Skip to main content
Erschienen in: Journal of Medical Systems 11/2018

01.11.2018 | Image & Signal Processing

Medical Image Analysis using Convolutional Neural Networks: A Review

verfasst von: Syed Muhammad Anwar, Muhammad Majid, Adnan Qayyum, Muhammad Awais, Majdi Alnowami, Muhammad Khurram Khan

Erschienen in: Journal of Medical Systems | Ausgabe 11/2018

Einloggen, um Zugang zu erhalten

Abstract

The science of solving clinical problems by analyzing images generated in clinical practice is known as medical image analysis. The aim is to extract information in an affective and efficient manner for improved clinical diagnosis. The recent advances in the field of biomedical engineering have made medical image analysis one of the top research and development area. One of the reasons for this advancement is the application of machine learning techniques for the analysis of medical images. Deep learning is successfully used as a tool for machine learning, where a neural network is capable of automatically learning features. This is in contrast to those methods where traditionally hand crafted features are used. The selection and calculation of these features is a challenging task. Among deep learning techniques, deep convolutional networks are actively used for the purpose of medical image analysis. This includes application areas such as segmentation, abnormality detection, disease classification, computer aided diagnosis and retrieval. In this study, a comprehensive review of the current state-of-the-art in medical image analysis using deep convolutional networks is presented. The challenges and potential of these techniques are also highlighted.
Literatur
1.
Zurück zum Zitat Greenspan, H., van Ginneken, B., and Summers, R. M., Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35(5):1153–1159, 2016.CrossRef Greenspan, H., van Ginneken, B., and Summers, R. M., Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35(5):1153–1159, 2016.CrossRef
2.
Zurück zum Zitat Wang, G., A perspective on deep imaging. IEEE Access 4:8914–8924, 2016.CrossRef Wang, G., A perspective on deep imaging. IEEE Access 4:8914–8924, 2016.CrossRef
3.
Zurück zum Zitat Liu, Y., Cheng, H., Huang, J., Zhang, Y., Tang, X., Tian, J.-W., and Wang, Y., Computer aided diagnosis system for breast cancer based on color doppler flow imaging. J. Med. Syst. 36(6):3975–3982, 2012.PubMedCrossRef Liu, Y., Cheng, H., Huang, J., Zhang, Y., Tang, X., Tian, J.-W., and Wang, Y., Computer aided diagnosis system for breast cancer based on color doppler flow imaging. J. Med. Syst. 36(6):3975–3982, 2012.PubMedCrossRef
4.
Zurück zum Zitat Diao, X.-F., Zhang, X.-Y., Wang, T.-F., Chen, S.-P., Yang, Y., and Zhong, L., Highly sensitive computer aided diagnosis system for breast tumor based on color doppler flow images. J. Med. Syst. 35(5):801–809, 2011.PubMedCrossRef Diao, X.-F., Zhang, X.-Y., Wang, T.-F., Chen, S.-P., Yang, Y., and Zhong, L., Highly sensitive computer aided diagnosis system for breast tumor based on color doppler flow images. J. Med. Syst. 35(5):801–809, 2011.PubMedCrossRef
5.
Zurück zum Zitat Wan, J., Wang, D., Hoi, S. C. H., Wu, P., Zhu, J., Zhang, Y., and Li, J.: Deep learning for content-based image retrieval: A comprehensive study. In: Proceedings of the 22nd ACM international conference on Multimedia. ACM, pp. 157–166, 2014 Wan, J., Wang, D., Hoi, S. C. H., Wu, P., Zhu, J., Zhang, Y., and Li, J.: Deep learning for content-based image retrieval: A comprehensive study. In: Proceedings of the 22nd ACM international conference on Multimedia. ACM, pp. 157–166, 2014
6.
Zurück zum Zitat Deng, L., Yu, D., et al., Deep learning: Methods and applications. Foundations and Trends®, in Signal Processing 7(3–4):197–387, 2014.CrossRef Deng, L., Yu, D., et al., Deep learning: Methods and applications. Foundations and Trends®, in Signal Processing 7(3–4):197–387, 2014.CrossRef
7.
Zurück zum Zitat Shi, S., Wang, Q., Xu, P., and Chu, X.: Benchmarking state-of-the-art deep learning software tools. In: 2016 7th International Conference on Cloud Computing and Big Data (CCBD). IEEE, pp. 99–104, 2016 Shi, S., Wang, Q., Xu, P., and Chu, X.: Benchmarking state-of-the-art deep learning software tools. In: 2016 7th International Conference on Cloud Computing and Big Data (CCBD). IEEE, pp. 99–104, 2016
8.
Zurück zum Zitat Janowczyk, A., and Madabhushi, A.: Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases, Journal of pathology informatics 7 Janowczyk, A., and Madabhushi, A.: Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases, Journal of pathology informatics 7
9.
