fiala M, Cribbs DH, Rosenthal M, et al. Phagocytosis of amyloid-beta and inflammation: two faces of innate immunity in Alzheimer’s disease. J Alzheimers Dis 2007; 11(4): 457–63PubMed
64.
Zurück zum Zitat Napolitano M, Zei D, Centonze D, et al. NF-kB/NOS cross-talk induced by mitochondrial complex II inhibition: implications for Huntington’s disease. Neurosci Lett 2008; 434 (3): 241–6 Napolitano M, Zei D, Centonze D, et al. NF-kB/NOS cross-talk induced by mitochondrial complex II inhibition: implications for Huntington’s disease. Neurosci Lett 2008; 434 (3): 241–6
65.
Zurück zum Zitat Heneka MT, O’Banion MK. Inflammatory processes in Alzheimer’s disease. J Neuroimmunol 2007; 184(1–2): 69–91PubMedCrossRef Heneka MT, O’Banion MK. Inflammatory processes in Alzheimer’s disease. J Neuroimmunol 2007; 184(1–2): 69–91PubMedCrossRef
66.
Zurück zum Zitat McGeer EG, McGeer PL. The role of anti-inflammatory agents in Parkinson’s disease. CNS Drugs 2007; 21(10): 789–97PubMedCrossRef McGeer EG, McGeer PL. The role of anti-inflammatory agents in Parkinson’s disease. CNS Drugs 2007; 21(10): 789–97PubMedCrossRef
68.
Zurück zum Zitat Mhatre M, Floyd RA, Hensley K. Oxidative stress and neuroinflammation in Alzheimer’s disease and amyotrophic lateral sclerosis: common links and potential therapeutic targets. J Alzheimers Dis 2004; 6(2): 147–57PubMed Mhatre M, Floyd RA, Hensley K. Oxidative stress and neuroinflammation in Alzheimer’s disease and amyotrophic lateral sclerosis: common links and potential therapeutic targets. J Alzheimers Dis 2004; 6(2): 147–57PubMed
69.
Zurück zum Zitat Eikelenboom P, Veerhuis R, Familian A, et al. Neuroinflammation in plaque and vascular beta-amyloid disorders: clinical and therapeutic implications. Neurodegener Dis 2008; 5(3–4): 190–3PubMedCrossRef Eikelenboom P, Veerhuis R, Familian A, et al. Neuroinflammation in plaque and vascular beta-amyloid disorders: clinical and therapeutic implications. Neurodegener Dis 2008; 5(3–4): 190–3PubMedCrossRef
70.
Zurück zum Zitat Dhib-Jalbut S, Arnold DL, Cleveland DW, et al. Neurodegeneration and neuroprotection in multiple sclerosis and other neurodegenerative diseases. J Neuroimmunol 2006; 176(1–2): 198–215PubMedCrossRef Dhib-Jalbut S, Arnold DL, Cleveland DW, et al. Neurodegeneration and neuroprotection in multiple sclerosis and other neurodegenerative diseases. J Neuroimmunol 2006; 176(1–2): 198–215PubMedCrossRef
71.
Zurück zum Zitat Armstrong BD, Abad C, Chhith S, et al. Restoration of axotomy-induced PACAP gene induction in SCID mice with CD4+ T-lymphocytes. Neuroreport 2004; 15(17): 2647–50PubMedCrossRef Armstrong BD, Abad C, Chhith S, et al. Restoration of axotomy-induced PACAP gene induction in SCID mice with CD4+ T-lymphocytes. Neuroreport 2004; 15(17): 2647–50PubMedCrossRef
72.
Zurück zum Zitat Boillee S, Cleveland DW. Revisiting oxidative damage in ALS: microglia, Nox, and mutant SOD1. J Clin Invest 2008; 118(2): 474–8PubMed Boillee S, Cleveland DW. Revisiting oxidative damage in ALS: microglia, Nox, and mutant SOD1. J Clin Invest 2008; 118(2): 474–8PubMed
73.
Zurück zum Zitat Appel SH, Beers DR, Henkel JS, et al. Immunomodulation of motor neuron injury in the MSOD1 mouse: a central and peripheral event [abstract]. J Neurochem 2008; 104Suppl. 1: 88 Appel SH, Beers DR, Henkel JS, et al. Immunomodulation of motor neuron injury in the MSOD1 mouse: a central and peripheral event [abstract]. J Neurochem 2008; 104Suppl. 1: 88
74.
Zurück zum Zitat Bakalash S, Kipnis J, Yoles E, et al. Resistance of retinal ganglion cells to an increase in intraocular pressure is immune-dependent. Invest Ophthalmol Vis Sci 2002; 43: 2648–53PubMed Bakalash S, Kipnis J, Yoles E, et al. Resistance of retinal ganglion cells to an increase in intraocular pressure is immune-dependent. Invest Ophthalmol Vis Sci 2002; 43: 2648–53PubMed
Metadaten
Titel
Application of Glatiramer Acetate to Neurodegenerative Diseases beyond Multiple Sclerosis
The Need for Disease-Specific Approaches
verfasst von
Michal Schwartz
Shay Bukshpan
Gilad Kurds
Publikationsdatum
01.09.2008
Verlag
Springer International Publishing
Erschienen in
BioDrugs / Ausgabe 5/2008
Print ISSN: 1173-8804
Elektronische ISSN: 1179-190X
DOI
https://doi.org/10.2165/00063030-200822050-00002

Weitere Artikel der Ausgabe 5/2008

BioDrugs 5/2008 Zur Ausgabe