Skip to main content
Erschienen in: Head & Neck Oncology 1/2011

Open Access 01.12.2011 | Review

Mammalian target of rapamycin and head and neck squamous cell carcinoma

verfasst von: Yu-Min Liao, Charles Kim, Yun Yen

Erschienen in: Head & Neck Oncology | Ausgabe 1/2011

Abstract

Head and neck squamous cell carcinoma (HNSCC), a significant cause of cancer deaths worldwide, has multiple stepwise malignant evolutions. Mammalian target of rapamycin (mTOR) plays a critical role in tumor development, invasion, metastasis and angiogenesis that impact local recurrence and survival. mTOR can also act as a biomarker for personalized adjuvant therapy. In in vivo and in vitro studies, mTOR inhibitor suppresses tumor growth and sensitizes HNSCC to radiation, cytotoxic agents and epidermoid growth factor receptor inhibitors. We have reviewed the pathogenesis of HNSCC, mTOR pathway, mTOR inhibitor and the role of mTOR in HNSCC.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1758-3284-3-22) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

YY designed the paper. YY, YML and CK wrote the paper. All authors read and approved the final manuscript.

Review

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and accounts for approximately 650,000 new diagnoses and 350,000 cancer deaths every year[1]. Smoking and alcohol are the most well known carcinogens of HNSCC[2]. In some areas of Asia, chewing betel quid, a psychoactive substance that always contains areca nut, betel leaf and calcium hydroxide, is a distinct risk factor that exerts a synergistic effect with smoking and alcohol consumption for oral and laryngeal cancer[3, 4]. In addition, the continuation of smoking and alcohol consumption after initial diagnosis of HNSCC increases the risk for secondary primary cancer[5]. Human papillomavirus (HPV), predominantly type 16, infection inducing genomic instability is another mechanism for tumorigenesis in the oropharynx that is distinct from the role of smoking or alcohol[6].
Surgery and radiotherapy are the main modality of HNSCC treatment[7]. Chemotherapy, acting as a radio-sensitizer, increases survival in locally advanced disease[8, 9]. To treat early disease, surgery is preferred. Radiotherapy is an alterative method for organ preservation for laryngeal cancer[10, 11]. In unresectable settings, concurrent cisplatin chemoradiotherapy that provides better disease free survival and overall survival than radiotherapy alone is the standard of care[9]. Surgery-treated, advanced patients with high risk factors can also obtain benefit of local and regional control and progression free survival by adding concurrent chemotherapy to postoperative radiotherapy[12]. Overall, the incorporation of concurrent chemoradiotherapy to management of HNSCC absolutely increases survival rate by 6.5% at year-five[13]. Recently, cetuximab, an epidermal growth factor receptor-specific monoclonal antibody, plus radiation were shown to improve survival rate as compared to radiation treatment alone[14]. However, a retrospect study suggests the duration of progression free survival and overall survival is shorter in patient receiving cetuximab plus radiation than those with cisplatin plus radiation[13]. Multi-modality treatment or targeted therapy containing management does not significantly improve overall survival.
HNSCC has a complex mechanism of carcinogenesis that involves multiple genetic abnormalities, stepwise evolution and signaling pathway alternation[7, 1518]. Alternations of p53, p16 and cyclin D1 (CCND1) result in limitless growth of tumor cells[4, 1922]. Change of epidermal growth factor receptor (EGFR), c-MET, phosphatidylinositol 3-kinase, catalytic, alpha polypeptide (PIK3CA), Ras-mitogen-activate protein kinase (Ras-MAPK), phosphatase and tensin homolog (PTEN) and transforming growth factor-beta (TGF-beta) are essential to affect growth factor signaling that impact cell proliferation, apoptosis and survival[2328]. High expression of nuclear factor Kappa B (NF-Kappa B), surviving and B cell lymphoma -2 (Bcl-2) are positively associated with poor survival[2931].

Target of rapamycin (TOR) pathway

Mammalian TOR (mTOR), a protein kinase encoded by FK506 binding protein 12-rapamycin associated protein 1 (FRAP1) gene[32]., is an important downstream target signal of PI3K pathway. (Figure 1) [33]. The protein contains an 12-kDa FK506-binding protein (FKBP12), rapamycin binding domain, Huntington Elongation Factor 3 PR65/ATOR (HEAT) motifs, FK506 binding protein 12-rapamycin associated protein (FRAP1)-ataxia telangiectasia mutated (ATM)-transformation transcription domain-associated protein (FAT) and FAT C terminus (FATC) domain. In terms of structure and function, mTOR consists of two distinct complexes: mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2)[34, 35]. mTOR, regulatory-associated protein of mTOR (Raptor) and G-protein-subunit-like protein form mTORC1, a nutrition-sensitive complex. mTORC1 is sensitive to rapamycin, control cell growth and is a key factor of the mTOR pathway[3438]. mTORC2, a complex containing mTOR, G-protein-subunit-like protein and mAVO3, regulates the actin cytoskeleton and is insensitive to rapamycin[39]. As an important target kinase of the PI3K pathway, mTOR responds to multiple stimuli including: nutrients, insulin, oxygen, growth factor, ATP, Ras homologue enriched in brain (RHEB) and tobacco components[33, 38, 4044]. However, mTOR is negatively regulated by complex of tuberin and hamartin[45]. Through the activation of two downstream targets p70S6K and 4EBP1, mTOR functions on translation, cell growth, protein synthesis, cell size and angiogenesis[4648]. Activated p70S6K stimulates 5-terminal oligopyrimidine (5'TOG) translation to regulate ribosome biogenesis[49]. Phosphorylated 4EBP1 disassociates with eIF4E. The free eIF4E, an oncoprotein, promotes cap-dependent translation with subsequent regulation of c-myc, cyclin D1, ornithinedecarboxylase, basic fibroblast growth factor (b-FGF), vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) to affect cell survival, tumorigenesis and transformation, angiogenesis, invasion and metastasis[41, 5054]. In addition, mTOR-enhanced expression of HIF-1a protein, HIF-1 transcriptional activity, and VEGF protein are the key regulators in angiogenesis[55]. Apoptosis signal-regulating kinase 1 (ASK1)-modulated apoptosis can be inhibited by mTOR-induced overexpression of protein phosphatase 5 (PP5)[56].

mTOR inhibitor

Many compounds, including rapamycin, rapalog and adenosine-5'-triphosphate (ATP)-competitive inhibitor, have been shown to block the activation of the mTOR pathway[57]. Rapamycin, an antifungal agent,[58]. binds to the FKBP12-rapamycin (FRB) domain of mTORC1 to interrupt downstream activation[59]. Poor water solubility, absorption, limited bio-availability, hepatic first-pass effect and drug interaction account for interpatient variability that requires therapeutic drug monitoring for the complex pharmacokinetic behaviors[60]. Although rapamycin is a promisingly cytostatic anticancer agent in the National Cancer Institute's screening program,[35]. those pharmacologic characteristics limit the practical application[61, 62]. In order to improve the pharmacokinetic features of rapamycin, a chemical modification at C-40-0 can develop three new rapalogs including everolimus, temsirolimus and ridaforolimus that share the same mechanisms of action. They not only exert anti-cancer activity but also act as a sensitizer to radiotherapy and chemotherapy. Frequent adverse events such as fatigue, mucositis, rash, anorexia, diarrhea, nausea, thrombocytopenia, leucopenia, anemia, hyperglycemia, hyperlipidemia and hypercholesterolemia are limited and manageable[63]. Everolimus (RAD001) is an oral rapalog, and has better oral absorption and bioavailability profiles than compared to those of rapamycin[64, 65]. It also shows sustained inhibition of S6K1 activity at the dose of ≥ 20 mg weekly and ≥ 5 mg daily[66]. Temsirolimus is a prodrug converted into rapamycin after intravenous infusion. It exerts evidence of activity over a dose range between 15 and 300 mg/m2, and has the dose-limiting toxicity from thrombocytopenia[67]. Ridaforolimus is a non-prodrug rapalog, and has dose limiting toxicity from mouth sore at 28 mg/d and maximal tolerable dose of 18.5 mg/d[68]. In a study of skin biopsy specimens, ridaforolimus significantly suppressed the expression of 4EBP1, S6 and extracellular signal-regulated kinase (ERK)[69].

