Skip to main content
Erschienen in: Cardiovascular Toxicology 4/2019

06.02.2019

Linoleic Acid Metabolite DiHOME Decreases Post-ischemic Cardiac Recovery in Murine Hearts

verfasst von: Marwin Bannehr, Lena Löhr, Julia Gelep, Wilhelm Haverkamp, Wolf-Hagen Schunck, Maik Gollasch, Alexander Wutzler

Erschienen in: Cardiovascular Toxicology | Ausgabe 4/2019

Einloggen, um Zugang zu erhalten

Abstract

Cardiac ischemia/reperfusion injury is associated with the formation and action of lipid mediators derived from polyunsaturated fatty acids. Among them, linoleic acid (LA) is metabolized to epoxyoctadecanoic acids (EpOMEs) by cytochrome P450 (CYP) epoxygenases and further to dihydroxyoctadecanoic acids (DiHOMEs) by soluble epoxide hydrolase (sEH). We hypothesized that EpOMEs and/or DiHOMEs may affect cardiac post-ischemic recovery and addressed this question using isolated murine hearts in a Langendorff system. Hearts from C57Bl6 mice were exposed to 12,13-EpOME, 12,13-DiHOME, or vehicle (phosphate buffered sodium; PBS). Effects on basal cardiac function and functional recovery during reperfusion following 20 min of ischemia were investigated. Electrocardiogram (ECG), left ventricular (LV) pressure and coronary flow (CF) were continuously measured. Ischemia reperfusion experiments were repeated after administration of the sEH-inhibitor 12-(3-adamantan-1-yl-ureido)dodecanoic acid (AUDA). At a concentration of 100 nM, both EpOME and DiHOME decreased post-ischemic functional recovery in murine hearts. There was no effect on basal cardiac parameters. The detrimental effects seen with EpOME, but not DiHOME, were averted by sEH inhibition (AUDA). Our results indicate that LA-derived mediators EpOME/DiHOME may play an important role in cardiac ischemic events. Inhibition of sEH could provide a novel treatment option to prevent detrimental DiHOME effects in acute cardiac ischemia.
Literatur
1.
Zurück zum Zitat Pagidipati, N. J., & Gaziano, T. A. (2013). Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement. Circulation, 127, 749–756.CrossRefPubMedPubMedCentral Pagidipati, N. J., & Gaziano, T. A. (2013). Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement. Circulation, 127, 749–756.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M., … Turner, M. B. (2015). Heart disease and stroke statistics–2015 update: a report from the American Heart Association. Circulation, 131, e29–e322.PubMed Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M., … Turner, M. B. (2015). Heart disease and stroke statistics–2015 update: a report from the American Heart Association. Circulation, 131, e29–e322.PubMed
3.
Zurück zum Zitat Cleland, J. G., Torabi, A., & Khan, N. K. (2005). Epidemiology and management of heart failure and left ventricular systolic dysfunction in the aftermath of a myocardial infarction. Heart, 91(Suppl 2), ii7–ii13; discussion ii31, ii43-18.PubMedPubMedCentral Cleland, J. G., Torabi, A., & Khan, N. K. (2005). Epidemiology and management of heart failure and left ventricular systolic dysfunction in the aftermath of a myocardial infarction. Heart, 91(Suppl 2), ii7–ii13; discussion ii31, ii43-18.PubMedPubMedCentral
4.
Zurück zum Zitat Frangogiannis, N. G., Smith, C. W., & Entman, M. L. (2002). The inflammatory response in myocardial infarction. Cardiovascular Research, 53, 31–47.CrossRefPubMed Frangogiannis, N. G., Smith, C. W., & Entman, M. L. (2002). The inflammatory response in myocardial infarction. Cardiovascular Research, 53, 31–47.CrossRefPubMed
5.
Zurück zum Zitat Eliasz, A. W., Chapman, D., & Ewing, D. F. (1976). Phospholipid phase transitions. Effects of n-alcohols, n-monocarboxylic acids, phenylalkyl alcohols and quaternary ammonium compounds. Biochimica et Biophysica Acta, 448, 220–230.CrossRefPubMed Eliasz, A. W., Chapman, D., & Ewing, D. F. (1976). Phospholipid phase transitions. Effects of n-alcohols, n-monocarboxylic acids, phenylalkyl alcohols and quaternary ammonium compounds. Biochimica et Biophysica Acta, 448, 220–230.CrossRefPubMed
6.
