Skip to main content
Erschienen in: Drugs 17/2011

01.12.2011 | Review Article

Pharmacological Considerations for the Proper Clinical Use of Aminoglycosides

verfasst von: Spyridon Pagkalis, Elpis Mantadakis, Michael N. Mavros, Christina Ammari, Professor Matthew E. Falagas

Erschienen in: Drugs | Ausgabe 17/2011

Einloggen, um Zugang zu erhalten

Abstract

Aminoglycosides constitute one of the oldest classes of antimicrobials. Despite their toxicity, mainly nephrotoxicity and ototoxicity, aminoglycosides are valuable in current clinical practice, since they retain good activity against multidrug-resistant Gram-negative pathogens, such as Pseudomonas aeruginosa and Acinetobacter spp. Time-kill studies have shown a concentration-dependent and partially concentration-dependent bacterial killing against Gram-negative and Gram-positive bacteria, respectively. Pharmacodynamic data gathered over recent decades show that the administration of aminoglycosides by an extended-interval dosing scheme takes advantage of the maximum potential of these agents, with the goal of achieving an area under the concentration-time curve (AUC) of 100 mg • h/L over 24 hours and a peak plasma drug concentration (Cmax) to minimum inhibitory concentration (MIC) ratio of 8–10. Several clinical conditions that are common in seriously ill patients result in expansion of the extracellular space and can lead to a lower than desirable Cmax with the usual loading dose. Extended-interval dosing schemes allow adequate time to decrease bacterial adaptive resistance, a phenomenon characterized by slow concentration-independent killing. Adaptive resistance is minimized by the complete clearance of the drug before the subsequent dose, thus favouring the extended-interval dosing schemes. The efficacy of these schemes is also safeguarded by the observed post-antibiotic sub-MIC effect and post-antibiotic leukocyte enhancement, which inhibit bacterial regrowth when the serum aminoglycoside levels fall below the MIC of the pathogen.
In everyday clinical practice, aminoglycosides are usually used empirically to treat severe sepsis and septic shock while awaiting the results of antimicrobial susceptibility testing. The European Committee on Antimicrobial Susceptibility Testing acknowledges the regimen-dependent nature of clinical breakpoints for aminoglycosides, i.e. of MIC values that classify bacterial isolates into sensitive or resistant, and bases its recommendations on extended-interval dosing. To a large extent, the lack of correlation between in vitro antimicrobial susceptibility testing and clinical outcome is derived from the fact that the available clinical breakpoints for aminoglycosides are set based on mean pharmacokinetic parameters obtained in healthy volunteers and not sick patients. The nephrotoxicity associated with once-versus multiple-daily administration of aminoglycosides has been assessed in numerous prospective randomized trials and by several meta-analyses. The once-daily dosing schedule provides a longer time of administration until the threshold for nephrotoxicity is met. Regarding ototoxicity, no dosing regimen appears to be less ototoxic than another. Inactivation of aminoglycosides inside the bacterial pathogens occurs by diverse modifying enzymes and by operation of multidrug efflux systems, making both of these potential targets for inhibition.
In summary, despite their use for several decades, the ideal method of administration and the preferred dosing schemes of aminoglycosides for most of their therapeutic indications need further refinement. Individualized pharmacodynamic monitoring has the potential of minimizing the toxicityand the clinical failures of these agents in critically ill patients.
Literatur
1.
Zurück zum Zitat Sato R, Tanigawara Y, Kaku M, et al. Pharmacokinetic pharmacodynamic relationship of arbekacin for treatment of patients infected with methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2006; 50: 3763–9PubMedCrossRef Sato R, Tanigawara Y, Kaku M, et al. Pharmacokinetic pharmacodynamic relationship of arbekacin for treatment of patients infected with methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2006; 50: 3763–9PubMedCrossRef
2.
Zurück zum Zitat Mingeot-Leclercq MP, Tulkens PM. Aminoglycosides: nephrotoxicity. Antimicrob Agents Chemother 1999; 43: 1003–12PubMed Mingeot-Leclercq MP, Tulkens PM. Aminoglycosides: nephrotoxicity. Antimicrob Agents Chemother 1999; 43: 1003–12PubMed
4.
Zurück zum Zitat Durante-Mangoni E, Grammatikos A, Utili R, et al. Do we still need the aminoglycosides? Int J Antimicrob Agents 2009; 33: 201–5PubMedCrossRef Durante-Mangoni E, Grammatikos A, Utili R, et al. Do we still need the aminoglycosides? Int J Antimicrob Agents 2009; 33: 201–5PubMedCrossRef
5.
Zurück zum Zitat Falagas ME, Grammatikos AP, Michalopoulos A. Potential of old-generation antibiotics to address current need for new antibiotics. Expert Rev Anti Infect Ther 2008; 6: 593–600PubMedCrossRef Falagas ME, Grammatikos AP, Michalopoulos A. Potential of old-generation antibiotics to address current need for new antibiotics. Expert Rev Anti Infect Ther 2008; 6: 593–600PubMedCrossRef
6.
Zurück zum Zitat Fluit AC, Jones ME, Schmitz FJ, et al. Antimicrobial susceptibility and frequency of occurrence of clinical blood isolates in Europe from the SENTRY antimicrobial surveillance program, 1997 and 1998. Clin Infect Dis 2000; 30: 454–60PubMedCrossRef Fluit AC, Jones ME, Schmitz FJ, et al. Antimicrobial susceptibility and frequency of occurrence of clinical blood isolates in Europe from the SENTRY antimicrobial surveillance program, 1997 and 1998. Clin Infect Dis 2000; 30: 454–60PubMedCrossRef
7.
Zurück zum Zitat Sader HS, Biedenbach DJ, Jones RN. Global patterns of susceptibility for 21 commonly utilized antimicrobial agents tested against 48,440 Enterobacteriaceae in the SENTRY Antimicrobial Surveillance Program (1997–2001). Diagn Microbiol Infect Dis 2003; 47: 361–4PubMedCrossRef Sader HS, Biedenbach DJ, Jones RN. Global patterns of susceptibility for 21 commonly utilized antimicrobial agents tested against 48,440 Enterobacteriaceae in the SENTRY Antimicrobial Surveillance Program (1997–2001). Diagn Microbiol Infect Dis 2003; 47: 361–4PubMedCrossRef
8.
Zurück zum Zitat Gales AC, Jones RN, Turnidge J, et al. Characterization of Pseudomonas aeruginosa isolates: occurrence rates, antimicrobial susceptibility patterns, and molecular typing in the global SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin Infect Dis 2001; 32 Suppl. 2: S146–55PubMedCrossRef Gales AC, Jones RN, Turnidge J, et al. Characterization of Pseudomonas aeruginosa isolates: occurrence rates, antimicrobial susceptibility patterns, and molecular typing in the global SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin Infect Dis 2001; 32 Suppl. 2: S146–55PubMedCrossRef
9.
Zurück zum Zitat Jones RN, Sader HS, Beach ML. Contemporary in vitro spectrum of activity summary for antimicrobial agents tested against 18569 strains non-fermentative Gram-negative bacilli isolated in the SENTRY Antimicrobial Surveillance Program (1997–2001). Int J Antimicrob Agents 2003; 22: 551–6PubMedCrossRef Jones RN, Sader HS, Beach ML. Contemporary in vitro spectrum of activity summary for antimicrobial agents tested against 18569 strains non-fermentative Gram-negative bacilli isolated in the SENTRY Antimicrobial Surveillance Program (1997–2001). Int J Antimicrob Agents 2003; 22: 551–6PubMedCrossRef
10.
Zurück zum Zitat Layeux B, Taccone FS, Fagnoul D, et al. Amikacin monotherapy for sepsis caused by panresistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 2010; 54: 4939–41PubMedCrossRef Layeux B, Taccone FS, Fagnoul D, et al. Amikacin monotherapy for sepsis caused by panresistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 2010; 54: 4939–41PubMedCrossRef
11.
Zurück zum Zitat Obritsch MD, Fish DN, MacLaren R, et al. National surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002. Antimicrob Agents Chemother 2004; 48: 4606–10PubMedCrossRef Obritsch MD, Fish DN, MacLaren R, et al. National surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002. Antimicrob Agents Chemother 2004; 48: 4606–10PubMedCrossRef
12.
Zurück zum Zitat Matsuhashi Y, Yamamoto H. The enzymatic mechanisms of resistance to aminoglycoside antibiotics in methicillin-cephem-resistant Staphylococcus aureus. Jpn J Antibiot 1988; 41: 523–9PubMed Matsuhashi Y, Yamamoto H. The enzymatic mechanisms of resistance to aminoglycoside antibiotics in methicillin-cephem-resistant Staphylococcus aureus. Jpn J Antibiot 1988; 41: 523–9PubMed
13.