mTOR pathway and HNSCC

HNSCC amplifies eukaryotic translation initiation factor 4E(eIF4E) gene and overexpresses eIF4E protein[70]. The tumor itself, the surgical margins, and even the histologically normal epithelium in the margins were all shown to overexpress eIF4E. The strong association of elevated activity of eIF4E with high expression of mTOR downstream signals transduction (phospho-4E binding protein 1, S6, phospho-mTOR) and elevated level of AKT expression suggests the activation of AKT/mTOR pathway in the margin. High expression of phospho-P70S6 and AKT in the margin indicates that the activity of AKT/mTOR cascade is higher in tumor margin than in the tumor itself[71]. There is a significant correlation between degree of expression of eIF4E in the margin and grading of the dysplasia (P = .006)[72]. eIF4E is essential in the malignant progression of HNSCC[70]. Interestingly, higher activity of eIF4E in the tumor margin, even those free of microscopic tumor, is an independent predictor of local recurrence while histological grading of dysplasia failed to predict prognosis[73]. Nathan et al examined tumor samples from 65 patients. All biopsies expressed elevated levels of eIF4E. The intra-tumor activity of eIF4E was not different between the eIF4E-positive and -negative margin groups. Thirty-six patients (55%) with microscopic tumor-free margins had eIF4E expression in the basal cell layer of the margin. After a median follow-up of 17 months, local-regional recurrence developed in 20 patients (56%) with eIF4E-positive margins. In contrast, two patients (6.9%) with absence of eIF4F expression had local recurrence after median follow-up of 14.5 months. Histologically tumor-free margin with high expression of eIF4E has a seven-fold risk of local failure. The median disease free duration is significantly shorter in the eIF4E positive margin group (eIF4E positive versus negative, 11 months versus 14 months; log-rank test, P = .0001). The prediction of recurrence by expression of eIF4E in HNSCC margin is independent from tumor size, nodal status, stage, histologic grade, tumor site, eIF4E levels in the tumor, and with the degree of dysplasia in the margins[72]. Also, the level of p-S6 expression significantly increases with the malignant progression of the tumor[74]. In addition, irradiation, an important treatment of HNSCC, promotes the expression of mTOR and AKT in HNSCC cells[75]. High expression of AKT sensitizes mTOR inhibition through down-regulation of cyclin D1 and c-myc[76, 77]. Activation of AKT/mTOR pathway plays a key role in tumorigenesis and survival rate of HNSCC patients[71]. The eIF4E is a potential maker to define the molecular-free surgical margin, and is a promising predictor of survival[72, 73].

mTOR inhibitor and HNSCC

Temsirolimus blocks the activation of mTOR pathway in HNSCC cell line to reduce the expression of S6 and 4EBP1 with subsequently suppressed expression of FGF and VEGF that inhibited cell growth in vitro. In a xenograft study, the 4EBP1 activity of tumor cells and peripheral blood mononuclear cells (PBMC) is also reduced by mTOR inhibition[78, 79]. Rapamycin treatment increased nuclei apoptosis in tumor in situ TUNEL assay, and reduced neovascularization[74]. To mimic patients with histologically tumor-free margin with high expression of eIF4E, the tumor cells in the culture medium were introduced into the dorsal flap of nude mice with pipettes to establish a minimal residual disease model (MRD). Measuring the tumor formation at day 21 after xenograft, the treatment group had a significantly longer median tumor free duration (treatment versus control group, 18 days versus 7 days; P < 0.0001). The tumor size of treatment group was significantly smaller than those of the control group (P < 0.0001). In the "survival study" mTOR inhibition delayed the time to develop tumors with the volumes of at least 200 m3 in the MRD model (P < 0.0001). Twenty-one percent of the treated mice were free of tumors 30 days after the discontinuation of the treatment. As expected, temsirolimus treatment significantly reduced photon emission on bioluminescence imaging. The reduction increased with the continuation of the treatment. The result of the MRD model suggests that the prolonged mTOR inhibition may have clinical benefits in the adjuvant setting for patients with eIF4E positive margin[78]. mTOR inhibitor is a potential agent in HNSCC treatment. Phosphorylated mTOR, eIF4E, and high expression of AKT may be potentional biomarkers in order to select the candidate HNSCC patients for mTOR inhibitor-based adjuvant therapy[71, 77, 80].
Everolimus enhances DNA-damage agent-induced apoptosis in tumor cells. It overcomes cisplatin resistance in small cell and non-small cell lung cancer cell lines,[81, 82]. and sensitizes cancer cells to radiation by arresting cells in G2M phase[79, 83, 84]. In an in vivo study, temsirolimus was shown to block signal transduction of mTOR pathway to decrease VEGF production, but failed to sensitize HNSCC to radiation by clonogenic assay. In a study with cisplatin-sensitive Fa-Du and cisplatin-resistant SCC-40 xerografts receiving 3-week treatment with temsirolimus or cisplatin plus radiation, temsirolimus alone treatment, even at low doses, significantly blocked the tumor growth in both xenografts. The combination of temsirolimus with radiation (XRT) more significantly promoted radiation-induced tumor reduction (P < 0.05; temsirolimus plus XRT versus. temsirolimus or XRT alone) than compared to the combination of cisplaint with XRT alone in both cisplaitn- sensitive and resistant cell lines (P < 0.05). Addition of cisplatin to the temsirolimus and XRT treatment failed to increase the therapeutic effect. The sensitization effect by temsirolimus is evidenced by the following: the reduced phosphorylation of 4EBP1, S6 and Bad; the increased number of radiation-related poly (ADP-ribose) polymerases (PARPs) cleavage; the increased rate of nuclei apoptosis; and the reduction of tumor vascularity by diminishing VEGF production. The median survival time was 49 days for the temsirolimus plus XRT treatment group, 38 days for the cisplatin plus XRT treatment group and 27 days for the control group for the SCC-40 cell lines. Treatment with temsirolimus alone or with the combination of XRT can significantly increase the survival rate of SCC-40 xenograft as compared to the control group (P < 0.05). mTOR inhibitor is a promising radio-sensitizer in HNSCC treatment[75]. Although EGFR is an important target of therapy,[85]. HNSCC poorly responds to or is refractory to anti-EGFR treatment. In HNSCC cell lines Detroit 562, erlotinib blocks the activation of MAPK and suppresses the expression of AKT and p70. Temsirolimus alone failed to affect AKT and MAPK. The MAPK was completely blocked by the combination treatment while the activity of AKT was significantly inhibited. In an in vivo study, the combination therapy, erlotinib alone therapy, and the temsirolimus alone therapy obtained growth rates that was 18%, 34% and 13% of the rate of growth of the control group, respectively. Seven days after the treatment, the expression of pMAPK, Ki-67 and phospho-p70 were significantly reduced. mTOR inhibition suppressed tumor growth of EGFR-resistant cell lines and exerted an additive effect with the combination of the EGFR inhibitor[86].
Few HNSCC patients were enrolled into a phase 1 study to investigate the safety of an mTOR inhibitor based combination therapy. A patient with HNSCC T4N3M1 with lung metastasis with failed responses to docetaxel, cisplatin and zalutumumab partially responded to temsirolimus and metformine[87]. One oropharyngeal cancer patient obtained stable disease after more than 6 cycles of treatments with everolimus and weekly cisplatin. No change of expression of p21, p53 or p-AKT was found on a biopsy specimen from pretreatment and day 21 on treatment[88].
Many studies have been initiated to elucidate the role of mTOR inhibitor in the treatment of HNSCC (Table 1). National Institutes of Dental and Craniofacial Research initiated a pilot study to investigate the efficacy and molecular change of neoadjuvant 3-week treatment of rapamycin in resectable HNSCC patients. Molecular study of the specimens obtained from tumor biopsies during the period of treatment provides further information for clinical response to rapamycin (clinicaltrial.gov identifier: NCT01195922). One future randamized phase II trial of everolimus versus placebo as an adjuvant therapy in patients with locally advanced HNSCC (NCT01111058) will evaluate the benefit of long-term mTOR inhibition in patients with eIF4E positive margin[78]. Some trials will test the safety at different dosages and determine the optimal dose of mTOR inhibitor in combination with radiation or cytotoxic agents.
Table 1
Clinical study for mTOR inhibitor in treatment of HNSCC
Drug
Study phase
Treatment design
Disease status
Clinicaltrial.gov identifier
Rapamycin
I/II
Neoadjuvant with 21-day rapamycin followed by surgery
Stage III or IVA, resectable
NCT01195922
Temsirolimus
II
Temsirolimus with or without cetuximab
Recurrent or metastasis
NCT01256385
 
II
Temsirolimus alone
Recurrent or metastasis
NCT01172769
 
I/II
Temsirolimus + Weekly paclitaxel + carboplatin
Recurrent or metastasis
NCT01016769
 
I/II
Temsirolimus, cisplatin, and cetuximab
Recurrent or metastasis
NCT01015664
 
II
Temsirolimus and erlotinib
Platinum-refractory or -ineligible, advanced disease
NCT01009203
Everolimus
I
Everolimus, weekly cisplatin and XRT
Locally advanced
NCT01058408
 
I
Induction with everolimus, docetaxel, and cisplatin
Locally advanced
NCT00935961
 
I
Everolimus, weekly cisplatin and XRT
Locally advanced
NCT00858663
 
I
Everolimus, cisplatin and XRT
Locally advanced
NCT01057277
 
I/II
Induction everolimus paclitaxel, and cisplatin
Locally advanced
NCT01133678
 
II, randomized
Adjuvant everolimus Vs placebo
Locally advanced disease after definite local treatment
NCT01111058
 
I/IIB
Everolimus, carboplatin, and cetuximab
Recurrent or metastaasis
NCT01283334
 
I/II
Everolimus, cetuximab and cisplatin
Recurrent or metastaasis
NCT01009346
 
II
Everolimus
Refractory, recurrent or metastasis
NCT01051791
 
II
Everolimus, erlotinib
Recurrent
NCT00942734
Ridaforolimus
I
Ridaforolimus, cetuximab
Advanced
NCT01212627