Zurück zum Zitat Schuchardt, J. P., Schmidt, S., Kressel, G., Dong, H., Willenberg, I., Hammock, B. D., Hahn, A., & Schebb, N. H. (2013). Comparison of free serum oxylipin concentrations in hyper- vs. normolipidemic men. Prostaglandins Leukotrienes and Essential Fatty Acids, 89, 19–29.CrossRef Schuchardt, J. P., Schmidt, S., Kressel, G., Dong, H., Willenberg, I., Hammock, B. D., Hahn, A., & Schebb, N. H. (2013). Comparison of free serum oxylipin concentrations in hyper- vs. normolipidemic men. Prostaglandins Leukotrienes and Essential Fatty Acids, 89, 19–29.CrossRef
7.
Zurück zum Zitat Konkel, A., & Schunck, W. H. (2011). Role of cytochrome P450 enzymes in the bioactivation of polyunsaturated fatty acids. Biochimica et Biophysica Acta, 1814, 210–222.CrossRefPubMed Konkel, A., & Schunck, W. H. (2011). Role of cytochrome P450 enzymes in the bioactivation of polyunsaturated fatty acids. Biochimica et Biophysica Acta, 1814, 210–222.CrossRefPubMed
9.
Zurück zum Zitat Imig, J. D., & Hammock, B. D. (2009). Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nat Rev Drug Discov, 8, 794–805.CrossRefPubMedPubMedCentral Imig, J. D., & Hammock, B. D. (2009). Soluble epoxide hydrolase as a therapeutic target for cardiovascular diseases. Nat Rev Drug Discov, 8, 794–805.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Ozawa, T., Hayakawa, M., Takamura, T., Sugiyama, S., Suzuki, K., Iwata, M., Taki, F., & Tomita, T. (1986). Biosynthesis of leukotoxin, 9,10-epoxy-12 octadecenoate, by leukocytes in lung lavages of rat after exposure to hyperoxia. Biochemical and Biophysical Research Communications, 134, 1071–1078.CrossRefPubMed Ozawa, T., Hayakawa, M., Takamura, T., Sugiyama, S., Suzuki, K., Iwata, M., Taki, F., & Tomita, T. (1986). Biosynthesis of leukotoxin, 9,10-epoxy-12 octadecenoate, by leukocytes in lung lavages of rat after exposure to hyperoxia. Biochemical and Biophysical Research Communications, 134, 1071–1078.CrossRefPubMed
11.
Zurück zum Zitat Ishizaki, T., Shigemori, K., Nakai, T., Miyabo, S., Ozawa, T., Chang, S. W., & Voelkel, N. F. (1995). Leukotoxin, 9,10-Epoxy-12-Octadecenoate Causes Edematous Lung Injury Via Activation of Vascular Nitric-Oxide Synthase. American Journal of Physiology-Lung Cellular and Molecular Physiology, 269, L65–L70.CrossRef Ishizaki, T., Shigemori, K., Nakai, T., Miyabo, S., Ozawa, T., Chang, S. W., & Voelkel, N. F. (1995). Leukotoxin, 9,10-Epoxy-12-Octadecenoate Causes Edematous Lung Injury Via Activation of Vascular Nitric-Oxide Synthase. American Journal of Physiology-Lung Cellular and Molecular Physiology, 269, L65–L70.CrossRef
12.
Zurück zum Zitat Sigfried, M. R. A., N.; Lefer, A. M.; Elisseou, E. M.; Zipkin, R.E (1990). Direct cardiovascular actions of two metabolites of linoleic acid. Life Sciences, 46, 427–433.CrossRef Sigfried, M. R. A., N.; Lefer, A. M.; Elisseou, E. M.; Zipkin, R.E (1990). Direct cardiovascular actions of two metabolites of linoleic acid. Life Sciences, 46, 427–433.CrossRef
13.