Zurück zum Zitat Lakhani, P., Gray, D. L., Pett, C. R., Nagy, P., and Shih, G., Hello world deep learning in medical imaging. J. Digit. Imaging 31(3):283–289, 2018.PubMedCentralCrossRef Lakhani, P., Gray, D. L., Pett, C. R., Nagy, P., and Shih, G., Hello world deep learning in medical imaging. J. Digit. Imaging 31(3):283–289, 2018.PubMedCentralCrossRef
10.
Zurück zum Zitat Heidenreich, A., Desgrandschamps, F., and Terrier, F., Modern approach of diagnosis and management of acute flank pain: Review of all imaging modalities. Eur. Urol. 41(4):351–362, 2002.PubMedCrossRef Heidenreich, A., Desgrandschamps, F., and Terrier, F., Modern approach of diagnosis and management of acute flank pain: Review of all imaging modalities. Eur. Urol. 41(4):351–362, 2002.PubMedCrossRef
11.
Zurück zum Zitat Rahman, M. M., Desai, B.C., and Bhattacharya, P., Medical image retrieval with probabilistic multi-class support vector machine classifiers and adaptive similarity fusion. Comput. Med. Imaging Graph. 32(2):95–108, 2008.PubMedCrossRef Rahman, M. M., Desai, B.C., and Bhattacharya, P., Medical image retrieval with probabilistic multi-class support vector machine classifiers and adaptive similarity fusion. Comput. Med. Imaging Graph. 32(2):95–108, 2008.PubMedCrossRef
12.
Zurück zum Zitat Sáez, A., Sánchez-Monedero, J., Gutiérrez, P. A., and Hervás-Martínez, C., Machine learning methods for binary and multiclass classification of melanoma thickness from dermoscopic images. IEEE Trans. Med. Imaging 35(4):1036–1045, 2016.PubMedCrossRef Sáez, A., Sánchez-Monedero, J., Gutiérrez, P. A., and Hervás-Martínez, C., Machine learning methods for binary and multiclass classification of melanoma thickness from dermoscopic images. IEEE Trans. Med. Imaging 35(4):1036–1045, 2016.PubMedCrossRef
13.
Zurück zum Zitat Miri, M. S., Abràmoff, M. D., Lee, K., Niemeijer, M., Wang, J.-K., Kwon, Y. H., and Garvin, M. K., Multimodal segmentation of optic disc and cup from sd-oct and color fundus photographs using a machine-learning graph-based approach. IEEE Trans. Med. Imaging 34(9):1854–1866, 2015.PubMedPubMedCentralCrossRef Miri, M. S., Abràmoff, M. D., Lee, K., Niemeijer, M., Wang, J.-K., Kwon, Y. H., and Garvin, M. K., Multimodal segmentation of optic disc and cup from sd-oct and color fundus photographs using a machine-learning graph-based approach. IEEE Trans. Med. Imaging 34(9):1854–1866, 2015.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Gao, Y., Zhan, Y., and Shen, D., Incremental learning with selective memory (ilsm): Towards fast prostate localization for image guided radiotherapy. IEEE Trans. Med. Imaging 33(2):518–534, 2014.PubMedPubMedCentralCrossRef Gao, Y., Zhan, Y., and Shen, D., Incremental learning with selective memory (ilsm): Towards fast prostate localization for image guided radiotherapy. IEEE Trans. Med. Imaging 33(2):518–534, 2014.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Tao, Y., Peng, Z., Krishnan, A., and Zhou, X. S., Robust learning-based parsing and annotation of medical radiographs. IEEE Trans. Med. Imaging 30(2):338–350, 2011.PubMedCrossRef Tao, Y., Peng, Z., Krishnan, A., and Zhou, X. S., Robust learning-based parsing and annotation of medical radiographs. IEEE Trans. Med. Imaging 30(2):338–350, 2011.PubMedCrossRef
16.
Zurück zum Zitat Ahmad, J., Muhammad, K., Lee, M. Y., and Baik, S. W., Endoscopic image classification and retrieval using clustered convolutional features. J. Med. Syst. 41(12):196, 2017.PubMedCrossRef Ahmad, J., Muhammad, K., Lee, M. Y., and Baik, S. W., Endoscopic image classification and retrieval using clustered convolutional features. J. Med. Syst. 41(12):196, 2017.PubMedCrossRef
17.
Zurück zum Zitat Ahmad, J., Muhammad, K., and Baik, S. W., Medical image retrieval with compact binary codes generated in frequency domain using highly reactive convolutional features. J. Med. Syst. 42(2):24, 2018.CrossRef Ahmad, J., Muhammad, K., and Baik, S. W., Medical image retrieval with compact binary codes generated in frequency domain using highly reactive convolutional features. J. Med. Syst. 42(2):24, 2018.CrossRef
18.
Zurück zum Zitat Jenitta, A., and Ravindran, R. S., Image retrieval based on local mesh vector co-occurrence pattern for medical diagnosis from mri brain images. J. Med. Syst. 41(10):157, 2017.PubMedCrossRef Jenitta, A., and Ravindran, R. S., Image retrieval based on local mesh vector co-occurrence pattern for medical diagnosis from mri brain images. J. Med. Syst. 41(10):157, 2017.PubMedCrossRef
19.