Zurück zum Zitat Craig WA, Redington J, Ebert SC. Pharmacodynamics of amikacin in vitro and in mouse thigh and lung infections. J Antimicrob Chemother 1991; 27 Suppl. C: 29–40PubMedCrossRef Craig WA, Redington J, Ebert SC. Pharmacodynamics of amikacin in vitro and in mouse thigh and lung infections. J Antimicrob Chemother 1991; 27 Suppl. C: 29–40PubMedCrossRef
14.
Zurück zum Zitat MacArthur RD, Lolans V, Zar FA, et al. Biphasic, concentration-dependent and rate-limited, concentration-independent bacterial killing by an aminoglycoside antibiotic. J Infect Dis 1984; 150: 778–9PubMedCrossRef MacArthur RD, Lolans V, Zar FA, et al. Biphasic, concentration-dependent and rate-limited, concentration-independent bacterial killing by an aminoglycoside antibiotic. J Infect Dis 1984; 150: 778–9PubMedCrossRef
15.
Zurück zum Zitat Tam VH, Kabbara S, Vo G, et al. Comparative pharmacodynamics of gentamicin against Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2006; 50: 2626–31PubMedCrossRef Tam VH, Kabbara S, Vo G, et al. Comparative pharmacodynamics of gentamicin against Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2006; 50: 2626–31PubMedCrossRef
16.
Zurück zum Zitat Ambrose PG, Bhavnani SM, Rubino CM, et al. Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis 2007; 44: 79–86PubMedCrossRef Ambrose PG, Bhavnani SM, Rubino CM, et al. Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis 2007; 44: 79–86PubMedCrossRef
17.
Zurück zum Zitat Craig WA, Ebert SC. Killing and regrowth of bacteria in vitro: a review. Scand J Infect Dis Suppl 1990; 74: 63–70PubMed Craig WA, Ebert SC. Killing and regrowth of bacteria in vitro: a review. Scand J Infect Dis Suppl 1990; 74: 63–70PubMed
18.
Zurück zum Zitat Blaser J, Stone BB, Zinner SH. Efficacy of intermittent versus continuous administration of netilmicin in a two-compartment in vitro model. Antimicrob Agents Chemother 1985; 27: 343–9PubMedCrossRef Blaser J, Stone BB, Zinner SH. Efficacy of intermittent versus continuous administration of netilmicin in a two-compartment in vitro model. Antimicrob Agents Chemother 1985; 27: 343–9PubMedCrossRef
19.
Zurück zum Zitat Blaser J, Stone BB, Groner MC, et al. Comparative study with enoxacin and netilmicin in a pharmacodynamic model to determine importance of ratio of antibiotic peak concentration to MIC for bactericidal activity and emergence of resistance. Antimicrob Agents Chemother 1987; 31: 1054–60PubMedCrossRef Blaser J, Stone BB, Groner MC, et al. Comparative study with enoxacin and netilmicin in a pharmacodynamic model to determine importance of ratio of antibiotic peak concentration to MIC for bactericidal activity and emergence of resistance. Antimicrob Agents Chemother 1987; 31: 1054–60PubMedCrossRef
20.
Zurück zum Zitat Tam VH, Nikolaou M. A novel approach to pharmaco-dynamic assessment of antimicrobial agents: new insights to dosing regimen design. PLoS Comput Biol 2011; 7: e1001–43CrossRef Tam VH, Nikolaou M. A novel approach to pharmaco-dynamic assessment of antimicrobial agents: new insights to dosing regimen design. PLoS Comput Biol 2011; 7: e1001–43CrossRef
21.
Zurück zum Zitat Tam VH, Schilling AN, Nikolaou M. Modelling time-kill studies to discern the pharmacodynamics of meropenem. J Antimicrob Chemother 2005; 55: 699–706PubMedCrossRef Tam VH, Schilling AN, Nikolaou M. Modelling time-kill studies to discern the pharmacodynamics of meropenem. J Antimicrob Chemother 2005; 55: 699–706PubMedCrossRef
22.
Zurück zum Zitat Tam VH, Ledesma KR, Vo G, et al. Pharmacodynamic modeling of aminoglycosides against Pseudomonas aeruginosa and Acinetobacter baumannii: identifying dosing regimens to suppress resistance development. Antimicrob Agents Chemother 2008; 52: 3987–93PubMedCrossRef Tam VH, Ledesma KR, Vo G, et al. Pharmacodynamic modeling of aminoglycosides against Pseudomonas aeruginosa and Acinetobacter baumannii: identifying dosing regimens to suppress resistance development. Antimicrob Agents Chemother 2008; 52: 3987–93PubMedCrossRef
23.
Zurück zum Zitat Moore RD, Lietman PS, Smith CR. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis 1987; 155: 93–9PubMedCrossRef Moore RD, Lietman PS, Smith CR. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis 1987; 155: 93–9PubMedCrossRef
24.
Zurück zum Zitat Kashuba AD, Nafziger AN, Drusano GL, et al. Optimizing aminoglycoside therapy for nosocomial pneumonia caused by gram-negative bacteria. Antimicrob Agents Chemother 1999; 43: 623–9PubMed Kashuba AD, Nafziger AN, Drusano GL, et al. Optimizing aminoglycoside therapy for nosocomial pneumonia caused by gram-negative bacteria. Antimicrob Agents Chemother 1999; 43: 623–9PubMed
25.
Zurück zum Zitat Smith PF, Ballow CH, Booker BM, et al. Pharmacokinetics and pharmacodynamics of aztreonam and tobramycin in hospitalized patients. Clin Ther 2001; 23: 1231–44PubMedCrossRef Smith PF, Ballow CH, Booker BM, et al. Pharmacokinetics and pharmacodynamics of aztreonam and tobramycin in hospitalized patients. Clin Ther 2001; 23: 1231–44PubMedCrossRef
26.
Zurück zum Zitat Zelenitsky SA, Harding GK, Sun S, et al. Treatment and outcome of Pseudomonas aeruginosa bacteraemia: an antibiotic pharmacodynamic analysis. J Antimicrob Chemother 2003; 52: 668–74PubMedCrossRef Zelenitsky SA, Harding GK, Sun S, et al. Treatment and outcome of Pseudomonas aeruginosa bacteraemia: an antibiotic pharmacodynamic analysis. J Antimicrob Chemother 2003; 52: 668–74PubMedCrossRef
27.
Zurück zum Zitat Mouton JW, Jacobs N, Tiddens H, et al. Pharmacodynamics of tobramycin in patients with cystic fibrosis. Diagn Microbiol Infect Dis 2005; 52: 123–7PubMedCrossRef Mouton JW, Jacobs N, Tiddens H, et al. Pharmacodynamics of tobramycin in patients with cystic fibrosis. Diagn Microbiol Infect Dis 2005; 52: 123–7PubMedCrossRef
28.
Zurück zum Zitat Chuck SK, Raber SR, Rodvold KA, et al. National survey of extended-interval aminoglycoside dosing. Clin Infect Dis 2000; 30: 433–9PubMedCrossRef Chuck SK, Raber SR, Rodvold KA, et al. National survey of extended-interval aminoglycoside dosing. Clin Infect Dis 2000; 30: 433–9PubMedCrossRef
29.
Zurück zum Zitat Begg EJ, Barclay ML, Duffull SB. A suggested approach to once-daily aminoglycoside dosing. Br J Clin Pharmacol 1995; 39: 605–9PubMedCrossRef Begg EJ, Barclay ML, Duffull SB. A suggested approach to once-daily aminoglycoside dosing. Br J Clin Pharmacol 1995; 39: 605–9PubMedCrossRef
30.
Zurück zum Zitat European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 1.3, January 5, 2011[online]. Available from URL: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/EUCAST_breakpoints_v1.3_pdf.pdf [Accessed 2011 Oct 12] European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 1.3, January 5, 2011[online]. Available from URL: http://​www.​eucast.​org/​fileadmin/​src/​media/​PDFs/​EUCAST_​files/​Disk_​test_​documents/​EUCAST_​breakpoints_​v1.​3_​pdf.​pdf [Accessed 2011 Oct 12]
31.
Zurück zum Zitat Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: 21st informational supplement [CLSI document M100-S21]. Wayne (PA): CLSI, 2011 Jan Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: 21st informational supplement [CLSI document M100-S21]. Wayne (PA): CLSI, 2011 Jan
32.