Zurück zum Zitat Sugiyama, S., Hayakawa, M., Nagai, S., Ajioka, M., & Ozawa, T. (1987). Leukotoxin, 9, 10-epoxy-12-octadecenoate, causes cardiac failure in dogs. Life Sciences, 40, 225–231.CrossRefPubMed Sugiyama, S., Hayakawa, M., Nagai, S., Ajioka, M., & Ozawa, T. (1987). Leukotoxin, 9, 10-epoxy-12-octadecenoate, causes cardiac failure in dogs. Life Sciences, 40, 225–231.CrossRefPubMed
14.
Zurück zum Zitat Li, N., Liu, J. Y., Timofeyev, V., Qiu, H., Hwang, S. H., Tuteja, D., … Chiamvimonvat, N. (2009). Beneficial effects of soluble epoxide hydrolase inhibitors in myocardial infarction model: Insight gained using metabolomic approaches. Journal of Molecular and Cellular Cardiology, 47, 835–845.CrossRefPubMedPubMedCentral Li, N., Liu, J. Y., Timofeyev, V., Qiu, H., Hwang, S. H., Tuteja, D., … Chiamvimonvat, N. (2009). Beneficial effects of soluble epoxide hydrolase inhibitors in myocardial infarction model: Insight gained using metabolomic approaches. Journal of Molecular and Cellular Cardiology, 47, 835–845.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Seubert, J. M., Sinal, C. J., Graves, J., DeGraff, L. M., Bradbury, J. A., Lee, C. R., … Zeldin, D. C. (2006). Role of soluble epoxide hydrolase in postischemic recovery of heart contractile function. Circulation Research, 99, 442–450.CrossRefPubMedPubMedCentral Seubert, J. M., Sinal, C. J., Graves, J., DeGraff, L. M., Bradbury, J. A., Lee, C. R., … Zeldin, D. C. (2006). Role of soluble epoxide hydrolase in postischemic recovery of heart contractile function. Circulation Research, 99, 442–450.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Hayakawa, M., Kosaka, K., Sugiyama, S., Yokoo, K., Aoyama, H., Izawa, Y., & Ozawa, T. (1990). Proposal of leukotoxin, 9,10-epoxy-12-octadecenoate, as a burn toxin. Biochemistry International, 21, 573–579.PubMed Hayakawa, M., Kosaka, K., Sugiyama, S., Yokoo, K., Aoyama, H., Izawa, Y., & Ozawa, T. (1990). Proposal of leukotoxin, 9,10-epoxy-12-octadecenoate, as a burn toxin. Biochemistry International, 21, 573–579.PubMed
17.
Zurück zum Zitat Kosaka, K., Suzuki, K., Hayakawa, M., Sugiyama, S., & Ozawa, T. (1994). Leukotoxin, a linoleate epoxide: its implication in the late death of patients with extensive burns. Molecular and Cellular Biochemistry, 139, 141–148.CrossRefPubMed Kosaka, K., Suzuki, K., Hayakawa, M., Sugiyama, S., & Ozawa, T. (1994). Leukotoxin, a linoleate epoxide: its implication in the late death of patients with extensive burns. Molecular and Cellular Biochemistry, 139, 141–148.CrossRefPubMed
18.
Zurück zum Zitat Edin, M. L., Wang, Z., Bradbury, J. A., Graves, J. P., Lih, F. B., DeGraff, L. M., Foley, J. F., Torphy, R., Ronnekleiv, O. K., Tomer, K. B., Lee, C. R., & Zeldin, D. C. (2011). Endothelial expression of human cytochrome P450 epoxygenase CYP2C8 increases susceptibility to ischemia-reperfusion injury in isolated mouse heart. The FASEB Journal, 25, 3436–3447.CrossRefPubMedPubMedCentral Edin, M. L., Wang, Z., Bradbury, J. A., Graves, J. P., Lih, F. B., DeGraff, L. M., Foley, J. F., Torphy, R., Ronnekleiv, O. K., Tomer, K. B., Lee, C. R., & Zeldin, D. C. (2011). Endothelial expression of human cytochrome P450 epoxygenase CYP2C8 increases susceptibility to ischemia-reperfusion injury in isolated mouse heart. The FASEB Journal, 25, 3436–3447.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Greene, J. F., Williamson, K. C., Newman, J. W., Morisseau, C., & Hammock, B. D. (2000). Metabolism of monoepoxides of methyl linoleate: bioactivation and detoxification. Archives of Biochemistry and Biophysics, 376, 420–432.CrossRefPubMed Greene, J. F., Williamson, K. C., Newman, J. W., Morisseau, C., & Hammock, B. D. (2000). Metabolism of monoepoxides of methyl linoleate: bioactivation and detoxification. Archives of Biochemistry and Biophysics, 376, 420–432.CrossRefPubMed
20.