Zurück zum Zitat Zhang, L., and Ji, Q., A bayesian network model for automatic and interactive image segmentation. IEEE Trans. Image Process. 20(9):2582–2593, 2011.PubMedCrossRef Zhang, L., and Ji, Q., A bayesian network model for automatic and interactive image segmentation. IEEE Trans. Image Process. 20(9):2582–2593, 2011.PubMedCrossRef
20.
Zurück zum Zitat Sharma, M. M.: Brain tumor segmentation techniques: A survey. Brain 4 (4): 220–223 Sharma, M. M.: Brain tumor segmentation techniques: A survey. Brain 4 (4): 220–223
21.
Zurück zum Zitat Vishnuvarthanan, G., Rajasekaran, M. P., Subbaraj, P., and Vishnuvarthanan, A., An unsupervised learning method with a clustering approach for tumor identification and tissue segmentation in magnetic resonance brain images. Appl. Soft Comput. 38:190–212, 2016.CrossRef Vishnuvarthanan, G., Rajasekaran, M. P., Subbaraj, P., and Vishnuvarthanan, A., An unsupervised learning method with a clustering approach for tumor identification and tissue segmentation in magnetic resonance brain images. Appl. Soft Comput. 38:190–212, 2016.CrossRef
22.
Zurück zum Zitat Feng, Y., Zhao, H., Li, X., Zhang, X., and Li, H., A multi-scale 3d otsu thresholding algorithm for medical image segmentation. Digital Signal Process. 60:186–199, 2017.CrossRef Feng, Y., Zhao, H., Li, X., Zhang, X., and Li, H., A multi-scale 3d otsu thresholding algorithm for medical image segmentation. Digital Signal Process. 60:186–199, 2017.CrossRef
23.
Zurück zum Zitat Gupta, D., and Anand, R., A hybrid edge-based segmentation approach for ultrasound medical images. Biomed. Signal Process. Control 31:116–126, 2017.CrossRef Gupta, D., and Anand, R., A hybrid edge-based segmentation approach for ultrasound medical images. Biomed. Signal Process. Control 31:116–126, 2017.CrossRef
24.
Zurück zum Zitat von Landesberger, T., Basgier, D., and Becker, M., Comparative local quality assessment of 3d medical image segmentations with focus on statistical shape model-based algorithms. IEEE Trans. Vis. Comput. Graph. 22 (12):2537–2549, 2016.CrossRef von Landesberger, T., Basgier, D., and Becker, M., Comparative local quality assessment of 3d medical image segmentations with focus on statistical shape model-based algorithms. IEEE Trans. Vis. Comput. Graph. 22 (12):2537–2549, 2016.CrossRef
25.
Zurück zum Zitat Anwar, S., Yousaf, S., and Majid, M.: Brain timor segmentation on multimodal mri scans using emap algorithm. In: Engineering in medicine and biology soceity (EMBC), International Conference of the IEEE. IEEE, pp. 1-4, 2018 Anwar, S., Yousaf, S., and Majid, M.: Brain timor segmentation on multimodal mri scans using emap algorithm. In: Engineering in medicine and biology soceity (EMBC), International Conference of the IEEE. IEEE, pp. 1-4, 2018
26.
Zurück zum Zitat Cabria, I., and Gondra, I., Mri segmentation fusion for brain tumor detection. Information Fusion 36:1–9, 2017.CrossRef Cabria, I., and Gondra, I., Mri segmentation fusion for brain tumor detection. Information Fusion 36:1–9, 2017.CrossRef
27.
Zurück zum Zitat Soulami, K. B., Saidi, M. N., and Tamtaoui, A.: A cad system for the detection of abnormalities in the mammograms using the metaheuristic algorithm particle swarm optimization (pso). In: Advances in Ubiquitous Networking 2. Springer, pp. 505–517, 2017 Soulami, K. B., Saidi, M. N., and Tamtaoui, A.: A cad system for the detection of abnormalities in the mammograms using the metaheuristic algorithm particle swarm optimization (pso). In: Advances in Ubiquitous Networking 2. Springer, pp. 505–517, 2017
28.
Zurück zum Zitat Kobayashi, Y., Kobayashi, H., Giles, J. T., Yokoe, I., Hirano, M., Nakajima, Y., and Takei, M., Detection of left ventricular regional dysfunction and myocardial abnormalities using complementary cardiac magnetic resonance imaging in patients with systemic sclerosis without cardiac symptoms: A pilot study. Intern. Med. 55(3): 237–243, 2016.PubMedCrossRef Kobayashi, Y., Kobayashi, H., Giles, J. T., Yokoe, I., Hirano, M., Nakajima, Y., and Takei, M., Detection of left ventricular regional dysfunction and myocardial abnormalities using complementary cardiac magnetic resonance imaging in patients with systemic sclerosis without cardiac symptoms: A pilot study. Intern. Med. 55(3): 237–243, 2016.PubMedCrossRef
29.