Zurück zum Zitat Frei CR, Wiederhold NP, Burgess DS. Antimicrobial breakpoints for gram-negative aerobic bacteria based on pharmacokinetic-pharmacodynamic models with Monte Carlo simulation. J Antimicrob Chemother 2008; 61: 621–8PubMedCrossRef Frei CR, Wiederhold NP, Burgess DS. Antimicrobial breakpoints for gram-negative aerobic bacteria based on pharmacokinetic-pharmacodynamic models with Monte Carlo simulation. J Antimicrob Chemother 2008; 61: 621–8PubMedCrossRef
33.
Zurück zum Zitat Bhavnani SM, Ambrose PG, Jones RN, et al. To split, or not to split a MIC distribution, that is the question: setting susceptibility break-points [abstract no. D-222]. Abstracts of the Forty-seventh Interscience Conference on Antimicrobial Agents and Chemotherapy; 2007 Sep 17–20; Chicago (IL). Washington, DC: American Society for Microbiology, 2007: 153 Bhavnani SM, Ambrose PG, Jones RN, et al. To split, or not to split a MIC distribution, that is the question: setting susceptibility break-points [abstract no. D-222]. Abstracts of the Forty-seventh Interscience Conference on Antimicrobial Agents and Chemotherapy; 2007 Sep 17–20; Chicago (IL). Washington, DC: American Society for Microbiology, 2007: 153
34.
Zurück zum Zitat Marik PE. Aminoglycoside volume of distribution and illness severity in critically ill septic patients. Anaesth Intensive Care 1993; 21: 172–3PubMed Marik PE. Aminoglycoside volume of distribution and illness severity in critically ill septic patients. Anaesth Intensive Care 1993; 21: 172–3PubMed
35.
Zurück zum Zitat Dorman T, Swoboda S, Zarfeshenfard F, et al. Impact of altered aminoglycoside volume of distribution on the adequacy of a three milligram per kilogram loading dose. Critical Care Research Group. Surgery 1998; 124: 73–8 Dorman T, Swoboda S, Zarfeshenfard F, et al. Impact of altered aminoglycoside volume of distribution on the adequacy of a three milligram per kilogram loading dose. Critical Care Research Group. Surgery 1998; 124: 73–8
36.
Zurück zum Zitat Botha FJ, van der Bijl P, Seifart HI, et al. Fluctuation of the volume of distribution of amikacin and its effect on once-daily dosage and clearance in a seriously ill patient. Intensive Care Med 1996; 22: 443–6PubMedCrossRef Botha FJ, van der Bijl P, Seifart HI, et al. Fluctuation of the volume of distribution of amikacin and its effect on once-daily dosage and clearance in a seriously ill patient. Intensive Care Med 1996; 22: 443–6PubMedCrossRef
37.
Zurück zum Zitat Ronchera-Oms CL, Tormo C, Ordovas JP, et al. Expanded gentamicin volume of distribution in critically ill adult patients receiving total parenteral nutrition. J Clin Pharm Ther 1995; 20: 253–8PubMedCrossRef Ronchera-Oms CL, Tormo C, Ordovas JP, et al. Expanded gentamicin volume of distribution in critically ill adult patients receiving total parenteral nutrition. J Clin Pharm Ther 1995; 20: 253–8PubMedCrossRef
38.
Zurück zum Zitat Etzel JV, Nafziger AN, Bertino Jr JS. Variation in the pharmacokinetics of gentamicin and tobramycin in patients with pleural effusions and hypoalbuminemia. Antimicrob Agents Chemother 1992; 36: 679–81PubMedCrossRef Etzel JV, Nafziger AN, Bertino Jr JS. Variation in the pharmacokinetics of gentamicin and tobramycin in patients with pleural effusions and hypoalbuminemia. Antimicrob Agents Chemother 1992; 36: 679–81PubMedCrossRef
39.
Zurück zum Zitat Sampliner R, Perrier D, Powell R, et al. Influence of ascites on tobramycin pharmacokinetics. J Clin Pharmacol 1984; 24: 43–6PubMed Sampliner R, Perrier D, Powell R, et al. Influence of ascites on tobramycin pharmacokinetics. J Clin Pharmacol 1984; 24: 43–6PubMed
40.
Zurück zum Zitat Worman LW. The role of fluid sequestration in the pathogenesis of mediastinitis. Am J Surg 1966; 111: 813–8PubMedCrossRef Worman LW. The role of fluid sequestration in the pathogenesis of mediastinitis. Am J Surg 1966; 111: 813–8PubMedCrossRef
41.
Zurück zum Zitat Romano S, Fdez de Gatta MM, Calvo MV, et al. Population pharmacokinetics of amikacin in patients with haematological malignancies. J Antimicrob Chemother 1999; 44: 235–42PubMedCrossRef Romano S, Fdez de Gatta MM, Calvo MV, et al. Population pharmacokinetics of amikacin in patients with haematological malignancies. J Antimicrob Chemother 1999; 44: 235–42PubMedCrossRef
42.
Zurück zum Zitat Dudley MN, Ambrose PG. Pharmacodynamics in the study of drug resistance and establishing in vitro susceptibility breakpoints: ready for prime time. Curr Opin Microbiol 2000; 3: 515–21PubMedCrossRef Dudley MN, Ambrose PG. Pharmacodynamics in the study of drug resistance and establishing in vitro susceptibility breakpoints: ready for prime time. Curr Opin Microbiol 2000; 3: 515–21PubMedCrossRef
43.
Zurück zum Zitat Nicolau DP, Freeman CD, Belliveau PP, et al. Experience with a once-daily aminoglycoside program administered to 2,184 adult patients. Antimicrob Agents Chemother 1995; 39: 650–5PubMedCrossRef Nicolau DP, Freeman CD, Belliveau PP, et al. Experience with a once-daily aminoglycoside program administered to 2,184 adult patients. Antimicrob Agents Chemother 1995; 39: 650–5PubMedCrossRef
44.
Zurück zum Zitat Rea RS, Capitano B, Bies R, et al. Suboptimal aminogly-coside dosing in critically ill patients. Ther Drug Monit 2008; 30: 674–81PubMedCrossRef Rea RS, Capitano B, Bies R, et al. Suboptimal aminogly-coside dosing in critically ill patients. Ther Drug Monit 2008; 30: 674–81PubMedCrossRef
45.
Zurück zum Zitat Taccone FS, Laterre PF, Spapen H, et al. Revisiting the loading dose of amikacin for patients with severe sepsis and septic shock. Crit Care 2010; 14(2): R53PubMedCrossRef Taccone FS, Laterre PF, Spapen H, et al. Revisiting the loading dose of amikacin for patients with severe sepsis and septic shock. Crit Care 2010; 14(2): R53PubMedCrossRef
46.
Zurück zum Zitat Drusano GL, Ambrose PG, Bhavnani SM, et al. Back to the future: using aminoglycosides again and how to dose them optimally. Clin Infect Dis 2007; 45: 753–60PubMedCrossRef Drusano GL, Ambrose PG, Bhavnani SM, et al. Back to the future: using aminoglycosides again and how to dose them optimally. Clin Infect Dis 2007; 45: 753–60PubMedCrossRef
47.
Zurück zum Zitat Trotman RL, Williamson JC, Shoemaker DM, et al. Antibiotic dosing in critically ill adult patients receiving continuous renal replacement therapy. Clin Infect Dis 2005; 41: 1159–66PubMedCrossRef Trotman RL, Williamson JC, Shoemaker DM, et al. Antibiotic dosing in critically ill adult patients receiving continuous renal replacement therapy. Clin Infect Dis 2005; 41: 1159–66PubMedCrossRef
48.
Zurück zum Zitat Begg EJ, Vella-Brincat JW, Robertshawe B, et al. Eight years’ experience of an extended-interval dosing protocol for gentamicin in neonates. J Antimicrob Chemother 2009; 63: 1043–9PubMedCrossRef Begg EJ, Vella-Brincat JW, Robertshawe B, et al. Eight years’ experience of an extended-interval dosing protocol for gentamicin in neonates. J Antimicrob Chemother 2009; 63: 1043–9PubMedCrossRef
49.
Zurück zum Zitat Inparajah M, Wong C, Sibbald C, et al. Once-daily gentamicin dosing in children with febrile neutropenia resulting from antineoplastic therapy. Pharmacotherapy 2010; 30: 43–51PubMedCrossRef Inparajah M, Wong C, Sibbald C, et al. Once-daily gentamicin dosing in children with febrile neutropenia resulting from antineoplastic therapy. Pharmacotherapy 2010; 30: 43–51PubMedCrossRef
50.