Zurück zum Zitat Sakai, T., Ishizaki, T., Ohnishi, T., Sasaki, F., Ameshima, S., Nakai, T., Miyabo, S., Matsukawa, S., Hayakawa, M., & Ozawa, T. (1995). Leukotoxin, 9,10-epoxy-12-octadecenoate inhibits mitochondrial respiration of isolated perfused rat lung. American Journal of Physiology, 269, L326–L331.PubMed Sakai, T., Ishizaki, T., Ohnishi, T., Sasaki, F., Ameshima, S., Nakai, T., Miyabo, S., Matsukawa, S., Hayakawa, M., & Ozawa, T. (1995). Leukotoxin, 9,10-epoxy-12-octadecenoate inhibits mitochondrial respiration of isolated perfused rat lung. American Journal of Physiology, 269, L326–L331.PubMed
21.
22.
Zurück zum Zitat Dudda, A., Spiteller, G., & Kobelt, F. (1996). Lipid oxidation products in ischemic porcine heart tissue. Chemistry and Physics of Lipids, 82, 39–51.CrossRefPubMed Dudda, A., Spiteller, G., & Kobelt, F. (1996). Lipid oxidation products in ischemic porcine heart tissue. Chemistry and Physics of Lipids, 82, 39–51.CrossRefPubMed
23.
Zurück zum Zitat Stimers, J. R., Dobretsov, M., Hastings, S. L., Jude, A. R., & Grant, D. F. (1999). Effects of linoleic acid metabolites on electrical activity in adult rat ventricular myocytes. Biochimica et Biophysica Acta, 1438, 359–368.CrossRefPubMed Stimers, J. R., Dobretsov, M., Hastings, S. L., Jude, A. R., & Grant, D. F. (1999). Effects of linoleic acid metabolites on electrical activity in adult rat ventricular myocytes. Biochimica et Biophysica Acta, 1438, 359–368.CrossRefPubMed
24.
Zurück zum Zitat Harrell, M. D., & Stimers, J. R. (2002). Differential effects of linoleic Acid metabolites on cardiac sodium current. Journal of Pharmacology and Experimental Therapeutics, 303, 347–355.CrossRefPubMed Harrell, M. D., & Stimers, J. R. (2002). Differential effects of linoleic Acid metabolites on cardiac sodium current. Journal of Pharmacology and Experimental Therapeutics, 303, 347–355.CrossRefPubMed
25.
Zurück zum Zitat Ha, J., Dobretsov, M., Kurten, R. C., Grant, D. F., & Stimers, J. R. (2002). Effect of linoleic acid metabolites on Na(+)/K(+) pump current in N20.1 oligodendrocytes: role of membrane fluidity. Toxicology and Applied Pharmacology, 182, 76–83.CrossRefPubMed Ha, J., Dobretsov, M., Kurten, R. C., Grant, D. F., & Stimers, J. R. (2002). Effect of linoleic acid metabolites on Na(+)/K(+) pump current in N20.1 oligodendrocytes: role of membrane fluidity. Toxicology and Applied Pharmacology, 182, 76–83.CrossRefPubMed
26.
Zurück zum Zitat Sisemore, M. F., Zheng, J., Yang, J. C., Thompson, D. A., Plopper, C. G., Cortopassi, G. A., & Hammock, B. D. (2001). Cellular characterization of leukotoxin diol-induced mitochondrial dysfunction. Archives of Biochemistry and Biophysics, 392, 32–37.CrossRefPubMed Sisemore, M. F., Zheng, J., Yang, J. C., Thompson, D. A., Plopper, C. G., Cortopassi, G. A., & Hammock, B. D. (2001). Cellular characterization of leukotoxin diol-induced mitochondrial dysfunction. Archives of Biochemistry and Biophysics, 392, 32–37.CrossRefPubMed
27.