Zurück zum Zitat Mosquera-Lopez, C., Agaian, S., Velez-Hoyos, A., and Thompson, I., Computer-aided prostate cancer diagnosis from digitized histopathology: A review on texture-based systems. IEEE Rev. Biomed. Eng. 8:98–113, 2015.PubMedCrossRef Mosquera-Lopez, C., Agaian, S., Velez-Hoyos, A., and Thompson, I., Computer-aided prostate cancer diagnosis from digitized histopathology: A review on texture-based systems. IEEE Rev. Biomed. Eng. 8:98–113, 2015.PubMedCrossRef
30.
Zurück zum Zitat Ma, H.-Y., Zhou, Z., Wu, S., Wan, Y.-L., and Tsui, P.-H., A computer-aided diagnosis scheme for detection of fatty liver in vivo based on ultrasound kurtosis imaging. J. Med. Syst. 40(1):33, 2016.PubMedCrossRef Ma, H.-Y., Zhou, Z., Wu, S., Wan, Y.-L., and Tsui, P.-H., A computer-aided diagnosis scheme for detection of fatty liver in vivo based on ultrasound kurtosis imaging. J. Med. Syst. 40(1):33, 2016.PubMedCrossRef
31.
Zurück zum Zitat Remeseiro, B., Mosquera, A., and Penedo, M. G., Casdes: A computer-aided system to support dry eye diagnosis based on tear film maps. IEEE journal of biomedical and health informatics 20(3):936–943, 2016.PubMedCrossRef Remeseiro, B., Mosquera, A., and Penedo, M. G., Casdes: A computer-aided system to support dry eye diagnosis based on tear film maps. IEEE journal of biomedical and health informatics 20(3):936–943, 2016.PubMedCrossRef
32.
Zurück zum Zitat Torrents-Barrena, J., Lazar, P., Jayapathy, R., Rathnam, M., Mohandhas, B., and Puig, D., Complex wavelet algorithm for computer-aided diagnosis of alzheimer’s disease. Electron. Lett. 51(20):1566–1568, 2015.CrossRef Torrents-Barrena, J., Lazar, P., Jayapathy, R., Rathnam, M., Mohandhas, B., and Puig, D., Complex wavelet algorithm for computer-aided diagnosis of alzheimer’s disease. Electron. Lett. 51(20):1566–1568, 2015.CrossRef
33.
Zurück zum Zitat Saha, M., Mukherjee, R., and Chakraborty, C., Computer-aided diagnosis of breast cancer using cytological images: A systematic review. Tissue Cell 48(5):461–474, 2016.PubMedCrossRef Saha, M., Mukherjee, R., and Chakraborty, C., Computer-aided diagnosis of breast cancer using cytological images: A systematic review. Tissue Cell 48(5):461–474, 2016.PubMedCrossRef
34.
Zurück zum Zitat Salam, A. A., Akram, M. U., Wazir, K., Anwar, S. M., and Majid, M.: Autonomous glaucoma detection from fundus image using cup to disc ratio and hybrid features. In: IEEE International Symposium on Signal processing and information technology (ISSPIT) 2015. IEEE, pp. 370-374, 2015 Salam, A. A., Akram, M. U., Wazir, K., Anwar, S. M., and Majid, M.: Autonomous glaucoma detection from fundus image using cup to disc ratio and hybrid features. In: IEEE International Symposium on Signal processing and information technology (ISSPIT) 2015. IEEE, pp. 370-374, 2015
35.
Zurück zum Zitat Salam, A. A., Akram, M. U., Abbas, S., and Anwar, S. M.: Optic disc localization using local vessel based features and support vector machine. In: IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE), 2015. IEEE, pp. 1–6, 2015 Salam, A. A., Akram, M. U., Abbas, S., and Anwar, S. M.: Optic disc localization using local vessel based features and support vector machine. In: IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE), 2015. IEEE, pp. 1–6, 2015
36.
Zurück zum Zitat Altaf, T., Anwar, S. M., Gul, N., Majeed, M. N., and Majid, M., Multi-class alzheimer’s disease classification using image and clinical features. Biomed. Signal Process. Control 43:64–74, 2018.CrossRef Altaf, T., Anwar, S. M., Gul, N., Majeed, M. N., and Majid, M., Multi-class alzheimer’s disease classification using image and clinical features. Biomed. Signal Process. Control 43:64–74, 2018.CrossRef
38.
Zurück zum Zitat Müller, H., Rosset, A., Vallée, J.-P., Terrier, F., and Geissbuhler, A., A reference data set for the evaluation of medical image retrieval systems. Comput. Med. Imaging Graph. 28(6):295–305, 2004.PubMedCrossRef Müller, H., Rosset, A., Vallée, J.-P., Terrier, F., and Geissbuhler, A., A reference data set for the evaluation of medical image retrieval systems. Comput. Med. Imaging Graph. 28(6):295–305, 2004.PubMedCrossRef
39.