Conclusion

mTOR plays an important role in the complex carcinogenesis of HNSCC, predicts survival, and may be a potential biomaker to identify candidate patients for mTOR inhibition-based adjuvant therapy. Many preclinical experements suggest that the mTOR blockade has anti-tumor activity, displays radio- or chemo-sensitization, and overcomes the EGFR resistance. Further clinical trial results may provide more information about the role of mTOR in future studies and management of HNSCC.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

YY designed the paper. YY, YML and CK wrote the paper. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Parkin DM, Bray F, Ferlay J, Pisani P: Global cancer statistics, 2002. CA Cancer J Clin. 2005, 55: 74-108. 10.3322/canjclin.55.2.74.CrossRefPubMed Parkin DM, Bray F, Ferlay J, Pisani P: Global cancer statistics, 2002. CA Cancer J Clin. 2005, 55: 74-108. 10.3322/canjclin.55.2.74.CrossRefPubMed
2.
Zurück zum Zitat Vineis P, Alavanja M, Buffler P, Fontham E, Franceschi S, Gao YT, Gupta PC, Hackshaw A, Matos E, Samet J, et al: Tobacco and cancer: recent epidemiological evidence. J Natl Cancer Inst. 2004, 96: 99-106. 10.1093/jnci/djh014.CrossRefPubMed Vineis P, Alavanja M, Buffler P, Fontham E, Franceschi S, Gao YT, Gupta PC, Hackshaw A, Matos E, Samet J, et al: Tobacco and cancer: recent epidemiological evidence. J Natl Cancer Inst. 2004, 96: 99-106. 10.1093/jnci/djh014.CrossRefPubMed
3.
Zurück zum Zitat Wen CP, Tsai MK, Chung WS, Hsu HL, Chang YC, Chan HT, Chiang PH, Cheng TY, Tsai SP: Cancer risks from betel quid chewing beyond oral cancer: a multiple-site carcinogen when acting with smoking. Cancer Causes Control. 2010, 21: 1427-1435. 10.1007/s10552-010-9570-1.CrossRefPubMed Wen CP, Tsai MK, Chung WS, Hsu HL, Chang YC, Chan HT, Chiang PH, Cheng TY, Tsai SP: Cancer risks from betel quid chewing beyond oral cancer: a multiple-site carcinogen when acting with smoking. Cancer Causes Control. 2010, 21: 1427-1435. 10.1007/s10552-010-9570-1.CrossRefPubMed
4.
Zurück zum Zitat Mack TM: The new pan-asian paan problem. The Lancet. 2001, 357: 1638-1639. 10.1016/S0140-6736(00)04860-1.CrossRef Mack TM: The new pan-asian paan problem. The Lancet. 2001, 357: 1638-1639. 10.1016/S0140-6736(00)04860-1.CrossRef
5.
Zurück zum Zitat Do KA, Johnson MM, Doherty DA, Lee JJ, Wu XF, Dong Q, Hong WK, Khuri FR, Fu KK, Spitz MR: Second primary tumors in patients with upper aerodigestive tract cancers: joint effects of smoking and alcohol (United States). Cancer Causes Control. 2003, 14: 131-138. 10.1023/A:1023060315781.CrossRefPubMed Do KA, Johnson MM, Doherty DA, Lee JJ, Wu XF, Dong Q, Hong WK, Khuri FR, Fu KK, Spitz MR: Second primary tumors in patients with upper aerodigestive tract cancers: joint effects of smoking and alcohol (United States). Cancer Causes Control. 2003, 14: 131-138. 10.1023/A:1023060315781.CrossRefPubMed
6.
Zurück zum Zitat D'Souza G, Kreimer AR, Viscidi R, Pawlita M, Fakhry C, Koch WM, Westra WH, Gillison ML: Case-Control Study of Human Papillomavirus and Oropharyngeal Cancer. New England Journal of Medicine. 2007, 356: 1944-1956. 10.1056/NEJMoa065497.CrossRefPubMed D'Souza G, Kreimer AR, Viscidi R, Pawlita M, Fakhry C, Koch WM, Westra WH, Gillison ML: Case-Control Study of Human Papillomavirus and Oropharyngeal Cancer. New England Journal of Medicine. 2007, 356: 1944-1956. 10.1056/NEJMoa065497.CrossRefPubMed
7.
Zurück zum Zitat Haddad RI, Shin DM: Recent advances in head and neck cancer. N Engl J Med. 2008, 359: 1143-1154. 10.1056/NEJMra0707975.CrossRefPubMed Haddad RI, Shin DM: Recent advances in head and neck cancer. N Engl J Med. 2008, 359: 1143-1154. 10.1056/NEJMra0707975.CrossRefPubMed
8.
Zurück zum Zitat Cohen EE, Lingen MW, Vokes EE: The expanding role of systemic therapy in head and neck cancer. J Clin Oncol. 2004, 22: 1743-1752. 10.1200/JCO.2004.06.147.CrossRefPubMed Cohen EE, Lingen MW, Vokes EE: The expanding role of systemic therapy in head and neck cancer. J Clin Oncol. 2004, 22: 1743-1752. 10.1200/JCO.2004.06.147.CrossRefPubMed
9.
Zurück zum Zitat Adelstein DJ, Li Y, Adams GL, Wagner H, Kish JA, Ensley JF, Schuller DE, Forastiere AA: An intergroup phase III comparison of standard radiation therapy and two schedules of concurrent chemoradiotherapy in patients with unresectable squamous cell head and neck cancer. J Clin Oncol. 2003, 21: 92-98. 10.1200/JCO.2003.01.008.CrossRefPubMed Adelstein DJ, Li Y, Adams GL, Wagner H, Kish JA, Ensley JF, Schuller DE, Forastiere AA: An intergroup phase III comparison of standard radiation therapy and two schedules of concurrent chemoradiotherapy in patients with unresectable squamous cell head and neck cancer. J Clin Oncol. 2003, 21: 92-98. 10.1200/JCO.2003.01.008.CrossRefPubMed
10.
Zurück zum Zitat Argiris A, Karamouzis MV, Raben D, Ferris RL: Head and neck cancer. The Lancet. 2008, 371: 1695-1709. 10.1016/S0140-6736(08)60728-X.CrossRef Argiris A, Karamouzis MV, Raben D, Ferris RL: Head and neck cancer. The Lancet. 2008, 371: 1695-1709. 10.1016/S0140-6736(08)60728-X.CrossRef
11.
Zurück zum Zitat Jones AS, Fish B, Fenton JE, Husband DJ: The treatment of early laryngeal cancers (T1-T2 N0): surgery or irradiation?. Head & Neck. 2004, 26: 127-135. 10.1002/hed.10361.CrossRef Jones AS, Fish B, Fenton JE, Husband DJ: The treatment of early laryngeal cancers (T1-T2 N0): surgery or irradiation?. Head & Neck. 2004, 26: 127-135. 10.1002/hed.10361.CrossRef
12.
Zurück zum Zitat Bernier J, Domenge C, Ozsahin M, Matuszewska K, Lefebvre JL, Greiner RH, Giralt J, Maingon P, Rolland F, Bolla M, et al: Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N Engl J Med. 2004, 350: 1945-1952. 10.1056/NEJMoa032641.CrossRefPubMed Bernier J, Domenge C, Ozsahin M, Matuszewska K, Lefebvre JL, Greiner RH, Giralt J, Maingon P, Rolland F, Bolla M, et al: Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N Engl J Med. 2004, 350: 1945-1952. 10.1056/NEJMoa032641.CrossRefPubMed
13.
Zurück zum Zitat Pignon JP, le Maitre A, Maillard E, Bourhis J: Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17,346 patients. Radiother Oncol. 2009, 92: 4-14. 10.1016/j.radonc.2009.04.014.CrossRefPubMed Pignon JP, le Maitre A, Maillard E, Bourhis J: Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17,346 patients. Radiother Oncol. 2009, 92: 4-14. 10.1016/j.radonc.2009.04.014.CrossRefPubMed
14.
Zurück zum Zitat Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, Jones CU, Sur R, Raben D, Jassem J, et al: Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006, 354: 567-578. 10.1056/NEJMoa053422.CrossRefPubMed Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, Jones CU, Sur R, Raben D, Jassem J, et al: Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006, 354: 567-578. 10.1056/NEJMoa053422.CrossRefPubMed
15.
Zurück zum Zitat Wang X, Fan M, Chen X, Wang S, Alsharif MJ, Wang L, Liu L, Deng H: Intratumor genomic heterogeneity correlates with histological grade of advanced oral squamous cell carcinoma. Oral Oncol. 2006, 42: 740-744. 10.1016/j.oraloncology.2005.11.018.CrossRefPubMed Wang X, Fan M, Chen X, Wang S, Alsharif MJ, Wang L, Liu L, Deng H: Intratumor genomic heterogeneity correlates with histological grade of advanced oral squamous cell carcinoma. Oral Oncol. 2006, 42: 740-744. 10.1016/j.oraloncology.2005.11.018.CrossRefPubMed