Zurück zum Zitat Moghaddam, M. F., Grant, D. F., Cheek, J. M., Greene, J. F., Williamson, K. C., & Hammock, B. D. (1997). Bioactivation of leukotoxins to their toxic diols by epoxide hydrolase. Nature Medicine, 3, 562–566.CrossRefPubMed Moghaddam, M. F., Grant, D. F., Cheek, J. M., Greene, J. F., Williamson, K. C., & Hammock, B. D. (1997). Bioactivation of leukotoxins to their toxic diols by epoxide hydrolase. Nature Medicine, 3, 562–566.CrossRefPubMed
28.
Zurück zum Zitat Lee, J. P., Yang, S. H., Lee, H. Y., Kim, B., Cho, J. Y., Paik, J. H., Oh, Y. J., Kim, D. K., Lim, C. S., & Kim, Y. S. (2012). Soluble epoxide hydrolase activity determines the severity of ischemia-reperfusion injury in kidney. PLoS ONE, 7, e37075.CrossRefPubMedPubMedCentral Lee, J. P., Yang, S. H., Lee, H. Y., Kim, B., Cho, J. Y., Paik, J. H., Oh, Y. J., Kim, D. K., Lim, C. S., & Kim, Y. S. (2012). Soluble epoxide hydrolase activity determines the severity of ischemia-reperfusion injury in kidney. PLoS ONE, 7, e37075.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Chaudhary, K. R., Zordoky, B. N., Edin, M. L., Alsaleh, N., El-Kadi, A. O., Zeldin, D. C., & Seubert, J. M. (2013). Differential effects of soluble epoxide hydrolase inhibition and CYP2J2 overexpression on postischemic cardiac function in aged mice. Prostaglandins Other Lipid Mediat, 104–105, 8–17.CrossRefPubMed Chaudhary, K. R., Zordoky, B. N., Edin, M. L., Alsaleh, N., El-Kadi, A. O., Zeldin, D. C., & Seubert, J. M. (2013). Differential effects of soluble epoxide hydrolase inhibition and CYP2J2 overexpression on postischemic cardiac function in aged mice. Prostaglandins Other Lipid Mediat, 104–105, 8–17.CrossRefPubMed
30.
Zurück zum Zitat Mitchell, L. A., Moran, J. H., & Grant, D. F. (2002). Linoleic acid, cis-epoxyoctadecenoic acids, and dihydroxyoctadecadienoic acids are toxic to Sf-21 cells in the absence of albumin. Toxicology Letters, 126, 187–196.CrossRefPubMed Mitchell, L. A., Moran, J. H., & Grant, D. F. (2002). Linoleic acid, cis-epoxyoctadecenoic acids, and dihydroxyoctadecadienoic acids are toxic to Sf-21 cells in the absence of albumin. Toxicology Letters, 126, 187–196.CrossRefPubMed
31.
Zurück zum Zitat Moran, J. H., Nowak, G., & Grant, D. F. (2001). Analysis of the toxic effects of linoleic acid, 12,13-cis-epoxyoctadecenoic acid, and 12,13-dihydroxyoctadecenoic acid in rabbit renal cortical mitochondria. Toxicology and Applied Pharmacology, 172, 150–161.CrossRefPubMed Moran, J. H., Nowak, G., & Grant, D. F. (2001). Analysis of the toxic effects of linoleic acid, 12,13-cis-epoxyoctadecenoic acid, and 12,13-dihydroxyoctadecenoic acid in rabbit renal cortical mitochondria. Toxicology and Applied Pharmacology, 172, 150–161.CrossRefPubMed
32.