Zurück zum Zitat Müller, H., Michoux, N., Bandon, D., and Geissbuhler, A., A review of content-based image retrieval systems in medical applications—clinical benefits and future directions. Int. J. Med. Inform. 73(1):1–23, 2004.PubMedCrossRef Müller, H., Michoux, N., Bandon, D., and Geissbuhler, A., A review of content-based image retrieval systems in medical applications—clinical benefits and future directions. Int. J. Med. Inform. 73(1):1–23, 2004.PubMedCrossRef
40.
Zurück zum Zitat Mizotin, M., Benois-Pineau, J., Allard, M., and Catheline, G.: Feature-based brain mri retrieval for alzheimer disease diagnosis. In: 2012 19th IEEE International Conference on Image Processing (ICIP). IEEE, pp. 1241–1244, 2012 Mizotin, M., Benois-Pineau, J., Allard, M., and Catheline, G.: Feature-based brain mri retrieval for alzheimer disease diagnosis. In: 2012 19th IEEE International Conference on Image Processing (ICIP). IEEE, pp. 1241–1244, 2012
41.
Zurück zum Zitat Brahmi, D., and Ziou, D.: Improving cbir systems by integrating semantic features. In: 2004 Proceedings of the 1st Canadian Conference on Computer and robot vision. IEEE, pp. 233-240, 2004 Brahmi, D., and Ziou, D.: Improving cbir systems by integrating semantic features. In: 2004 Proceedings of the 1st Canadian Conference on Computer and robot vision. IEEE, pp. 233-240, 2004
42.
Zurück zum Zitat Chang, N.-S., and Fu, K.-S., Query-by-pictorial-example. IEEE Trans. Softw. Eng. SE-6(6):519–524, 1980.CrossRef Chang, N.-S., and Fu, K.-S., Query-by-pictorial-example. IEEE Trans. Softw. Eng. SE-6(6):519–524, 1980.CrossRef
43.
Zurück zum Zitat Thakur, M. S., and Singh, M., Content based image retrieval using line edge singular value pattern (lesvp): A review paper. International Journal of Advanced Research in Computer Science and Software Engineering 5(3): 648–652, 2015. Thakur, M. S., and Singh, M., Content based image retrieval using line edge singular value pattern (lesvp): A review paper. International Journal of Advanced Research in Computer Science and Software Engineering 5(3): 648–652, 2015.
44.
Zurück zum Zitat Jiji, G. W., and Raj, P. S. J. D., Content-based image retrieval in dermatology using intelligent technique. IET Image Process. 9(4):306–317, 2014.CrossRef Jiji, G. W., and Raj, P. S. J. D., Content-based image retrieval in dermatology using intelligent technique. IET Image Process. 9(4):306–317, 2014.CrossRef
45.
Zurück zum Zitat Rahman, M. M., Antani, S. K., and Thoma, G. R., A learning-based similarity fusion and filtering approach for biomedical image retrieval using svm classification and relevance feedback. IEEE Trans. Inf. Technol. Biomed. 15(4):640–646, 2011.PubMedCrossRef Rahman, M. M., Antani, S. K., and Thoma, G. R., A learning-based similarity fusion and filtering approach for biomedical image retrieval using svm classification and relevance feedback. IEEE Trans. Inf. Technol. Biomed. 15(4):640–646, 2011.PubMedCrossRef
46.
Zurück zum Zitat Anwar, S. M., Arshad, F., and Majid, M.: Fast wavelet based image characterization for content based medical image retrieval. In: 2017 International Conference on communication, computing and digital systems (C-CODE). IEEE, pp.351-356, 2017 Anwar, S. M., Arshad, F., and Majid, M.: Fast wavelet based image characterization for content based medical image retrieval. In: 2017 International Conference on communication, computing and digital systems (C-CODE). IEEE, pp.351-356, 2017
47.
Zurück zum Zitat Deng, L., Yu, D., et al., Deep learning: Methods and applications. Foundations and Trends®, in Signal Processing 7(3–4):197–387, 2014.CrossRef Deng, L., Yu, D., et al., Deep learning: Methods and applications. Foundations and Trends®, in Signal Processing 7(3–4):197–387, 2014.CrossRef
48.
Zurück zum Zitat Premaladha, J., and Ravichandran, K., Novel approaches for diagnosing melanoma skin lesions through supervised and deep learning algorithms. J. Med. Syst. 40(4):96, 2016.PubMedCrossRef Premaladha, J., and Ravichandran, K., Novel approaches for diagnosing melanoma skin lesions through supervised and deep learning algorithms. J. Med. Syst. 40(4):96, 2016.PubMedCrossRef
49.
Zurück zum Zitat Kharazmi, P., Zheng, J., Lui, H., Wang, Z. J., and Lee, T. K., A computer-aided decision support system for detection and localization of cutaneous vasculature in dermoscopy images via deep feature learning. J. Med. Syst. 42(2):33, 2018.PubMedCrossRef Kharazmi, P., Zheng, J., Lui, H., Wang, Z. J., and Lee, T. K., A computer-aided decision support system for detection and localization of cutaneous vasculature in dermoscopy images via deep feature learning. J. Med. Syst. 42(2):33, 2018.PubMedCrossRef
50.