16.
Zurück zum Zitat Leemans CR, Braakhuis BJ, Brakenhoff RH: The molecular biology of head and neck cancer. Nat Rev Cancer. 2011, 11: 9-22. 10.1038/nrc2982.CrossRefPubMed Leemans CR, Braakhuis BJ, Brakenhoff RH: The molecular biology of head and neck cancer. Nat Rev Cancer. 2011, 11: 9-22. 10.1038/nrc2982.CrossRefPubMed
17.
Zurück zum Zitat Hanahan D, Weinberg RA: The hallmarks of cancer. Cell. 2000, 100: 57-70. 10.1016/S0092-8674(00)81683-9.CrossRefPubMed Hanahan D, Weinberg RA: The hallmarks of cancer. Cell. 2000, 100: 57-70. 10.1016/S0092-8674(00)81683-9.CrossRefPubMed
18.
Zurück zum Zitat Matta A, Ralhan R: Overview of current and future biologically based targeted therapies in head and neck squamous cell carcinoma. Head Neck Oncol. 2009, 1: 6-10.1186/1758-3284-1-6.PubMedCentralCrossRefPubMed Matta A, Ralhan R: Overview of current and future biologically based targeted therapies in head and neck squamous cell carcinoma. Head Neck Oncol. 2009, 1: 6-10.1186/1758-3284-1-6.PubMedCentralCrossRefPubMed
19.
Zurück zum Zitat Somers KD, Merrick MA, Lopez ME, Incognito LS, Schechter GL, Casey G: Frequent p53 Mutations in Head and Neck Cancer. Cancer Research. 1992, 52: 5997-6000.PubMed Somers KD, Merrick MA, Lopez ME, Incognito LS, Schechter GL, Casey G: Frequent p53 Mutations in Head and Neck Cancer. Cancer Research. 1992, 52: 5997-6000.PubMed
20.
Zurück zum Zitat Boyle JO, Hakim J, Koch W, van der Riet P, Hruban RH, Roa RA, Correo R, Eby YJ, Ruppert JM, Sidransky D: The incidence of p53 mutations increases with progression of head and neck cancer. Cancer Res. 1993, 53: 4477-4480.PubMed Boyle JO, Hakim J, Koch W, van der Riet P, Hruban RH, Roa RA, Correo R, Eby YJ, Ruppert JM, Sidransky D: The incidence of p53 mutations increases with progression of head and neck cancer. Cancer Res. 1993, 53: 4477-4480.PubMed
21.
Zurück zum Zitat Callender T, El-Naggar AK, Lee MS, Frankenthaler R, Luna MA, Batsakis JG: PRAD-1 (CCND1)/cyclin D1 oncogene amplification in primary head and neck squamous cell carcinoma. Cancer. 1994, 74: 152-158. 10.1002/1097-0142(19940701)74:1<152::AID-CNCR2820740124>3.0.CO;2-K.CrossRefPubMed Callender T, El-Naggar AK, Lee MS, Frankenthaler R, Luna MA, Batsakis JG: PRAD-1 (CCND1)/cyclin D1 oncogene amplification in primary head and neck squamous cell carcinoma. Cancer. 1994, 74: 152-158. 10.1002/1097-0142(19940701)74:1<152::AID-CNCR2820740124>3.0.CO;2-K.CrossRefPubMed
22.
Zurück zum Zitat Zhang SY, Klein-Szanto AJ, Sauter ER, Shafarenko M, Mitsunaga S, Nobori T, Carson DA, Ridge JA, Goodrow TL: Higher frequency of alterations in the p16/CDKN2 gene in squamous cell carcinoma cell lines than in primary tumors of the head and neck. Cancer Res. 1994, 54: 5050-5053.PubMed Zhang SY, Klein-Szanto AJ, Sauter ER, Shafarenko M, Mitsunaga S, Nobori T, Carson DA, Ridge JA, Goodrow TL: Higher frequency of alterations in the p16/CDKN2 gene in squamous cell carcinoma cell lines than in primary tumors of the head and neck. Cancer Res. 1994, 54: 5050-5053.PubMed
23.
Zurück zum Zitat Grandis JR, Tweardy DJ: Elevated Levels of Transforming Growth Factor α and Epidermal Growth Factor Receptor Messenger RNA Are Early Markers of Carcinogenesis in Head and Neck Cancer. Cancer Research. 1993, 53: 3579-3584.PubMed Grandis JR, Tweardy DJ: Elevated Levels of Transforming Growth Factor α and Epidermal Growth Factor Receptor Messenger RNA Are Early Markers of Carcinogenesis in Head and Neck Cancer. Cancer Research. 1993, 53: 3579-3584.PubMed
24.
Zurück zum Zitat Marshall DD, Kornberg LJ: Overexpression of scatter factor and its receptor (c-met) in oral squamous cell carcinoma. Laryngoscope. 1998, 108: 1413-1417. 10.1097/00005537-199809000-00031.CrossRefPubMed Marshall DD, Kornberg LJ: Overexpression of scatter factor and its receptor (c-met) in oral squamous cell carcinoma. Laryngoscope. 1998, 108: 1413-1417. 10.1097/00005537-199809000-00031.CrossRefPubMed
25.
Zurück zum Zitat Kozaki K, Imoto I, Pimkhaokham A, Hasegawa S, Tsuda H, Omura K, Inazawa J: PIK3CA mutation is an oncogenic aberration at advanced stages of oral squamous cell carcinoma. Cancer Sci. 2006, 97: 1351-1358. 10.1111/j.1349-7006.2006.00343.x.CrossRefPubMed Kozaki K, Imoto I, Pimkhaokham A, Hasegawa S, Tsuda H, Omura K, Inazawa J: PIK3CA mutation is an oncogenic aberration at advanced stages of oral squamous cell carcinoma. Cancer Sci. 2006, 97: 1351-1358. 10.1111/j.1349-7006.2006.00343.x.CrossRefPubMed
26.
Zurück zum Zitat Qiu W, Schönleben F, Li X, Ho DJ, Close LG, Manolidis S, Bennett BP, Su GH: PIK3CA Mutations in Head and Neck Squamous Cell Carcinoma. Clinical Cancer Research. 2006, 12: 1441-1446. 10.1158/1078-0432.CCR-05-2173.PubMedCentralCrossRefPubMed Qiu W, Schönleben F, Li X, Ho DJ, Close LG, Manolidis S, Bennett BP, Su GH: PIK3CA Mutations in Head and Neck Squamous Cell Carcinoma. Clinical Cancer Research. 2006, 12: 1441-1446. 10.1158/1078-0432.CCR-05-2173.PubMedCentralCrossRefPubMed
27.
Zurück zum Zitat Okami K, Wu L, Riggins G, Cairns P, Goggins M, Evron E, Halachmi N, Ahrendt SA, Reed AL, Hilgers W, et al: Analysis of PTEN/MMAC1 Alterations in Aerodigestive Tract Tumors. Cancer Research. 1998, 58: 509-511.PubMed Okami K, Wu L, Riggins G, Cairns P, Goggins M, Evron E, Halachmi N, Ahrendt SA, Reed AL, Hilgers W, et al: Analysis of PTEN/MMAC1 Alterations in Aerodigestive Tract Tumors. Cancer Research. 1998, 58: 509-511.PubMed
28.
Zurück zum Zitat Wang D, Song H, Evans JA, Lang JC, Schuller DE, Weghorst CM: Mutation and downregulation of the transforming growth factor beta type II receptor gene in primary squamous cell carcinomas of the head and neck. Carcinogenesis. 1997, 18: 2285-2290. 10.1093/carcin/18.11.2285.CrossRefPubMed Wang D, Song H, Evans JA, Lang JC, Schuller DE, Weghorst CM: Mutation and downregulation of the transforming growth factor beta type II receptor gene in primary squamous cell carcinomas of the head and neck. Carcinogenesis. 1997, 18: 2285-2290. 10.1093/carcin/18.11.2285.CrossRefPubMed
29.
Zurück zum Zitat Duffey DC, Chen Z, Dong G, Ondrey FG, Wolf JS, Brown K, Siebenlist U, Van Waes C: Expression of a Dominant-Negative Mutant Inhibitor κBα ± of Nuclear Factor-κB in Human Head and Neck Squamous Cell Carcinoma Inhibits Survival, Proinflammatory Cytokine Expression, and Tumor Growth in Vivo. Cancer Research. 1999, 59: 3468-3474.PubMed Duffey DC, Chen Z, Dong G, Ondrey FG, Wolf JS, Brown K, Siebenlist U, Van Waes C: Expression of a Dominant-Negative Mutant Inhibitor κBα ± of Nuclear Factor-κB in Human Head and Neck Squamous Cell Carcinoma Inhibits Survival, Proinflammatory Cytokine Expression, and Tumor Growth in Vivo. Cancer Research. 1999, 59: 3468-3474.PubMed
30.
Zurück zum Zitat Lin C-Y, Hung H-C, Kuo R-C, Chiang C-P, Kuo MY-P: Survivin expression predicts poorer prognosis in patients with areca quid chewing-related oral squamous cell carcinoma in Taiwan. Oral Oncology. 2005, 41: 645-654.CrossRefPubMed Lin C-Y, Hung H-C, Kuo R-C, Chiang C-P, Kuo MY-P: Survivin expression predicts poorer prognosis in patients with areca quid chewing-related oral squamous cell carcinoma in Taiwan. Oral Oncology. 2005, 41: 645-654.CrossRefPubMed
31.