Zurück zum Zitat Matthews I, Kirkpatrick C, Holford N. Quantitative justification for target concentration intervention: parameter variability and predictive performance using population pharmacokinetic models for aminoglycosides. Br J Clin Pharmacol 2004; 58: 8–19PubMedCrossRef Matthews I, Kirkpatrick C, Holford N. Quantitative justification for target concentration intervention: parameter variability and predictive performance using population pharmacokinetic models for aminoglycosides. Br J Clin Pharmacol 2004; 58: 8–19PubMedCrossRef
51.
Zurück zum Zitat McNamara DR, Nafziger AN, Menhinick AM, et al. A dose-ranging study of gentamicin pharmacokinetics: implications for extended interval aminoglycoside therapy. J Clin Pharmacol 2001; 41: 374–7PubMedCrossRef McNamara DR, Nafziger AN, Menhinick AM, et al. A dose-ranging study of gentamicin pharmacokinetics: implications for extended interval aminoglycoside therapy. J Clin Pharmacol 2001; 41: 374–7PubMedCrossRef
52.
Zurück zum Zitat Van Eldere J. Multicentre surveillance of Pseudomonas aeruginosa susceptibility patterns in nosocomial infections. J Antimicrob Chemother 2003; 51: 347–52PubMedCrossRef Van Eldere J. Multicentre surveillance of Pseudomonas aeruginosa susceptibility patterns in nosocomial infections. J Antimicrob Chemother 2003; 51: 347–52PubMedCrossRef
53.
Zurück zum Zitat Daikos GL, Lolans VT, Jackson GG. First-exposure adaptive resistance to aminoglycoside antibiotics in vivo with meaning for optimal clinical use. Antimicrob Agents Chemother 1991; 35: 117–23PubMedCrossRef Daikos GL, Lolans VT, Jackson GG. First-exposure adaptive resistance to aminoglycoside antibiotics in vivo with meaning for optimal clinical use. Antimicrob Agents Chemother 1991; 35: 117–23PubMedCrossRef
54.
Zurück zum Zitat Daikos GL, Jackson GG, Lolans VT, et al. Adaptive resistance to aminoglycoside antibiotics from first-exposure down-regulation. J Infect Dis 1990; 162: 414–20PubMedCrossRef Daikos GL, Jackson GG, Lolans VT, et al. Adaptive resistance to aminoglycoside antibiotics from first-exposure down-regulation. J Infect Dis 1990; 162: 414–20PubMedCrossRef
55.
Zurück zum Zitat Barclay ML, Begg EJ, Chambers ST. Adaptive resistance following single doses of gentamicin in a dynamic in vitro model. Antimicrob Agents Chemother 1992; 36: 1951–7PubMedCrossRef Barclay ML, Begg EJ, Chambers ST. Adaptive resistance following single doses of gentamicin in a dynamic in vitro model. Antimicrob Agents Chemother 1992; 36: 1951–7PubMedCrossRef
56.
Zurück zum Zitat Karlowsky JA, Saunders MH, Harding GA, et al. In vitro characterization of aminoglycoside adaptive resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1996; 40: 1387–93PubMed Karlowsky JA, Saunders MH, Harding GA, et al. In vitro characterization of aminoglycoside adaptive resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1996; 40: 1387–93PubMed
57.
Zurück zum Zitat Hocquet D, Vogne C, El Garch F, et al. MexXY-OprM efflux pump is necessary for a adaptive resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother 2003; 47: 1371–5PubMedCrossRef Hocquet D, Vogne C, El Garch F, et al. MexXY-OprM efflux pump is necessary for a adaptive resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother 2003; 47: 1371–5PubMedCrossRef
58.
Zurück zum Zitat Ransil BJ, Greenblatt DJ, Koch-Weser J. Evidence for systematic temporal variation in 24-hour urinary creatinine excretion. J Clin Pharmacol 1977; 17: 108–19PubMed Ransil BJ, Greenblatt DJ, Koch-Weser J. Evidence for systematic temporal variation in 24-hour urinary creatinine excretion. J Clin Pharmacol 1977; 17: 108–19PubMed
59.
Zurück zum Zitat Elting L, Bodey GP, Rosenbaum B, et al. Circadian variation in serum amikacin levels. J Clin Pharmacol 1990; 30: 798–801PubMed Elting L, Bodey GP, Rosenbaum B, et al. Circadian variation in serum amikacin levels. J Clin Pharmacol 1990; 30: 798–801PubMed
60.
Zurück zum Zitat Lucht F, Tigaud S, Esposito G, et al. Chronokinetic study ofnetilmicin in man. Eur J Clin Pharmacol 1990; 39: 199–201PubMedCrossRef Lucht F, Tigaud S, Esposito G, et al. Chronokinetic study ofnetilmicin in man. Eur J Clin Pharmacol 1990; 39: 199–201PubMedCrossRef
61.
Zurück zum Zitat Dickson CJ, Schwartzman MS, Bertino Jr JS. Factors affecting aminoglycoside disposition: effects of circadian rhythm and dietary protein intake on gentamicin pharmacokinetics. Clin Pharmacol Ther 1986; 39: 325–8PubMedCrossRef Dickson CJ, Schwartzman MS, Bertino Jr JS. Factors affecting aminoglycoside disposition: effects of circadian rhythm and dietary protein intake on gentamicin pharmacokinetics. Clin Pharmacol Ther 1986; 39: 325–8PubMedCrossRef
62.
Zurück zum Zitat Bosch JP, Saccaggi A, Lauer A, et al. Renal functional reserve in humans: effect of protein intake on glomerular filtration rate. Am J Med 1983; 75: 943–50PubMedCrossRef Bosch JP, Saccaggi A, Lauer A, et al. Renal functional reserve in humans: effect of protein intake on glomerular filtration rate. Am J Med 1983; 75: 943–50PubMedCrossRef
63.
Zurück zum Zitat Brenner BM, Meyer TW, Hostetter TH. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med 1982; 307: 652–9PubMedCrossRef Brenner BM, Meyer TW, Hostetter TH. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med 1982; 307: 652–9PubMedCrossRef
64.
Zurück zum Zitat Prins JM, Weverling GJ, van Ketel RJ, et al. Circadian variations in serum levels and the renal toxicity of aminoglycosides in patients. Clin Pharmacol Ther 1997; 62: 106–11PubMedCrossRef Prins JM, Weverling GJ, van Ketel RJ, et al. Circadian variations in serum levels and the renal toxicity of aminoglycosides in patients. Clin Pharmacol Ther 1997; 62: 106–11PubMedCrossRef
65.
Zurück zum Zitat Nakano S, Song J, Ogawa N. Chronopharmacokinetics of gentamicin: comparison between man and mice. Ann Rev Chronopharmacol 1990; 7: 277–80 Nakano S, Song J, Ogawa N. Chronopharmacokinetics of gentamicin: comparison between man and mice. Ann Rev Chronopharmacol 1990; 7: 277–80
66.
Zurück zum Zitat Rybak MJ, Abate BJ, Kang SL, et al. Prospective evaluation of the effect of an aminoglycoside dosing regimen on rates of observed nephrotoxicity and ototoxicity. Antimicrob Agents Chemother 1999; 43: 1549–55PubMed Rybak MJ, Abate BJ, Kang SL, et al. Prospective evaluation of the effect of an aminoglycoside dosing regimen on rates of observed nephrotoxicity and ototoxicity. Antimicrob Agents Chemother 1999; 43: 1549–55PubMed
67.
Zurück zum Zitat Murry KR, McKinnon PS, Mitrzyk B, et al. Pharmacodynamic characterization of nephrotoxicity associated with once-daily aminoglycoside. Pharmacotherapy 1999; 19: 1252–60PubMedCrossRef Murry KR, McKinnon PS, Mitrzyk B, et al. Pharmacodynamic characterization of nephrotoxicity associated with once-daily aminoglycoside. Pharmacotherapy 1999; 19: 1252–60PubMedCrossRef
68.
Zurück zum Zitat de Hoog M, Schoemaker RC, Mouton JW, et al. Tobramycin population pharmacokinetics in neonates. Clin Pharmacol Ther 1997; 62: 392–9PubMedCrossRef de Hoog M, Schoemaker RC, Mouton JW, et al. Tobramycin population pharmacokinetics in neonates. Clin Pharmacol Ther 1997; 62: 392–9PubMedCrossRef
69.
Zurück zum Zitat Nielsen EI, Sandstrom M, Honore PH, et al. Developmental pharmacokinetics of gentamicin in preterm and term neonates: population modelling of a prospective study. Clin Pharmacokinet 2009; 48: 253–63PubMedCrossRef Nielsen EI, Sandstrom M, Honore PH, et al. Developmental pharmacokinetics of gentamicin in preterm and term neonates: population modelling of a prospective study. Clin Pharmacokinet 2009; 48: 253–63PubMedCrossRef
70.