Zurück zum Zitat Wang, S.-H., Phillips, P., Sui, Y., Liu, B., Yang, M., and Cheng, H., Classification of alzheimer’s disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling. J. Med. Syst. 42(5):85, 2018.PubMedCrossRef Wang, S.-H., Phillips, P., Sui, Y., Liu, B., Yang, M., and Cheng, H., Classification of alzheimer’s disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling. J. Med. Syst. 42(5):85, 2018.PubMedCrossRef
51.
Zurück zum Zitat LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P., Gradient-based learning applied to document recognition. Proc. IEEE 86(11):2278–2324, 1998.CrossRef LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P., Gradient-based learning applied to document recognition. Proc. IEEE 86(11):2278–2324, 1998.CrossRef
52.
53.
Zurück zum Zitat Ding, S., Lin, L., Wang, G., and Chao, H., Deep feature learning with relative distance comparison for person re-identification. Pattern Recog. 48(10):2993–3003, 2015.CrossRef Ding, S., Lin, L., Wang, G., and Chao, H., Deep feature learning with relative distance comparison for person re-identification. Pattern Recog. 48(10):2993–3003, 2015.CrossRef
54.
Zurück zum Zitat Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R., Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research 15(1):1929–1958, 2014. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R., Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research 15(1):1929–1958, 2014.
55.
Zurück zum Zitat Ioffe, S., and Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167 Ioffe, S., and Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv:1502.​03167
57.
Zurück zum Zitat Perez, L., and Wang, J.: The effectiveness of data augmentation in image classification using deep learning. arXiv:1712.04621 Perez, L., and Wang, J.: The effectiveness of data augmentation in image classification using deep learning. arXiv:1712.​04621
58.
Zurück zum Zitat Hussain, S., Anwar, S. M., and Majid, M., Segmentation of glioma tumors in brain using deep convolutional neural network. Neurocomputing 282:248–261, 2018.CrossRef Hussain, S., Anwar, S. M., and Majid, M., Segmentation of glioma tumors in brain using deep convolutional neural network. Neurocomputing 282:248–261, 2018.CrossRef
59.
Zurück zum Zitat Ma, J., Wu, F., Zhu, J., Xu, D., and Kong, D., A pre-trained convolutional neural network based method for thyroid nodule diagnosis. Ultrasonics 73:221–230, 2017.PubMedCrossRef Ma, J., Wu, F., Zhu, J., Xu, D., and Kong, D., A pre-trained convolutional neural network based method for thyroid nodule diagnosis. Ultrasonics 73:221–230, 2017.PubMedCrossRef
60.
Zurück zum Zitat Sun, W., Tseng, T.-L. B., Zhang, J., and Qian, W., Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data. Comput. Med. Imaging Graph. 57:4–9 , 2017.PubMedCrossRef Sun, W., Tseng, T.-L. B., Zhang, J., and Qian, W., Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data. Comput. Med. Imaging Graph. 57:4–9 , 2017.PubMedCrossRef
61.
Zurück zum Zitat Pratt, H., Coenen, F., Broadbent, D. M., Harding, S. P., and Zheng, Y., Convolutional neural networks for diabetic retinopathy. Procedia Comput. Sci. 90:200–205, 2016.CrossRef Pratt, H., Coenen, F., Broadbent, D. M., Harding, S. P., and Zheng, Y., Convolutional neural networks for diabetic retinopathy. Procedia Comput. Sci. 90:200–205, 2016.CrossRef
62.
Zurück zum Zitat Anthimopoulos, M., Christodoulidis, S., Ebner, L., Christe, A., and Mougiakakou, S., Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans. Med. Imaging 35 (5):1207–1216, 2016.PubMedCrossRef Anthimopoulos, M., Christodoulidis, S., Ebner, L., Christe, A., and Mougiakakou, S., Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans. Med. Imaging 35 (5):1207–1216, 2016.PubMedCrossRef
63.
Zurück zum Zitat van Tulder, G., and de Bruijne, M., Combining generative and discriminative representation learning for lung ct analysis with convolutional restricted boltzmann machines. IEEE Trans. Med. Imaging 35(5):1262–1272, 2016.PubMedCrossRef van Tulder, G., and de Bruijne, M., Combining generative and discriminative representation learning for lung ct analysis with convolutional restricted boltzmann machines. IEEE Trans. Med. Imaging 35(5):1262–1272, 2016.PubMedCrossRef
64.