Zurück zum Zitat Gallo O, Boddi V, Calzolari A, Simonetti L, Trovati M, Bianchi S: bcl-2 protein expression correlates with recurrence and survival in early stage head and neck cancer treated by radiotherapy. Clin Cancer Res. 1996, 2: 261-267.PubMed Gallo O, Boddi V, Calzolari A, Simonetti L, Trovati M, Bianchi S: bcl-2 protein expression correlates with recurrence and survival in early stage head and neck cancer treated by radiotherapy. Clin Cancer Res. 1996, 2: 261-267.PubMed
32.
Zurück zum Zitat Moore PA, Rosen CA, Carter KC: Assignment of the Human FKBP12-Rapamycin-Associated Protein (FRAP) Gene to Chromosome 1p36 by Fluorescencein SituHybridization. Genomics. 1996, 33: 331-332. 10.1006/geno.1996.0206.CrossRefPubMed Moore PA, Rosen CA, Carter KC: Assignment of the Human FKBP12-Rapamycin-Associated Protein (FRAP) Gene to Chromosome 1p36 by Fluorescencein SituHybridization. Genomics. 1996, 33: 331-332. 10.1006/geno.1996.0206.CrossRefPubMed
33.
Zurück zum Zitat Scott PH, Brunn GJ, Kohn AD, Roth RA, Lawrence JC: Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proceedings of the National Academy of Sciences of the United States of America. 1998, 95: 7772-7777. 10.1073/pnas.95.13.7772.PubMedCentralCrossRefPubMed Scott PH, Brunn GJ, Kohn AD, Roth RA, Lawrence JC: Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proceedings of the National Academy of Sciences of the United States of America. 1998, 95: 7772-7777. 10.1073/pnas.95.13.7772.PubMedCentralCrossRefPubMed
34.
Zurück zum Zitat Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN: Two TOR Complexes, Only One of which Is Rapamycin Sensitive, Have Distinct Roles in Cell Growth Control. Molecular Cell. 2002, 10: 457-468. 10.1016/S1097-2765(02)00636-6.CrossRefPubMed Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN: Two TOR Complexes, Only One of which Is Rapamycin Sensitive, Have Distinct Roles in Cell Growth Control. Molecular Cell. 2002, 10: 457-468. 10.1016/S1097-2765(02)00636-6.CrossRefPubMed
35.
Zurück zum Zitat Bjornsti MA, Houghton PJ: The TOR pathway: a target for cancer therapy. Nat Rev Cancer. 2004, 4: 335-348. 10.1038/nrc1362.CrossRefPubMed Bjornsti MA, Houghton PJ: The TOR pathway: a target for cancer therapy. Nat Rev Cancer. 2004, 4: 335-348. 10.1038/nrc1362.CrossRefPubMed
36.
Zurück zum Zitat Hara K, Maruki Y, Long X, Yoshino K-i, Oshiro N, Hidayat S, Tokunaga C, Avruch J, Yonezawa K: Raptor, a Binding Partner of Target of Rapamycin (TOR), Mediates TOR Action. Cell. 2002, 110: 177-189. 10.1016/S0092-8674(02)00833-4.CrossRefPubMed Hara K, Maruki Y, Long X, Yoshino K-i, Oshiro N, Hidayat S, Tokunaga C, Avruch J, Yonezawa K: Raptor, a Binding Partner of Target of Rapamycin (TOR), Mediates TOR Action. Cell. 2002, 110: 177-189. 10.1016/S0092-8674(02)00833-4.CrossRefPubMed
37.
Zurück zum Zitat Kim D-H, Sarbassov DD, Ali SM, Latek RR, Guntur KVP, Erdjument-Bromage H, Tempst P, Sabatini DM: G[beta]L, a Positive Regulator of the Rapamycin-Sensitive Pathway Required for the Nutrient-Sensitive Interaction between Raptor and mTOR. Molecular Cell. 2003, 11: 895-904. 10.1016/S1097-2765(03)00114-X.CrossRefPubMed Kim D-H, Sarbassov DD, Ali SM, Latek RR, Guntur KVP, Erdjument-Bromage H, Tempst P, Sabatini DM: G[beta]L, a Positive Regulator of the Rapamycin-Sensitive Pathway Required for the Nutrient-Sensitive Interaction between Raptor and mTOR. Molecular Cell. 2003, 11: 895-904. 10.1016/S1097-2765(03)00114-X.CrossRefPubMed
38.
Zurück zum Zitat Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM: mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002, 110: 163-175. 10.1016/S0092-8674(02)00808-5.CrossRefPubMed Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM: mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell. 2002, 110: 163-175. 10.1016/S0092-8674(02)00808-5.CrossRefPubMed
39.
Zurück zum Zitat Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, Hall MN: Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004, 6: 1122-1128. 10.1038/ncb1183.CrossRefPubMed Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, Hall MN: Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004, 6: 1122-1128. 10.1038/ncb1183.CrossRefPubMed
40.
Zurück zum Zitat Humar R, Kiefer FN, Berns H, Resink Thérèsa, Battegay EJ: Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR) -dependent signaling. The FASEB Journal. 2002, 16: 771-780. 10.1096/fj.01-0658com.CrossRef Humar R, Kiefer FN, Berns H, Resink Thérèsa, Battegay EJ: Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR) -dependent signaling. The FASEB Journal. 2002, 16: 771-780. 10.1096/fj.01-0658com.CrossRef
41.
Zurück zum Zitat Gingras AC, Kennedy SG, O'Leary MA, Sonenberg N, Hay N: 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev. 1998, 12: 502-513. 10.1101/gad.12.4.502.PubMedCentralCrossRefPubMed Gingras AC, Kennedy SG, O'Leary MA, Sonenberg N, Hay N: 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev. 1998, 12: 502-513. 10.1101/gad.12.4.502.PubMedCentralCrossRefPubMed
42.
Zurück zum Zitat Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G: Mammalian TOR: A Homeostatic ATP Sensor. Science. 2001, 294: 1102-1105. 10.1126/science.1063518.CrossRefPubMed Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G: Mammalian TOR: A Homeostatic ATP Sensor. Science. 2001, 294: 1102-1105. 10.1126/science.1063518.CrossRefPubMed
43.
Zurück zum Zitat Lu ZH, Shvartsman MB, Lee AY, Shao JM, Murray MM, Kladney RD, Fan D, Krajewski S, Chiang GG, Mills GB, Arbeit JM: Mammalian Target of Rapamycin Activator RHEB Is Frequently Overexpressed in Human Carcinomas and Is Critical and Sufficient for Skin Epithelial Carcinogenesis. Cancer Research. 2010, 70: 3287-3298. 10.1158/0008-5472.CAN-09-3467.PubMedCentralCrossRefPubMed Lu ZH, Shvartsman MB, Lee AY, Shao JM, Murray MM, Kladney RD, Fan D, Krajewski S, Chiang GG, Mills GB, Arbeit JM: Mammalian Target of Rapamycin Activator RHEB Is Frequently Overexpressed in Human Carcinomas and Is Critical and Sufficient for Skin Epithelial Carcinogenesis. Cancer Research. 2010, 70: 3287-3298. 10.1158/0008-5472.CAN-09-3467.PubMedCentralCrossRefPubMed
44.
Zurück zum Zitat Memmott RM, Dennis PA: The role of the Akt/mTOR pathway in tobacco carcinogen-induced lung tumorigenesis. Clin Cancer Res. 2010, 16: 4-10. 10.1158/1078-0432.CCR-09-0234.PubMedCentralCrossRefPubMed Memmott RM, Dennis PA: The role of the Akt/mTOR pathway in tobacco carcinogen-induced lung tumorigenesis. Clin Cancer Res. 2010, 16: 4-10. 10.1158/1078-0432.CCR-09-0234.PubMedCentralCrossRefPubMed
45.
Zurück zum Zitat Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J: Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol. 2003, 13: 1259-1268. 10.1016/S0960-9822(03)00506-2.CrossRefPubMed Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J: Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol. 2003, 13: 1259-1268. 10.1016/S0960-9822(03)00506-2.CrossRefPubMed
46.
Zurück zum Zitat Fingar DC, Salama S, Tsou C, Harlow E, Blenis J: Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 2002, 16: 1472-1487. 10.1101/gad.995802.PubMedCentralCrossRefPubMed Fingar DC, Salama S, Tsou C, Harlow E, Blenis J: Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev. 2002, 16: 1472-1487. 10.1101/gad.995802.PubMedCentralCrossRefPubMed
47.