Zurück zum Zitat Olsen NV, Lund J, Jensen PF, et al. Dopamine, dobutamine, and dopexamine: a comparison of renal effects in unanesthetized human volunteers. Anesthesiology 1993; 79: 685–94PubMedCrossRef Olsen NV, Lund J, Jensen PF, et al. Dopamine, dobutamine, and dopexamine: a comparison of renal effects in unanesthetized human volunteers. Anesthesiology 1993; 79: 685–94PubMedCrossRef
71.
Zurück zum Zitat Tang GJ, Tang JJ, Lin BS, et al. Factors affecting gentamicin pharmacokinetics in septic patients. Acta Anaesthesiol Scand 1999; 43: 726–30PubMedCrossRef Tang GJ, Tang JJ, Lin BS, et al. Factors affecting gentamicin pharmacokinetics in septic patients. Acta Anaesthesiol Scand 1999; 43: 726–30PubMedCrossRef
72.
Zurück zum Zitat de Groot R, Smith AL. Antibiotic pharmacokinetics in cystic fibrosis: differences and clinical significance. Clin Pharmacokinet 1987; 13: 228–53PubMedCrossRef de Groot R, Smith AL. Antibiotic pharmacokinetics in cystic fibrosis: differences and clinical significance. Clin Pharmacokinet 1987; 13: 228–53PubMedCrossRef
73.
Zurück zum Zitat Fuster-Lluch O, Geronimo-Pardo M, Peyro-Garcia R, et al. Glomerular hyperfiltration and albuminuria in critically ill patients. Anaesth Intensive Care 2008; 36: 674–80PubMed Fuster-Lluch O, Geronimo-Pardo M, Peyro-Garcia R, et al. Glomerular hyperfiltration and albuminuria in critically ill patients. Anaesth Intensive Care 2008; 36: 674–80PubMed
74.
Zurück zum Zitat Streetman DS, Nafziger AN, Destache CJ, et al. Individualized pharmacokinetic monitoring results in less aminoglycoside-associated nephrotoxicity and fewer associated costs. Pharmacotherapy 2001; 21: 443–51PubMedCrossRef Streetman DS, Nafziger AN, Destache CJ, et al. Individualized pharmacokinetic monitoring results in less aminoglycoside-associated nephrotoxicity and fewer associated costs. Pharmacotherapy 2001; 21: 443–51PubMedCrossRef
75.
Zurück zum Zitat Conil JM, Georges B, Ruiz S, et al. Tobramycin disposition in ICU patients receiving a once daily regimen: population approach and dosage simulations. Br J Clin Pharmacol 2011; 71: 61–71PubMedCrossRef Conil JM, Georges B, Ruiz S, et al. Tobramycin disposition in ICU patients receiving a once daily regimen: population approach and dosage simulations. Br J Clin Pharmacol 2011; 71: 61–71PubMedCrossRef
76.
Zurück zum Zitat Craig WA. Post-antibiotic effects in experimental infection models: relationship to in vitro phenomena and to treatment of infections in man. J Antimicrob Chemother 1993; 31 Suppl. D: 149–58PubMedCrossRef Craig WA. Post-antibiotic effects in experimental infection models: relationship to in vitro phenomena and to treatment of infections in man. J Antimicrob Chemother 1993; 31 Suppl. D: 149–58PubMedCrossRef
77.
Zurück zum Zitat McDonald PJ, Craig WA, Kunin CM. Persistent effect of antibiotics on Staphylococcus aureus after exposure for limited periods of time. J Infect Dis 1977; 135: 217–23PubMedCrossRef McDonald PJ, Craig WA, Kunin CM. Persistent effect of antibiotics on Staphylococcus aureus after exposure for limited periods of time. J Infect Dis 1977; 135: 217–23PubMedCrossRef
78.
Zurück zum Zitat Vogelman BS, Craig WA. Postantibiotic effects. J Antimicrob Chemother 1985; 15 Suppl. A: 37–46PubMedCrossRef Vogelman BS, Craig WA. Postantibiotic effects. J Antimicrob Chemother 1985; 15 Suppl. A: 37–46PubMedCrossRef
79.
Zurück zum Zitat den Hollander JG, Fuursted K, Verbrugh HA, et al. Duration and clinical relevance of postantibiotic effect in relation to the dosing interval. Antimicrob Agents Chemother 1998; 42: 749–54 den Hollander JG, Fuursted K, Verbrugh HA, et al. Duration and clinical relevance of postantibiotic effect in relation to the dosing interval. Antimicrob Agents Chemother 1998; 42: 749–54
80.
Zurück zum Zitat Isaksson B, Nilsson L, Maller R, et al. Postantibiotic effect of aminoglycosides on gram-negative bacteria evaluated by a new method. J Antimicrob Chemother 1988; 22: 23–33PubMedCrossRef Isaksson B, Nilsson L, Maller R, et al. Postantibiotic effect of aminoglycosides on gram-negative bacteria evaluated by a new method. J Antimicrob Chemother 1988; 22: 23–33PubMedCrossRef
81.
Zurück zum Zitat Karlowsky JA, Zhanel GG, Davidson RJ, et al. Postantibiotic effect in Pseudomonas aeruginosa following single and multiple aminoglycoside exposures in vitro. J Antimicrob Chemother 1994; 33: 937–47PubMedCrossRef Karlowsky JA, Zhanel GG, Davidson RJ, et al. Postantibiotic effect in Pseudomonas aeruginosa following single and multiple aminoglycoside exposures in vitro. J Antimicrob Chemother 1994; 33: 937–47PubMedCrossRef
82.
Zurück zum Zitat Bundtzen RW, Gerber AU, Cohn DL, et al. Postantibiotic suppression of bacterial growth. Rev Infect Dis 1981; 3: 28–37PubMedCrossRef Bundtzen RW, Gerber AU, Cohn DL, et al. Postantibiotic suppression of bacterial growth. Rev Infect Dis 1981; 3: 28–37PubMedCrossRef
83.
Zurück zum Zitat Bermudez LE, Wu M, Young LS, et al. Postantibiotic effect of amikacin and rifapentine against Mycobacterium avium complex. J Infect Dis 1992; 166: 923–6PubMedCrossRef Bermudez LE, Wu M, Young LS, et al. Postantibiotic effect of amikacin and rifapentine against Mycobacterium avium complex. J Infect Dis 1992; 166: 923–6PubMedCrossRef
84.
Zurück zum Zitat den Hollander JG, Mouton JW, van Goor MP, et al. Alteration of postantibiotic effect during one dosing interval of tobramycin, simulated in an in vitro pharmacokinetic model. Antimicrob Agents Chemother 1996; 40: 784–6 den Hollander JG, Mouton JW, van Goor MP, et al. Alteration of postantibiotic effect during one dosing interval of tobramycin, simulated in an in vitro pharmacokinetic model. Antimicrob Agents Chemother 1996; 40: 784–6
85.
Zurück zum Zitat Fantin B, Ebert S, Leggett J, et al. Factors affecting duration of in-vivo postantibiotic effect for aminoglycosides against gram-negative bacilli. J Antimicrob Chemother 1991; 27: 829–36PubMedCrossRef Fantin B, Ebert S, Leggett J, et al. Factors affecting duration of in-vivo postantibiotic effect for aminoglycosides against gram-negative bacilli. J Antimicrob Chemother 1991; 27: 829–36PubMedCrossRef
86.
Zurück zum Zitat Mouton JW, Vinks AA. Pharmacokinetic/pharmacodynamic modelling of antibacterials in vitro and in vivo using bacterial growth and kill kinetics: the minimum inhibitory concentration versus stationary concentration. Clin Pharmacokinet 2005; 44: 201–10PubMedCrossRef Mouton JW, Vinks AA. Pharmacokinetic/pharmacodynamic modelling of antibacterials in vitro and in vivo using bacterial growth and kill kinetics: the minimum inhibitory concentration versus stationary concentration. Clin Pharmacokinet 2005; 44: 201–10PubMedCrossRef
87.
Zurück zum Zitat Zhanel GG, Karlowsky JA, Hoban DJ, et al. Antimicrobial activity of subinhibitory concentrations of amino-glycosides against Pseudomonas aeruginosa as determined by the killing-curve method and the postantibiotic effect. Chemotherapy 1991; 37: 114–21PubMedCrossRef Zhanel GG, Karlowsky JA, Hoban DJ, et al. Antimicrobial activity of subinhibitory concentrations of amino-glycosides against Pseudomonas aeruginosa as determined by the killing-curve method and the postantibiotic effect. Chemotherapy 1991; 37: 114–21PubMedCrossRef
88.