Zurück zum Zitat Yan, Z., Zhan, Y., Peng, Z., Liao, S., Shinagawa, Y., Zhang, S., Metaxas, D. N., and Zhou, X. S., Multi-instance deep learning: Discover discriminative local anatomies for bodypart recognition. IEEE Trans. Med. Imaging 35(5):1332–1343, 2016.CrossRef Yan, Z., Zhan, Y., Peng, Z., Liao, S., Shinagawa, Y., Zhang, S., Metaxas, D. N., and Zhou, X. S., Multi-instance deep learning: Discover discriminative local anatomies for bodypart recognition. IEEE Trans. Med. Imaging 35(5):1332–1343, 2016.CrossRef
65.
Zurück zum Zitat Sirinukunwattana, K., Raza, S. E. A., Tsang, Y.-W., Snead, D. R., Cree, I. A., and Rajpoot, N. M., Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35(5):1196–1206, 2016.PubMedCrossRef Sirinukunwattana, K., Raza, S. E. A., Tsang, Y.-W., Snead, D. R., Cree, I. A., and Rajpoot, N. M., Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35(5):1196–1206, 2016.PubMedCrossRef
66.
Zurück zum Zitat Qayyum, A., Anwar, S. M., Awais, M., and Majid, M., Medical image retrieval using deep convolutional neural network. Neurocomputing 266:8–20, 2017.CrossRef Qayyum, A., Anwar, S. M., Awais, M., and Majid, M., Medical image retrieval using deep convolutional neural network. Neurocomputing 266:8–20, 2017.CrossRef
67.
Zurück zum Zitat Chowdhury, M., Bulo, S. R., Moreno, R., Kundu, M. K., and Smedby, Ö.: An efficient radiographic image retrieval system using convolutional neural network. In: 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, pp. 3134–3139, 2016 Chowdhury, M., Bulo, S. R., Moreno, R., Kundu, M. K., and Smedby, Ö.: An efficient radiographic image retrieval system using convolutional neural network. In: 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, pp. 3134–3139, 2016
68.
Zurück zum Zitat Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.-M., and Larochelle, H., Brain tumor segmentation with deep neural networks. Med. Image Anal. 35:18–31, 2017.PubMedCrossRef Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.-M., and Larochelle, H., Brain tumor segmentation with deep neural networks. Med. Image Anal. 35:18–31, 2017.PubMedCrossRef
69.
Zurück zum Zitat Pereira, S., Pinto, A., Alves, V., and Silva, C. A., Brain tumor segmentation using convolutional neural networks in mri images. IEEE Trans. Med. Imaging 35(5):1240–1251 , 2016.PubMedCrossRef Pereira, S., Pinto, A., Alves, V., and Silva, C. A., Brain tumor segmentation using convolutional neural networks in mri images. IEEE Trans. Med. Imaging 35(5):1240–1251 , 2016.PubMedCrossRef
70.
Zurück zum Zitat Jodoin, A. C., Larochelle, H., Pal, C., and Bengio, Y.: Brain tumor segmentation with deep neural networks Jodoin, A. C., Larochelle, H., Pal, C., and Bengio, Y.: Brain tumor segmentation with deep neural networks
71.
Zurück zum Zitat Kamnitsas, K., Ledig, C., Newcombe, V. F., Simpson, J. P., Kane, A. D., Menon, D. K., Rueckert, D., and Glocker, B., Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation. Med. Image Anal. 36:61–78 , 2017.PubMedCrossRef Kamnitsas, K., Ledig, C., Newcombe, V. F., Simpson, J. P., Kane, A. D., Menon, D. K., Rueckert, D., and Glocker, B., Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation. Med. Image Anal. 36:61–78 , 2017.PubMedCrossRef
72.
Zurück zum Zitat Tseng, K.-L., Lin, Y.-L., Hsu, W., and Huang, C.-Y.: Joint sequence learning and cross-modality convolution for 3d biomedical segmentation. arXiv:1704.07754 Tseng, K.-L., Lin, Y.-L., Hsu, W., and Huang, C.-Y.: Joint sequence learning and cross-modality convolution for 3d biomedical segmentation. arXiv:1704.​07754
73.
Zurück zum Zitat Casamitjana, A., Puch, S., Aduriz, A., Sayrol, E., and Vilaplana, V.: 3d convolutional networks for brain tumor segmentation. Proceedings of the MICCAI Challenge on Multimodal Brain Tumor Image Segmentation (BRATS), pp. 65–68 , 2016 Casamitjana, A., Puch, S., Aduriz, A., Sayrol, E., and Vilaplana, V.: 3d convolutional networks for brain tumor segmentation. Proceedings of the MICCAI Challenge on Multimodal Brain Tumor Image Segmentation (BRATS), pp. 65–68 , 2016
74.
Zurück zum Zitat Farooq, A., Anwar, S., Awais, M., and Rehman, S.: A deep cnn based multi-class classification of alzheimer’s disease using mri. In: 2017 IEEE International Conference on Imaging systems and techniques (IST). IEEE, pp. 1–6, 2017 Farooq, A., Anwar, S., Awais, M., and Rehman, S.: A deep cnn based multi-class classification of alzheimer’s disease using mri. In: 2017 IEEE International Conference on Imaging systems and techniques (IST). IEEE, pp. 1–6, 2017
75.