Zurück zum Zitat Zhang B, Cao H, Rao GN: 15(S)-Hydroxyeicosatetraenoic Acid Induces Angiogenesis via Activation of PI3K-Akt-mTOR-S6K1 Signaling. Cancer Research. 2005, 65: 7283-7291. 10.1158/0008-5472.CAN-05-0633.CrossRefPubMed Zhang B, Cao H, Rao GN: 15(S)-Hydroxyeicosatetraenoic Acid Induces Angiogenesis via Activation of PI3K-Akt-mTOR-S6K1 Signaling. Cancer Research. 2005, 65: 7283-7291. 10.1158/0008-5472.CAN-05-0633.CrossRefPubMed
48.
Zurück zum Zitat Zeng Z-Z, Yellaturu CR, Neeli I, Rao GN: 5(S)-Hydroxyeicosatetraenoic Acid Stimulates DNA Synthesis in Human Microvascular Endothelial Cells via Activation of Jak/STAT and Phosphatidylinositol 3-Kinase/Akt Signaling, Leading to Induction of Expression of Basic Fibroblast Growth Factor 2. Journal of Biological Chemistry. 2002, 277: 41213-41219. 10.1074/jbc.M204508200.CrossRefPubMed Zeng Z-Z, Yellaturu CR, Neeli I, Rao GN: 5(S)-Hydroxyeicosatetraenoic Acid Stimulates DNA Synthesis in Human Microvascular Endothelial Cells via Activation of Jak/STAT and Phosphatidylinositol 3-Kinase/Akt Signaling, Leading to Induction of Expression of Basic Fibroblast Growth Factor 2. Journal of Biological Chemistry. 2002, 277: 41213-41219. 10.1074/jbc.M204508200.CrossRefPubMed
49.
Zurück zum Zitat Jefferies HBJ, Fumagalli S, Dennis PB, Reinhard C, Pearson RB, Thomas G: Rapamycin suppresses 5[prime]TOP mRNA translation through inhibition of p70s6k. EMBO J. 1997, 16: 3693-3704. 10.1093/emboj/16.12.3693.PubMedCentralCrossRefPubMed Jefferies HBJ, Fumagalli S, Dennis PB, Reinhard C, Pearson RB, Thomas G: Rapamycin suppresses 5[prime]TOP mRNA translation through inhibition of p70s6k. EMBO J. 1997, 16: 3693-3704. 10.1093/emboj/16.12.3693.PubMedCentralCrossRefPubMed
50.
Zurück zum Zitat De Benedetti A, Graff JR: eIF-4E expression and its role in malignancies and metastases. Oncogene. 0000, 23: 3189-3199.CrossRef De Benedetti A, Graff JR: eIF-4E expression and its role in malignancies and metastases. Oncogene. 0000, 23: 3189-3199.CrossRef
51.
Zurück zum Zitat Jones RM, Branda J, Johnston KA, Polymenis M, Gadd M, Rustgi A, Callanan L, Schmidt EV: An essential E box in the promoter of the gene encoding the mRNA cap-binding protein (eukaryotic initiation factor 4E) is a target for activation by c-myc. Mol Cell Biol. 1996, 16: 4754-4764.PubMedCentralCrossRefPubMed Jones RM, Branda J, Johnston KA, Polymenis M, Gadd M, Rustgi A, Callanan L, Schmidt EV: An essential E box in the promoter of the gene encoding the mRNA cap-binding protein (eukaryotic initiation factor 4E) is a target for activation by c-myc. Mol Cell Biol. 1996, 16: 4754-4764.PubMedCentralCrossRefPubMed
52.
Zurück zum Zitat Rosenwald IB, Lazaris-Karatzas A, Sonenberg N, Schmidt EV: Elevated levels of cyclin D1 protein in response to increased expression of eukaryotic initiation factor 4E. Mol Cell Biol. 1993, 13: 7358-7363.PubMedCentralCrossRefPubMed Rosenwald IB, Lazaris-Karatzas A, Sonenberg N, Schmidt EV: Elevated levels of cyclin D1 protein in response to increased expression of eukaryotic initiation factor 4E. Mol Cell Biol. 1993, 13: 7358-7363.PubMedCentralCrossRefPubMed
53.
Zurück zum Zitat Kevil CG, De Benedetti A, Payne DK, Coe LL, Laroux FS, Alexander JS: Translational regulation of vascular permeability factor by eukaryotic initiation factor 4E: implications for tumor angiogenesis. Int J Cancer. 1996, 65: 785-790. 10.1002/(SICI)1097-0215(19960315)65:6<785::AID-IJC14>3.0.CO;2-3.CrossRefPubMed Kevil CG, De Benedetti A, Payne DK, Coe LL, Laroux FS, Alexander JS: Translational regulation of vascular permeability factor by eukaryotic initiation factor 4E: implications for tumor angiogenesis. Int J Cancer. 1996, 65: 785-790. 10.1002/(SICI)1097-0215(19960315)65:6<785::AID-IJC14>3.0.CO;2-3.CrossRefPubMed
54.
Zurück zum Zitat Jiang Y, Muschel RJ: Regulation of Matrix Metalloproteinase-9 (MMP-9) by Translational Efficiency in Murine Prostate Carcinoma Cells. Cancer Research. 2002, 62: 1910-1914.PubMed Jiang Y, Muschel RJ: Regulation of Matrix Metalloproteinase-9 (MMP-9) by Translational Efficiency in Murine Prostate Carcinoma Cells. Cancer Research. 2002, 62: 1910-1914.PubMed
55.
Zurück zum Zitat Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM, Simons JW, Semenza GL: Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 2000, 60: 1541-1545.PubMed Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM, Simons JW, Semenza GL: Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 2000, 60: 1541-1545.PubMed
56.
Zurück zum Zitat Huang S, Shu L, Easton J, Harwood FC, Germain GS, Ichijo H, Houghton PJ: Inhibition of Mammalian Target of Rapamycin Activates Apoptosis Signal-regulating Kinase 1 Signaling by Suppressing Protein Phosphatase 5 Activity. Journal of Biological Chemistry. 2004, 279: 36490-36496. 10.1074/jbc.M401208200.CrossRefPubMed Huang S, Shu L, Easton J, Harwood FC, Germain GS, Ichijo H, Houghton PJ: Inhibition of Mammalian Target of Rapamycin Activates Apoptosis Signal-regulating Kinase 1 Signaling by Suppressing Protein Phosphatase 5 Activity. Journal of Biological Chemistry. 2004, 279: 36490-36496. 10.1074/jbc.M401208200.CrossRefPubMed
57.
Zurück zum Zitat Liu Q, Thoreen C, Wang J, Sabatini D, Gray NS: mTOR Mediated Anti-Cancer Drug Discovery. Drug Discov Today Ther Strateg. 2009, 6: 47-55. 10.1016/j.ddstr.2009.12.001.PubMedCentralCrossRefPubMed Liu Q, Thoreen C, Wang J, Sabatini D, Gray NS: mTOR Mediated Anti-Cancer Drug Discovery. Drug Discov Today Ther Strateg. 2009, 6: 47-55. 10.1016/j.ddstr.2009.12.001.PubMedCentralCrossRefPubMed
58.
Zurück zum Zitat Vezina C, Kudelski A, Sehgal SN: Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo). 1975, 28: 721-726.CrossRef Vezina C, Kudelski A, Sehgal SN: Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo). 1975, 28: 721-726.CrossRef
59.
Zurück zum Zitat Brown EJ, Albers MW, Bum Shin T, Ichikawa K, Keith CT, Lane WS, Schreiber SL: A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature. 1994, 369: 756-758. 10.1038/369756a0.CrossRefPubMed Brown EJ, Albers MW, Bum Shin T, Ichikawa K, Keith CT, Lane WS, Schreiber SL: A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature. 1994, 369: 756-758. 10.1038/369756a0.CrossRefPubMed
60.
Zurück zum Zitat Napoli KL, Taylor PJ: From beach to bedside: history of the development of sirolimus. Ther Drug Monit. 2001, 23: 559-586. 10.1097/00007691-200110000-00012.CrossRefPubMed Napoli KL, Taylor PJ: From beach to bedside: history of the development of sirolimus. Ther Drug Monit. 2001, 23: 559-586. 10.1097/00007691-200110000-00012.CrossRefPubMed
61.
Zurück zum Zitat Huang S, Bjornsti MA, Houghton PJ: Rapamycins: mechanism of action and cellular resistance. Cancer Biol Ther. 2003, 2: 222-232.CrossRefPubMed Huang S, Bjornsti MA, Houghton PJ: Rapamycins: mechanism of action and cellular resistance. Cancer Biol Ther. 2003, 2: 222-232.CrossRefPubMed
62.
Zurück zum Zitat Boni JP, Hug B, Leister C, Sonnichsen D: Intravenous Temsirolimus in Cancer Patients: Clinical Pharmacology and Dosing Considerations. Seminars in Oncology. 2009, 36: S18-S25.CrossRefPubMed Boni JP, Hug B, Leister C, Sonnichsen D: Intravenous Temsirolimus in Cancer Patients: Clinical Pharmacology and Dosing Considerations. Seminars in Oncology. 2009, 36: S18-S25.CrossRefPubMed
63.