Zurück zum Zitat Odenholt-Tornqvist I, Lowdin E, Cars O. Pharmacody-namic effects of subinhibitory concentrations of betalactam antibiotics in vitro. Antimicrob Agents Chemother 1991; 35: 1834–9PubMedCrossRef Odenholt-Tornqvist I, Lowdin E, Cars O. Pharmacody-namic effects of subinhibitory concentrations of betalactam antibiotics in vitro. Antimicrob Agents Chemother 1991; 35: 1834–9PubMedCrossRef
89.
Zurück zum Zitat Odenholt I. Pharmacodynamic effects of subinhibitory antibiotic concentrations. Int J Antimicrob Agents 2001; 17: 1–8PubMedCrossRef Odenholt I. Pharmacodynamic effects of subinhibitory antibiotic concentrations. Int J Antimicrob Agents 2001; 17: 1–8PubMedCrossRef
90.
Zurück zum Zitat Odenholt-Tornqvist I, Lowdin E, Cars O. Postantibiotic sub-MIC effects of vancomycin, roxithromycin, spar-floxacin, and amikacin. Antimicrob Agents Chemother 1992; 36: 1852–8PubMedCrossRef Odenholt-Tornqvist I, Lowdin E, Cars O. Postantibiotic sub-MIC effects of vancomycin, roxithromycin, spar-floxacin, and amikacin. Antimicrob Agents Chemother 1992; 36: 1852–8PubMedCrossRef
91.
Zurück zum Zitat McDonald PJ, Wetherall BL, Pruul H. Postantibiotic leukocyte enhancement: increased susceptibility of bacteria pretreated with antibiotics to activity of leukocytes. Rev Infect Dis 1981; 3(1): 38–44PubMedCrossRef McDonald PJ, Wetherall BL, Pruul H. Postantibiotic leukocyte enhancement: increased susceptibility of bacteria pretreated with antibiotics to activity of leukocytes. Rev Infect Dis 1981; 3(1): 38–44PubMedCrossRef
92.
Zurück zum Zitat Novelli A, Mazzei T, Fallani S, et al. In vitro postantibiotic effect and postantibiotic leukocyte enhancement of tobramycin. J Chemother 1995; 7: 355–62PubMed Novelli A, Mazzei T, Fallani S, et al. In vitro postantibiotic effect and postantibiotic leukocyte enhancement of tobramycin. J Chemother 1995; 7: 355–62PubMed
93.
Zurück zum Zitat Schlaeffer F, Blaser J, Laxon J, et al. Enhancement of leucocyte killing of resistant bacteria selected during exposure to aminoglycosides or quinolones. J Antimicrob Chemother 1990; 25: 941–8PubMedCrossRef Schlaeffer F, Blaser J, Laxon J, et al. Enhancement of leucocyte killing of resistant bacteria selected during exposure to aminoglycosides or quinolones. J Antimicrob Chemother 1990; 25: 941–8PubMedCrossRef
94.
Zurück zum Zitat Gerber AU, Vastola AP, Brandel J, et al. Selection of aminoglycoside-resistant variants of Pseudomonas aeruginosa in an in vivo model. J Infect Dis 1982; 146: 691–7PubMedCrossRef Gerber AU, Vastola AP, Brandel J, et al. Selection of aminoglycoside-resistant variants of Pseudomonas aeruginosa in an in vivo model. J Infect Dis 1982; 146: 691–7PubMedCrossRef
95.
Zurück zum Zitat Kapusnik JE, Hackbarth CJ, Chambers HF, et al. Single, large, daily dosing versus intermittent dosing of to-bramycin for treating experimental pseudomonas pneumonia. J Infect Dis 1988; 158: 7–12PubMedCrossRef Kapusnik JE, Hackbarth CJ, Chambers HF, et al. Single, large, daily dosing versus intermittent dosing of to-bramycin for treating experimental pseudomonas pneumonia. J Infect Dis 1988; 158: 7–12PubMedCrossRef
96.
Zurück zum Zitat Iida K, Koike M. Cell wall alterations of gram-negative bacteria by aminoglycoside antibiotics. Antimicrob Agents Chemother 1974; 5: 95–7PubMedCrossRef Iida K, Koike M. Cell wall alterations of gram-negative bacteria by aminoglycoside antibiotics. Antimicrob Agents Chemother 1974; 5: 95–7PubMedCrossRef
97.
Zurück zum Zitat Raponi G, Keller N, Overbeek BP, et al. Enhanced phagocytosis of encapsulated Escherichia coli strains after exposure to sub-MICs of antibiotics is correlated to changes of the bacterial cell surface. Antimicrob Agents Chemother 1990; 34: 332–6PubMedCrossRef Raponi G, Keller N, Overbeek BP, et al. Enhanced phagocytosis of encapsulated Escherichia coli strains after exposure to sub-MICs of antibiotics is correlated to changes of the bacterial cell surface. Antimicrob Agents Chemother 1990; 34: 332–6PubMedCrossRef
98.
Zurück zum Zitat Raponi G, Vreede RW, Rozenberg-Arska M, et al. The influence of subminimal inhibitory concentrations of netilmicin and ceftriaxone on the interaction of Escherichia coli with host defences. J Antimicrob Chemother 1989; 23: 565–76PubMedCrossRef Raponi G, Vreede RW, Rozenberg-Arska M, et al. The influence of subminimal inhibitory concentrations of netilmicin and ceftriaxone on the interaction of Escherichia coli with host defences. J Antimicrob Chemother 1989; 23: 565–76PubMedCrossRef
99.
Zurück zum Zitat Sadovskaya I, Vinogradov E, Li J, et al. High-level antibiotic resistance in Pseudomonas aeruginosa biofilm: the ndvB gene is involved in the production of highly glycerol-phosphorylated beta-(1->3)-glucans, which bind aminoglycosides. Glycobiology 2010; 20: 895–904PubMedCrossRef Sadovskaya I, Vinogradov E, Li J, et al. High-level antibiotic resistance in Pseudomonas aeruginosa biofilm: the ndvB gene is involved in the production of highly glycerol-phosphorylated beta-(1->3)-glucans, which bind aminoglycosides. Glycobiology 2010; 20: 895–904PubMedCrossRef
100.
Zurück zum Zitat Buchholz F, Wolf A, Lerchner J, et al. Chip calorimetry for fast and reliable evaluation of bactericidal and bacteriostatic treatments of biofilms. Antimicrob Agents Chemother 2010; 54: 312–9PubMedCrossRef Buchholz F, Wolf A, Lerchner J, et al. Chip calorimetry for fast and reliable evaluation of bactericidal and bacteriostatic treatments of biofilms. Antimicrob Agents Chemother 2010; 54: 312–9PubMedCrossRef
101.
Zurück zum Zitat Chambless JD, Hunt SM, Stewart PS. A three-dimensional computer model of four hypothetical mechanisms protecting biofilms from antimicrobials. Appl Environ Microbiol 2006; 72: 2005–13PubMedCrossRef Chambless JD, Hunt SM, Stewart PS. A three-dimensional computer model of four hypothetical mechanisms protecting biofilms from antimicrobials. Appl Environ Microbiol 2006; 72: 2005–13PubMedCrossRef
102.
Zurück zum Zitat Barclay ML, Begg EJ, Chambers ST, et al. Adaptive resistance to tobramycin in Pseudomonas aeruginosa lung infection in cystic fibrosis. J Antimicrob Chemother 1996; 37: 1155–64PubMedCrossRef Barclay ML, Begg EJ, Chambers ST, et al. Adaptive resistance to tobramycin in Pseudomonas aeruginosa lung infection in cystic fibrosis. J Antimicrob Chemother 1996; 37: 1155–64PubMedCrossRef
103.
Zurück zum Zitat Kirketerp-Moller K, Jensen PO, Fazli M, et al. Distribution, organization, and ecology of bacteria in chronic wounds. J Clin Microbiol 2008; 46: 2717–22PubMedCrossRef Kirketerp-Moller K, Jensen PO, Fazli M, et al. Distribution, organization, and ecology of bacteria in chronic wounds. J Clin Microbiol 2008; 46: 2717–22PubMedCrossRef
104.
Zurück zum Zitat Lomovskaya O, Bostian KA. Practical applications and feasibility of efflux pump inhibitors in the clinic: a vision for applied use. Biochem Pharmacol 2006; 71: 910–8PubMedCrossRef Lomovskaya O, Bostian KA. Practical applications and feasibility of efflux pump inhibitors in the clinic: a vision for applied use. Biochem Pharmacol 2006; 71: 910–8PubMedCrossRef
106.