Zurück zum Zitat Motoki, A., Merkel, M. J., Packwood, W. H., Cao, Z., Liu, L., Iliff, J., Alkayed, N. J., & Van Winkle, D. M. (2008). Soluble epoxide hydrolase inhibition and gene deletion are protective against myocardial ischemia-reperfusion injury in vivo. American Journal of Physiology Heart and Circulatory Physiology, 295, H2128–H2134.CrossRefPubMedPubMedCentral Motoki, A., Merkel, M. J., Packwood, W. H., Cao, Z., Liu, L., Iliff, J., Alkayed, N. J., & Van Winkle, D. M. (2008). Soluble epoxide hydrolase inhibition and gene deletion are protective against myocardial ischemia-reperfusion injury in vivo. American Journal of Physiology Heart and Circulatory Physiology, 295, H2128–H2134.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Viswanathan, S., Hammock, B. D., Newman, J. W., Meerarani, P., Toborek, M., & Hennig, B. (2003). Involvement of CYP 2C9 in mediating the proinflammatory effects of linoleic acid in vascular endothelial cells. Journal of the American College of Nutrition, 22, 502–510.CrossRefPubMed Viswanathan, S., Hammock, B. D., Newman, J. W., Meerarani, P., Toborek, M., & Hennig, B. (2003). Involvement of CYP 2C9 in mediating the proinflammatory effects of linoleic acid in vascular endothelial cells. Journal of the American College of Nutrition, 22, 502–510.CrossRefPubMed
34.
Zurück zum Zitat Di Lisa, F., Canton, M., Menabo, R., Kaludercic, N., & Bernardi, P. (2007). Mitochondria and cardioprotection. Heart Failure Reviews, 12, 249–260.CrossRefPubMed Di Lisa, F., Canton, M., Menabo, R., Kaludercic, N., & Bernardi, P. (2007). Mitochondria and cardioprotection. Heart Failure Reviews, 12, 249–260.CrossRefPubMed
35.
Zurück zum Zitat Spector, A. A., Fang, X., Snyder, G. D., & Weintraub, N. L. (2004). Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function. Progress in Lipid Research, 43, 55–90.CrossRefPubMed Spector, A. A., Fang, X., Snyder, G. D., & Weintraub, N. L. (2004). Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function. Progress in Lipid Research, 43, 55–90.CrossRefPubMed
36.
Zurück zum Zitat Spector, A. A., & Kim, H. Y. (2015). Cytochrome P450 epoxygenase pathway of polyunsaturated fatty acid metabolism. Biochimica et Biophysica Acta, 1851, 356–365.CrossRefPubMed Spector, A. A., & Kim, H. Y. (2015). Cytochrome P450 epoxygenase pathway of polyunsaturated fatty acid metabolism. Biochimica et Biophysica Acta, 1851, 356–365.CrossRefPubMed
37.
Zurück zum Zitat Lu, T., VanRollins, M., & Lee, H. C. (2002). Stereospecific activation of cardiac ATP-sensitive K(+) channels by epoxyeicosatrienoic acids: a structural determinant study. Molecular Pharmacology, 62, 1076–1083.CrossRefPubMed Lu, T., VanRollins, M., & Lee, H. C. (2002). Stereospecific activation of cardiac ATP-sensitive K(+) channels by epoxyeicosatrienoic acids: a structural determinant study. Molecular Pharmacology, 62, 1076–1083.CrossRefPubMed
38.
Zurück zum Zitat Cabral, M., Martin-Venegas, R., & Moreno, J. J. (2014). Differential cell growth/apoptosis behavior of 13-hydroxyoctadecadienoic acid enantiomers in a colorectal cancer cell line. American Journal of Physiology. Gastrointestinal and Liver Physiology, 307, G664–G671.CrossRefPubMed Cabral, M., Martin-Venegas, R., & Moreno, J. J. (2014). Differential cell growth/apoptosis behavior of 13-hydroxyoctadecadienoic acid enantiomers in a colorectal cancer cell line. American Journal of Physiology. Gastrointestinal and Liver Physiology, 307, G664–G671.CrossRefPubMed
Metadaten
Titel
Linoleic Acid Metabolite DiHOME Decreases Post-ischemic Cardiac Recovery in Murine Hearts
verfasst von
Marwin Bannehr
Lena Löhr
Julia Gelep
Wilhelm Haverkamp
Wolf-Hagen Schunck
Maik Gollasch
Alexander Wutzler
Publikationsdatum
06.02.2019
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 4/2019
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-019-09508-x

Weitere Artikel der Ausgabe 4/2019

Cardiovascular Toxicology 4/2019 Zur Ausgabe