Zurück zum Zitat Hartford CM, Ratain MJ: Rapamycin: something old, something new, sometimes borrowed and now renewed. Clin Pharmacol Ther. 2007, 82: 381-388. 10.1038/sj.clpt.6100317.CrossRefPubMed Hartford CM, Ratain MJ: Rapamycin: something old, something new, sometimes borrowed and now renewed. Clin Pharmacol Ther. 2007, 82: 381-388. 10.1038/sj.clpt.6100317.CrossRefPubMed
64.
Zurück zum Zitat Crowe A, Bruelisauer A, Duerr L, Guntz P, Lemaire M: Absorption and intestinal metabolism of SDZ-RAD and rapamycin in rats. Drug Metab Dispos. 1999, 27: 627-632.PubMed Crowe A, Bruelisauer A, Duerr L, Guntz P, Lemaire M: Absorption and intestinal metabolism of SDZ-RAD and rapamycin in rats. Drug Metab Dispos. 1999, 27: 627-632.PubMed
65.
Zurück zum Zitat Kirchner GI, Meier-Wiedenbach I, Manns MP: Clinical pharmacokinetics of everolimus. Clin Pharmacokinet. 2004, 43: 83-95. 10.2165/00003088-200443020-00002.CrossRefPubMed Kirchner GI, Meier-Wiedenbach I, Manns MP: Clinical pharmacokinetics of everolimus. Clin Pharmacokinet. 2004, 43: 83-95. 10.2165/00003088-200443020-00002.CrossRefPubMed
67.
Zurück zum Zitat Raymond E, Alexandre J, Faivre S, Vera K, Materman E, Boni J, Leister C, Korth-Bradley J, Hanauske A, Armand JP: Safety and pharmacokinetics of escalated doses of weekly intravenous infusion of CCI-779, a novel mTOR inhibitor, in patients with cancer. J Clin Oncol. 2004, 22: 2336-2347. 10.1200/JCO.2004.08.116.CrossRefPubMed Raymond E, Alexandre J, Faivre S, Vera K, Materman E, Boni J, Leister C, Korth-Bradley J, Hanauske A, Armand JP: Safety and pharmacokinetics of escalated doses of weekly intravenous infusion of CCI-779, a novel mTOR inhibitor, in patients with cancer. J Clin Oncol. 2004, 22: 2336-2347. 10.1200/JCO.2004.08.116.CrossRefPubMed
68.
Zurück zum Zitat Mita MM, Mita AC, Chu QS, Rowinsky EK, Fetterly GJ, Goldston M, Patnaik A, Mathews L, Ricart AD, Mays T, et al: Phase I trial of the novel mammalian target of rapamycin inhibitor deforolimus (AP23573; MK-8669) administered intravenously daily for 5 days every 2 weeks to patients with advanced malignancies. J Clin Oncol. 2008, 26: 361-367. 10.1200/JCO.2007.12.0345.CrossRefPubMed Mita MM, Mita AC, Chu QS, Rowinsky EK, Fetterly GJ, Goldston M, Patnaik A, Mathews L, Ricart AD, Mays T, et al: Phase I trial of the novel mammalian target of rapamycin inhibitor deforolimus (AP23573; MK-8669) administered intravenously daily for 5 days every 2 weeks to patients with advanced malignancies. J Clin Oncol. 2008, 26: 361-367. 10.1200/JCO.2007.12.0345.CrossRefPubMed
69.
Zurück zum Zitat Perotti A, Locatelli A, Sessa C, Hess D, Viganó , Capri G, Maur M, Cerny T, Cresta S, Rojo F, et al: Phase IB Study of the mTOR Inhibitor Ridaforolimus With Capecitabine. Journal of Clinical Oncology. 2010, 28: 4554-4561. 10.1200/JCO.2009.27.5867.CrossRefPubMed Perotti A, Locatelli A, Sessa C, Hess D, Viganó , Capri G, Maur M, Cerny T, Cresta S, Rojo F, et al: Phase IB Study of the mTOR Inhibitor Ridaforolimus With Capecitabine. Journal of Clinical Oncology. 2010, 28: 4554-4561. 10.1200/JCO.2009.27.5867.CrossRefPubMed
70.
Zurück zum Zitat Sorrells DL, Ghali GE, Meschonat C, DeFatta RJ, Black D, Liu L, De Benedetti A, Nathan CO, Li BD: Competitive PCR to detect eIF4E gene amplification in head and neck cancer. Head Neck. 1999, 21: 60-65. 10.1002/(SICI)1097-0347(199901)21:1<60::AID-HED8>3.0.CO;2-J.CrossRefPubMed Sorrells DL, Ghali GE, Meschonat C, DeFatta RJ, Black D, Liu L, De Benedetti A, Nathan CO, Li BD: Competitive PCR to detect eIF4E gene amplification in head and neck cancer. Head Neck. 1999, 21: 60-65. 10.1002/(SICI)1097-0347(199901)21:1<60::AID-HED8>3.0.CO;2-J.CrossRefPubMed
71.
Zurück zum Zitat Nathan CO, Amirghahari N, Abreo F, Rong X, Caldito G, Jones ML, Zhou H, Smith M, Kimberly D, Glass J: Overexpressed eIF4E is functionally active in surgical margins of head and neck cancer patients via activation of the Akt/mammalian target of rapamycin pathway. Clin Cancer Res. 2004, 10: 5820-5827. 10.1158/1078-0432.CCR-03-0483.CrossRefPubMed Nathan CO, Amirghahari N, Abreo F, Rong X, Caldito G, Jones ML, Zhou H, Smith M, Kimberly D, Glass J: Overexpressed eIF4E is functionally active in surgical margins of head and neck cancer patients via activation of the Akt/mammalian target of rapamycin pathway. Clin Cancer Res. 2004, 10: 5820-5827. 10.1158/1078-0432.CCR-03-0483.CrossRefPubMed
72.
Zurück zum Zitat Nathan CO, Franklin S, Abreo FW, Nassar R, De Benedetti A, Glass J: Analysis of surgical margins with the molecular marker eIF4E: a prognostic factor in patients with head and neck cancer. J Clin Oncol. 1999, 17: 2909-2914.PubMed Nathan CO, Franklin S, Abreo FW, Nassar R, De Benedetti A, Glass J: Analysis of surgical margins with the molecular marker eIF4E: a prognostic factor in patients with head and neck cancer. J Clin Oncol. 1999, 17: 2909-2914.PubMed
73.
Zurück zum Zitat Nathan CO, Liu L, Li BD, Abreo FW, Nandy I, De Benedetti A: Detection of the proto-oncogene eIF4E in surgical margins may predict recurrence in head and neck cancer. Oncogene. 1997, 15: 579-584. 10.1038/sj.onc.1201216.CrossRefPubMed Nathan CO, Liu L, Li BD, Abreo FW, Nandy I, De Benedetti A: Detection of the proto-oncogene eIF4E in surgical margins may predict recurrence in head and neck cancer. Oncogene. 1997, 15: 579-584. 10.1038/sj.onc.1201216.CrossRefPubMed
74.
Zurück zum Zitat Amornphimoltham P, Sriuranpong V, Patel V, Benavides F, Conti CJ, Sauk J, Sausville EA, Molinolo AA, Gutkind JS: Persistent Activation of the Akt Pathway in Head and Neck Squamous Cell Carcinoma. Clinical Cancer Research. 2004, 10: 4029-4037. 10.1158/1078-0432.CCR-03-0249.CrossRefPubMed Amornphimoltham P, Sriuranpong V, Patel V, Benavides F, Conti CJ, Sauk J, Sausville EA, Molinolo AA, Gutkind JS: Persistent Activation of the Akt Pathway in Head and Neck Squamous Cell Carcinoma. Clinical Cancer Research. 2004, 10: 4029-4037. 10.1158/1078-0432.CCR-03-0249.CrossRefPubMed
75.
Zurück zum Zitat Ekshyyan O, Rong Y, Rong X, Pattani KM, Abreo F, Caldito G, Chang JKS, Ampil F, Glass J, Nathan CO: Comparison of radiosensitizing effects of the mammalian target of rapamycin inhibitor CCI-779 to cisplatin in experimental models of head and neck squamous cell carcinoma. Molecular Cancer Therapeutics. 2009, 8: 2255-2265. 10.1158/1535-7163.MCT-08-1184.PubMedCentralCrossRefPubMed Ekshyyan O, Rong Y, Rong X, Pattani KM, Abreo F, Caldito G, Chang JKS, Ampil F, Glass J, Nathan CO: Comparison of radiosensitizing effects of the mammalian target of rapamycin inhibitor CCI-779 to cisplatin in experimental models of head and neck squamous cell carcinoma. Molecular Cancer Therapeutics. 2009, 8: 2255-2265. 10.1158/1535-7163.MCT-08-1184.PubMedCentralCrossRefPubMed
76.
Zurück zum Zitat Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Petersen R, Frost P, Gibbons JJ, Wu H, Sawyers CL: Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA. 2001, 98: 10314-10319. 10.1073/pnas.171076798.PubMedCentralCrossRefPubMed Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Petersen R, Frost P, Gibbons JJ, Wu H, Sawyers CL: Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA. 2001, 98: 10314-10319. 10.1073/pnas.171076798.PubMedCentralCrossRefPubMed
77.