Zurück zum Zitat Langton Hewer SC, Smyth AR. Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis. Cochrane Database Syst Rev 2009 Oct 7; (4): CD004197 Langton Hewer SC, Smyth AR. Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis. Cochrane Database Syst Rev 2009 Oct 7; (4): CD004197
107.
Zurück zum Zitat Ratjen F, Munck A, Kho P, et al., ELITE Study Group. Treatment of early Pseudomonas aeruginosa infection in patients with cystic fibrosis: the ELITE trial. Thorax 2010; 65: 286–91PubMedCrossRef Ratjen F, Munck A, Kho P, et al., ELITE Study Group. Treatment of early Pseudomonas aeruginosa infection in patients with cystic fibrosis: the ELITE trial. Thorax 2010; 65: 286–91PubMedCrossRef
108.
Zurück zum Zitat Contopoulos-Ioannidis DG, Giotis ND, Baliatsa DV, et al. Extended-interval aminoglycoside administration for children: a meta-analysis. Pediatrics 2004; 114: e1 11–8CrossRef Contopoulos-Ioannidis DG, Giotis ND, Baliatsa DV, et al. Extended-interval aminoglycoside administration for children: a meta-analysis. Pediatrics 2004; 114: e1 11–8CrossRef
109.
Zurück zum Zitat Hatala R, Dinh T, Cook DJ. Once-daily aminoglycoside dosing in immunocompetent adults: a meta-analysis. Ann Intern Med 1996; 124: 717–25PubMed Hatala R, Dinh T, Cook DJ. Once-daily aminoglycoside dosing in immunocompetent adults: a meta-analysis. Ann Intern Med 1996; 124: 717–25PubMed
110.
Zurück zum Zitat Mavros MN, Polyzos KA, Rafailidis PI, et al. Once versus multiple daily dosing of aminoglycosides for patients with febrile neutropenia: a systematic review and meta-analysis. J Antimicrob Chemother 2011; 66: 251–9PubMedCrossRef Mavros MN, Polyzos KA, Rafailidis PI, et al. Once versus multiple daily dosing of aminoglycosides for patients with febrile neutropenia: a systematic review and meta-analysis. J Antimicrob Chemother 2011; 66: 251–9PubMedCrossRef
111.
Zurück zum Zitat Smyth AR, Bhatt J. Once-daily versus multiple-daily dosing with intravenous aminoglycosides for cystic fibrosis. Cochrane Database Syst Rev 2010 Jan 20; (1): CD002009PubMed Smyth AR, Bhatt J. Once-daily versus multiple-daily dosing with intravenous aminoglycosides for cystic fibrosis. Cochrane Database Syst Rev 2010 Jan 20; (1): CD002009PubMed
112.
Zurück zum Zitat Teigen MM, Duffull S, Dang L, et al. Dosing of gentamicin in patients with end-stage renal disease receiving hemodialysis. J Clin Pharmacol 2006; 46: 1259–67PubMedCrossRef Teigen MM, Duffull S, Dang L, et al. Dosing of gentamicin in patients with end-stage renal disease receiving hemodialysis. J Clin Pharmacol 2006; 46: 1259–67PubMedCrossRef
113.
Zurück zum Zitat Mitchell G, Brouillette E, Seguin DL, et al. A role for sigma factor B in the emergence of Staphylococcus aureus small-colony variants and elevated biofilm production resulting from an exposure to aminoglycosides. Microb Pathog 2010; 48: 18–27PubMedCrossRef Mitchell G, Brouillette E, Seguin DL, et al. A role for sigma factor B in the emergence of Staphylococcus aureus small-colony variants and elevated biofilm production resulting from an exposure to aminoglycosides. Microb Pathog 2010; 48: 18–27PubMedCrossRef
114.
Zurück zum Zitat Hoffman LR, D’Argenio DA, MacCoss MJ, et al. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 2005; 436: 1171–5PubMedCrossRef Hoffman LR, D’Argenio DA, MacCoss MJ, et al. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 2005; 436: 1171–5PubMedCrossRef
115.
Zurück zum Zitat Singh R, Ray P, Das A, et al. Role of persisters and small-colony variants in antibiotic resistance of planktonic and biofilm-associated Staphylococcus aureus: an in vitro study. J Med Microbiol 2009; 58: 1067–73PubMedCrossRef Singh R, Ray P, Das A, et al. Role of persisters and small-colony variants in antibiotic resistance of planktonic and biofilm-associated Staphylococcus aureus: an in vitro study. J Med Microbiol 2009; 58: 1067–73PubMedCrossRef
116.
Zurück zum Zitat ter Braak EW, de Vries PJ, Bouter KP, et al. Once-daily dosing regimen for aminoglycoside plus beta-lactam combination therapy of serious bacterial infections: comparative trial with netilmicin plus ceftriaxone. Am J Med 1990; 89: 58–66PubMedCrossRef ter Braak EW, de Vries PJ, Bouter KP, et al. Once-daily dosing regimen for aminoglycoside plus beta-lactam combination therapy of serious bacterial infections: comparative trial with netilmicin plus ceftriaxone. Am J Med 1990; 89: 58–66PubMedCrossRef
117.
Zurück zum Zitat Kim MJ, Bertino Jr JS, Erb TA, et al. Application of Bayes theorem to aminoglycoside-associated nephrotoxicity: comparison of extended-interval dosing, individualized pharmacokinetic monitoring, and multiple-daily dosing. J Clin Pharmacol 2004; 44: 696–707PubMedCrossRef Kim MJ, Bertino Jr JS, Erb TA, et al. Application of Bayes theorem to aminoglycoside-associated nephrotoxicity: comparison of extended-interval dosing, individualized pharmacokinetic monitoring, and multiple-daily dosing. J Clin Pharmacol 2004; 44: 696–707PubMedCrossRef
118.
Zurück zum Zitat Bertino Jr JS, Booker LA, Franck PA, et al. Incidence of and significant risk factors for aminoglycoside-associated nephrotoxicity in patients dosed by using individualized pharmacokinetic monitoring. J Infect Dis 1993; 167:173–9PubMedCrossRef Bertino Jr JS, Booker LA, Franck PA, et al. Incidence of and significant risk factors for aminoglycoside-associated nephrotoxicity in patients dosed by using individualized pharmacokinetic monitoring. J Infect Dis 1993; 167:173–9PubMedCrossRef
119.
Zurück zum Zitat Silverblatt FJ, Kuehn C. Autoradiography of gentamicin uptake by the rat proximal tubule cell. Kidney Int 1979; 15: 335–45PubMedCrossRef Silverblatt FJ, Kuehn C. Autoradiography of gentamicin uptake by the rat proximal tubule cell. Kidney Int 1979; 15: 335–45PubMedCrossRef
120.
Zurück zum Zitat Schmitz C, Hilpert J, Jacobsen C, et al. Megalin deficiency offers protection from renal aminoglycoside accumulation. J Biol Chem 2002; 277: 618–22PubMedCrossRef Schmitz C, Hilpert J, Jacobsen C, et al. Megalin deficiency offers protection from renal aminoglycoside accumulation. J Biol Chem 2002; 277: 618–22PubMedCrossRef
121.
Zurück zum Zitat Myrdal SE, Johnson KC, Steyger PS. Cytoplasmic and in-tra-nuclear binding of gentamicin does not require endo-cytosis. Hear Res 2005; 204: 156–69PubMedCrossRef Myrdal SE, Johnson KC, Steyger PS. Cytoplasmic and in-tra-nuclear binding of gentamicin does not require endo-cytosis. Hear Res 2005; 204: 156–69PubMedCrossRef
122.
Zurück zum Zitat Kaloyanides GJ. Drug-phospholipid interactions: role in aminoglycoside nephrotoxicity. Ren Fail 1992; 14: 351–7PubMedCrossRef Kaloyanides GJ. Drug-phospholipid interactions: role in aminoglycoside nephrotoxicity. Ren Fail 1992; 14: 351–7PubMedCrossRef
123.
Zurück zum Zitat Bennett WM, Mela-Riker LM, Houghton DC, et al. Microsomal protein synthesis inhibition: an early manifestation of gentamicin nephrotoxicity. Am J Physiol 1988; 255: F265–9PubMed Bennett WM, Mela-Riker LM, Houghton DC, et al. Microsomal protein synthesis inhibition: an early manifestation of gentamicin nephrotoxicity. Am J Physiol 1988; 255: F265–9PubMed
124.
Zurück zum Zitat Mela-Riker LM, Widener LL, Houghton DC, et al. Renal mitochondrial integrity during continuous gentamicin treatment. Biochem Pharmacol 1986; 35: 979–84PubMedCrossRef Mela-Riker LM, Widener LL, Houghton DC, et al. Renal mitochondrial integrity during continuous gentamicin treatment. Biochem Pharmacol 1986; 35: 979–84PubMedCrossRef
125.
Zurück zum Zitat Sandoval RM, Molitoris BA. Gentamicin traffics retrograde through the secretory pathway and is released in the cytosol via the endoplasmic reticulum. Am J Physiol Renal Physiol2004; 286: F617–24PubMedCrossRef Sandoval RM, Molitoris BA. Gentamicin traffics retrograde through the secretory pathway and is released in the cytosol via the endoplasmic reticulum. Am J Physiol Renal Physiol2004; 286: F617–24PubMedCrossRef
126.
Zurück zum Zitat Rougier F, Ducher M, Maurin M, et al. Aminoglycoside dosages and nephrotoxicity: quantitative relationships. Clin Pharmacokinet. 2003; 42: 493–500PubMedCrossRef Rougier F, Ducher M, Maurin M, et al. Aminoglycoside dosages and nephrotoxicity: quantitative relationships. Clin Pharmacokinet. 2003; 42: 493–500PubMedCrossRef
127.
Zurück zum Zitat Hashino E, Shero M. Endocytosis of aminoglycoside antibiotics in sensory hair cells. Brain Res 1995; 704: 135–40PubMedCrossRef Hashino E, Shero M. Endocytosis of aminoglycoside antibiotics in sensory hair cells. Brain Res 1995; 704: 135–40PubMedCrossRef
128.
Zurück zum Zitat Marcotti W, van Netten SM, Kros CJ. The aminoglycoside antibiotic dihydrostreptomycin rapidly enters mouse outer hair cells through the mechano-electrical transducer channels. J Physiol 2005; 567: 505–21PubMedCrossRef Marcotti W, van Netten SM, Kros CJ. The aminoglycoside antibiotic dihydrostreptomycin rapidly enters mouse outer hair cells through the mechano-electrical transducer channels. J Physiol 2005; 567: 505–21PubMedCrossRef
129.
Zurück zum Zitat Wang Q, Kachelmeier A, Steyger PS. Competitive antagonism of fluorescent gentamicin uptake in the cochlea. Hear Res 2010; 268: 250–9PubMedCrossRef Wang Q, Kachelmeier A, Steyger PS. Competitive antagonism of fluorescent gentamicin uptake in the cochlea. Hear Res 2010; 268: 250–9PubMedCrossRef
130.
Zurück zum Zitat Aran JM, Dulon D, Hiel H, et al. Ototoxicity of amino-sides: recent results on uptake and clearance of gentamycin by sensory cells of the cochlea. Rev Laryngol Otol Rhinol (Bord) 1993; 114: 125–8 Aran JM, Dulon D, Hiel H, et al. Ototoxicity of amino-sides: recent results on uptake and clearance of gentamycin by sensory cells of the cochlea. Rev Laryngol Otol Rhinol (Bord) 1993; 114: 125–8
131.
Zurück zum Zitat Li H, Steyger PS. Synergistic ototoxicity due to noise exposure and aminoglycoside antibiotics. Noise Health 2009; 11: 26–32PubMedCrossRef Li H, Steyger PS. Synergistic ototoxicity due to noise exposure and aminoglycoside antibiotics. Noise Health 2009; 11: 26–32PubMedCrossRef
132.
Zurück zum Zitat Owens KN, Coffin AB, Hong LS, et al. Response of mechanosensory hair cells of the zebrafish lateral line to aminoglycosides reveals distinct cell death pathways. Hear Res 2009; 253: 32–41PubMedCrossRef Owens KN, Coffin AB, Hong LS, et al. Response of mechanosensory hair cells of the zebrafish lateral line to aminoglycosides reveals distinct cell death pathways. Hear Res 2009; 253: 32–41PubMedCrossRef
133.
Zurück zum Zitat Westbrock-Wadman S, Sherman DR, Hickey MJ, et al. Characterization of a Pseudomonas aeruginosa efflux pump contributing to aminoglycoside impermeability. Antimicrob Agents Chemother 1999; 43: 2975–83PubMed Westbrock-Wadman S, Sherman DR, Hickey MJ, et al. Characterization of a Pseudomonas aeruginosa efflux pump contributing to aminoglycoside impermeability. Antimicrob Agents Chemother 1999; 43: 2975–83PubMed
134.
Zurück zum Zitat Cottarel G, Wierzbowski J. Combination drugs, an emerging option for antibacterial therapy. Trends Biotechnol 2007; 25: 547–55PubMedCrossRef Cottarel G, Wierzbowski J. Combination drugs, an emerging option for antibacterial therapy. Trends Biotechnol 2007; 25: 547–55PubMedCrossRef
135.
Zurück zum Zitat Daigle DM, McKay GA, Wright GD. Inhibition of aminoglycoside antibiotic resistance enzymes by protein kinase inhibitors. J Biol Chem 1997; 272: 24755–8PubMedCrossRef Daigle DM, McKay GA, Wright GD. Inhibition of aminoglycoside antibiotic resistance enzymes by protein kinase inhibitors. J Biol Chem 1997; 272: 24755–8PubMedCrossRef
136.
Zurück zum Zitat Fajardo A, Martinez-Martin N, Mercadillo M, et al. The neglected intrinsic resistome of bacterial pathogens. PLoS One 2008; 3: e1619PubMedCrossRef Fajardo A, Martinez-Martin N, Mercadillo M, et al. The neglected intrinsic resistome of bacterial pathogens. PLoS One 2008; 3: e1619PubMedCrossRef
137.
Zurück zum Zitat Lee S, Hinz A, Bauerle E, et al. Targeting a bacterial stress response to enhance antibiotic action. Proc Natl Acad Sci USA 2009; 106: 14570–5PubMedCrossRef Lee S, Hinz A, Bauerle E, et al. Targeting a bacterial stress response to enhance antibiotic action. Proc Natl Acad Sci USA 2009; 106: 14570–5PubMedCrossRef
138.
Zurück zum Zitat Aggen JB, Armstrong ES, Goldblum AA, et al. Synthesis and spectrum of the neoglycoside ACHN-490. Antimicrob Agents Chemother 2010; 54: 4636–42PubMedCrossRef Aggen JB, Armstrong ES, Goldblum AA, et al. Synthesis and spectrum of the neoglycoside ACHN-490. Antimicrob Agents Chemother 2010; 54: 4636–42PubMedCrossRef
139.
Zurück zum Zitat Halwani M, Hebert S, Suntres ZE, et al. Bismuth-thiol incorporation enhances biological activities of liposomal tobramycin against bacterial biofilm and quorum sensing molecules production by Pseudomonas aeruginosa. Int J Pharm 2009; 373: 141–6PubMedCrossRef Halwani M, Hebert S, Suntres ZE, et al. Bismuth-thiol incorporation enhances biological activities of liposomal tobramycin against bacterial biofilm and quorum sensing molecules production by Pseudomonas aeruginosa. Int J Pharm 2009; 373: 141–6PubMedCrossRef
140.
Zurück zum Zitat Hui T, Yongqing X, Tiane Z, et al. Treatment of osteomyelitis by liposomal gentamicin-impregnated calcium sulfate. Arch Orthop Trauma Surg 2009; 129: 1301–8PubMedCrossRef Hui T, Yongqing X, Tiane Z, et al. Treatment of osteomyelitis by liposomal gentamicin-impregnated calcium sulfate. Arch Orthop Trauma Surg 2009; 129: 1301–8PubMedCrossRef
141.
Zurück zum Zitat Rukholm G, Mugabe C, Azghani AO, et al. Antibacterial activity of liposomal gentamicin against Pseudomonas aeruginosa: a time-kill study. Int J Antimicrob Agents 2006; 27: 247–52PubMedCrossRef Rukholm G, Mugabe C, Azghani AO, et al. Antibacterial activity of liposomal gentamicin against Pseudomonas aeruginosa: a time-kill study. Int J Antimicrob Agents 2006; 27: 247–52PubMedCrossRef
Metadaten
Titel
Pharmacological Considerations for the Proper Clinical Use of Aminoglycosides
verfasst von
Spyridon Pagkalis
Elpis Mantadakis
Michael N. Mavros
Christina Ammari
Professor Matthew E. Falagas
Publikationsdatum
01.12.2011
Verlag
Springer International Publishing
Erschienen in
Drugs / Ausgabe 17/2011
Print ISSN: 0012-6667
Elektronische ISSN: 1179-1950
DOI
https://doi.org/10.2165/11597020-000000000-00000

Weitere Artikel der Ausgabe 17/2011

Drugs 17/2011 Zur Ausgabe

Adis Drug Evaluation

Liraglutide