Zurück zum Zitat Gera JF, Mellinghoff IK, Shi Y, Rettig MB, Tran C, Hsu J-h, Sawyers CL, Lichtenstein AK: AKT Activity Determines Sensitivity to Mammalian Target of Rapamycin (mTOR) Inhibitors by Regulating Cyclin D1 and c-myc Expression. Journal of Biological Chemistry. 2004, 279: 2737-2746.CrossRefPubMed Gera JF, Mellinghoff IK, Shi Y, Rettig MB, Tran C, Hsu J-h, Sawyers CL, Lichtenstein AK: AKT Activity Determines Sensitivity to Mammalian Target of Rapamycin (mTOR) Inhibitors by Regulating Cyclin D1 and c-myc Expression. Journal of Biological Chemistry. 2004, 279: 2737-2746.CrossRefPubMed
78.
Zurück zum Zitat Nathan CO, Amirghahari N, Rong X, Giordano T, Sibley D, Nordberg M, Glass J, Agarwal A, Caldito G: Mammalian target of rapamycin inhibitors as possible adjuvant therapy for microscopic residual disease in head and neck squamous cell cancer. Cancer Res. 2007, 67: 2160-2168. 10.1158/0008-5472.CAN-06-2449.CrossRefPubMed Nathan CO, Amirghahari N, Rong X, Giordano T, Sibley D, Nordberg M, Glass J, Agarwal A, Caldito G: Mammalian target of rapamycin inhibitors as possible adjuvant therapy for microscopic residual disease in head and neck squamous cell cancer. Cancer Res. 2007, 67: 2160-2168. 10.1158/0008-5472.CAN-06-2449.CrossRefPubMed
79.
Zurück zum Zitat Albert JM, Kim KW, Cao C, Lu B: Targeting the Akt/mammalian target of rapamycin pathway for radiosensitization of breast cancer. Mol Cancer Ther. 2006, 5: 1183-1189. 10.1158/1535-7163.MCT-05-0400.CrossRefPubMed Albert JM, Kim KW, Cao C, Lu B: Targeting the Akt/mammalian target of rapamycin pathway for radiosensitization of breast cancer. Mol Cancer Ther. 2006, 5: 1183-1189. 10.1158/1535-7163.MCT-05-0400.CrossRefPubMed
80.
Zurück zum Zitat Clark C, Shah S, Herman-Ferdinandez L, Ekshyyan O, Abreo F, Rong X, McLarty J, Lurie A, Milligan EJ, Nathan C-AO: Teasing out the best molecular marker in the AKT/mTOR pathway in head and neck squamous cell cancer patients. The Laryngoscope. 2010, 120: 1159-1165.PubMedCentralCrossRefPubMed Clark C, Shah S, Herman-Ferdinandez L, Ekshyyan O, Abreo F, Rong X, McLarty J, Lurie A, Milligan EJ, Nathan C-AO: Teasing out the best molecular marker in the AKT/mTOR pathway in head and neck squamous cell cancer patients. The Laryngoscope. 2010, 120: 1159-1165.PubMedCentralCrossRefPubMed
81.
Zurück zum Zitat Beuvink I, Boulay A, Fumagalli S, Zilbermann F, Ruetz S, O'Reilly T, Natt F, Hall J, Lane HA, Thomas G: The mTOR Inhibitor RAD001 Sensitizes Tumor Cells to DNA-Damaged Induced Apoptosis through Inhibition of p21 Translation. Cell. 2005, 120: 747-759. 10.1016/j.cell.2004.12.040.CrossRefPubMed Beuvink I, Boulay A, Fumagalli S, Zilbermann F, Ruetz S, O'Reilly T, Natt F, Hall J, Lane HA, Thomas G: The mTOR Inhibitor RAD001 Sensitizes Tumor Cells to DNA-Damaged Induced Apoptosis through Inhibition of p21 Translation. Cell. 2005, 120: 747-759. 10.1016/j.cell.2004.12.040.CrossRefPubMed
82.
Zurück zum Zitat Wangpaichitr M, Wu C, You M, Kuo MT, Feun L, Lampidis T, Savaraj N: Inhibition of mTOR restores cisplatin sensitivity through down-regulation of growth and anti-apoptotic proteins. Eur J Pharmacol. 2008, 591: 124-127. 10.1016/j.ejphar.2008.06.028.PubMedCentralCrossRefPubMed Wangpaichitr M, Wu C, You M, Kuo MT, Feun L, Lampidis T, Savaraj N: Inhibition of mTOR restores cisplatin sensitivity through down-regulation of growth and anti-apoptotic proteins. Eur J Pharmacol. 2008, 591: 124-127. 10.1016/j.ejphar.2008.06.028.PubMedCentralCrossRefPubMed
83.
Zurück zum Zitat Shinohara ET, Cao C, Niermann K, Mu Y, Zeng F, Hallahan DE, Lu B: Enhanced radiation damage of tumor vasculature by mTOR inhibitors. Oncogene. 2005, 24: 5414-5422. 10.1038/sj.onc.1208715.CrossRefPubMed Shinohara ET, Cao C, Niermann K, Mu Y, Zeng F, Hallahan DE, Lu B: Enhanced radiation damage of tumor vasculature by mTOR inhibitors. Oncogene. 2005, 24: 5414-5422. 10.1038/sj.onc.1208715.CrossRefPubMed
84.
Zurück zum Zitat Manegold PC, Paringer C, Kulka U, Krimmel K, Eichhorn ME, Wilkowski R, Jauch KW, Guba M, Bruns CJ: Antiangiogenic therapy with mammalian target of rapamycin inhibitor RAD001 (Everolimus) increases radiosensitivity in solid cancer. Clin Cancer Res. 2008, 14: 892-900. 10.1158/1078-0432.CCR-07-0955.CrossRefPubMed Manegold PC, Paringer C, Kulka U, Krimmel K, Eichhorn ME, Wilkowski R, Jauch KW, Guba M, Bruns CJ: Antiangiogenic therapy with mammalian target of rapamycin inhibitor RAD001 (Everolimus) increases radiosensitivity in solid cancer. Clin Cancer Res. 2008, 14: 892-900. 10.1158/1078-0432.CCR-07-0955.CrossRefPubMed
85.
Zurück zum Zitat Sharafinski ME, Ferris RL, Ferrone S, Grandis JR: Epidermal growth factor receptor targeted therapy of squamous cell carcinoma of the head and neck. Head & Neck. 2010, 32: 1412-1421. 10.1002/hed.21365.CrossRef Sharafinski ME, Ferris RL, Ferrone S, Grandis JR: Epidermal growth factor receptor targeted therapy of squamous cell carcinoma of the head and neck. Head & Neck. 2010, 32: 1412-1421. 10.1002/hed.21365.CrossRef
86.
Zurück zum Zitat Jimeno A, Kulesza P, Wheelhouse J, Chan A, Zhang X, Kincaid E, Chen R, Clark DP, Forastiere A, Hidalgo M: Dual EGFR and mTOR targeting in squamous cell carcinoma models, and development of early markers of efficacy. Br J Cancer. 2007, 96: 952-959. 10.1038/sj.bjc.6603656.PubMedCentralCrossRefPubMed Jimeno A, Kulesza P, Wheelhouse J, Chan A, Zhang X, Kincaid E, Chen R, Clark DP, Forastiere A, Hidalgo M: Dual EGFR and mTOR targeting in squamous cell carcinoma models, and development of early markers of efficacy. Br J Cancer. 2007, 96: 952-959. 10.1038/sj.bjc.6603656.PubMedCentralCrossRefPubMed
87.
Zurück zum Zitat MacKenzie M, Ernst S, Johnson C, Winquist E: A phase I study of temsirolimus and metformin in advanced solid tumours. Investigational New Drugs. 2010: 1-6. MacKenzie M, Ernst S, Johnson C, Winquist E: A phase I study of temsirolimus and metformin in advanced solid tumours. Investigational New Drugs. 2010: 1-6.
88.
Zurück zum Zitat Fury MG, Sherman EJ, Wu N, Haque S, Lisa DM, Carlson D, Pfister DG: Phase I study of everolimus (E) plus low-dose weekly cisplatin (C) for patients with advanced solid tumors. ASCO Meeting Abstracts. 2010, 28: e13013- Fury MG, Sherman EJ, Wu N, Haque S, Lisa DM, Carlson D, Pfister DG: Phase I study of everolimus (E) plus low-dose weekly cisplatin (C) for patients with advanced solid tumors. ASCO Meeting Abstracts. 2010, 28: e13013-
Metadaten
Titel
Mammalian target of rapamycin and head and neck squamous cell carcinoma
verfasst von
Yu-Min Liao
Charles Kim
Yun Yen
Publikationsdatum
01.12.2011
Verlag
BioMed Central
Erschienen in
Head & Neck Oncology / Ausgabe 1/2011
Elektronische ISSN: 1758-3284
DOI
https://doi.org/10.1186/1758-3284-3-22

Weitere Artikel der Ausgabe 1/2011

Head & Neck Oncology 1/2011 Zur Ausgabe

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Erhöhte Mortalität bei postpartalem Brustkrebs

07.05.2024 Mammakarzinom Nachrichten

Auch für Trägerinnen von BRCA-Varianten gilt: Erkranken sie fünf bis zehn Jahre nach der letzten Schwangerschaft an Brustkrebs, ist das Sterberisiko besonders hoch.

Hypertherme Chemotherapie bietet Chance auf Blasenerhalt

07.05.2024 Harnblasenkarzinom Nachrichten

Eine hypertherme intravesikale Chemotherapie mit Mitomycin kann für Patienten mit hochriskantem nicht muskelinvasivem Blasenkrebs eine Alternative zur radikalen Zystektomie darstellen. Kölner Urologen berichten über ihre Erfahrungen.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.