Zurück zum Zitat Farooq, A., Anwar, S., Awais, M., and Alnowami, M.: Artificial intelligence based smart diagnosis of alzheimer’s disease and mild cognitive impairment. In: 2017 International Smart cities conference (ISC2). IEEE, pp. 1–4, 2017 Farooq, A., Anwar, S., Awais, M., and Alnowami, M.: Artificial intelligence based smart diagnosis of alzheimer’s disease and mild cognitive impairment. In: 2017 International Smart cities conference (ISC2). IEEE, pp. 1–4, 2017
76.
Zurück zum Zitat Gangeh, M. J., Sørensen, L., Shaker, S. B., Kamel, M. S., De Bruijne, M., and Loog, M.: A texton-based approach for the classification of lung parenchyma in ct images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp. 595–602, 2010 Gangeh, M. J., Sørensen, L., Shaker, S. B., Kamel, M. S., De Bruijne, M., and Loog, M.: A texton-based approach for the classification of lung parenchyma in ct images. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp. 595–602, 2010
77.
Zurück zum Zitat Sorensen, L., Shaker, S. B., and De Bruijne, M., Quantitative analysis of pulmonary using local binary patterns. IEEE Trans. Med. Imaging 29(2):559–569, 2010.PubMedCrossRef Sorensen, L., Shaker, S. B., and De Bruijne, M., Quantitative analysis of pulmonary using local binary patterns. IEEE Trans. Med. Imaging 29(2):559–569, 2010.PubMedCrossRef
78.
Zurück zum Zitat Anthimopoulos, M., Christodoulidis, S., Christe, A., and Mougiakakou, S.: Classification of interstitial lung disease patterns using local dct features and random forest. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp. 6040–6043, 2014 Anthimopoulos, M., Christodoulidis, S., Christe, A., and Mougiakakou, S.: Classification of interstitial lung disease patterns using local dct features and random forest. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp. 6040–6043, 2014
80.
Zurück zum Zitat Hoo-Chang, S., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., and Summers, R. M., Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5):1285, 2016.PubMedCentralCrossRef Hoo-Chang, S., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., and Summers, R. M., Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5):1285, 2016.PubMedCentralCrossRef
81.
Zurück zum Zitat Simonyan, K., and Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 Simonyan, K., and Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.​1556
82.
Zurück zum Zitat Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., and Ronneberger, O.: 3D u-net Learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M. R., Unal, G., and Wells, W. (Eds.) Medical image computing and computer-assisted intervention – MICCAI, Vol. 2016, pp. 424–432. Springer International Publishing, Cham, 2016.CrossRef Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., and Ronneberger, O.: 3D u-net Learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M. R., Unal, G., and Wells, W. (Eds.) Medical image computing and computer-assisted intervention – MICCAI, Vol. 2016, pp. 424–432. Springer International Publishing, Cham, 2016.CrossRef
83.
Zurück zum Zitat Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., and Liang, J.: Unet++: A nested u-net architecture for medical image segmentation. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer, pp. 3–11, 2018 Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., and Liang, J.: Unet++: A nested u-net architecture for medical image segmentation. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer, pp. 3–11, 2018
84.
Zurück zum Zitat Chen, W., Zhang, Y., He, J., Qiao, Y., Chen, Y., Shi, H., and Tang, X.: W-net: Bridged u-net for 2d medical image segmentation. arXiv:1807.04459 Chen, W., Zhang, Y., He, J., Qiao, Y., Chen, Y., Shi, H., and Tang, X.: W-net: Bridged u-net for 2d medical image segmentation. arXiv:1807.​04459
85.
87.
Zurück zum Zitat Chen, H., Dou, Q., Yu, L., and Heng, P.-A.: Voxresnet: Deep voxelwise residual networks for volumetric brain segmentation. arXiv:1608.05895 Chen, H., Dou, Q., Yu, L., and Heng, P.-A.: Voxresnet: Deep voxelwise residual networks for volumetric brain segmentation. arXiv:1608.​05895
88.
Zurück zum Zitat Setio, A. A. A., Ciompi, F., Litjens, G., Gerke, P., Jacobs, C., Van Riel, S. J., Wille, M. M. W., Naqibullah, M., Sánchez, C. I., and van Ginneken, B., Pulmonary nodule detection in ct images: False positive reduction using multi-view convolutional networks. IEEE Trans. Med. Imaging 35(5):1160–1169, 2016.PubMedCrossRef Setio, A. A. A., Ciompi, F., Litjens, G., Gerke, P., Jacobs, C., Van Riel, S. J., Wille, M. M. W., Naqibullah, M., Sánchez, C. I., and van Ginneken, B., Pulmonary nodule detection in ct images: False positive reduction using multi-view convolutional networks. IEEE Trans. Med. Imaging 35(5):1160–1169, 2016.PubMedCrossRef
89.
Zurück zum Zitat Brosch, T., Tang, L. Y., Yoo, Y., Li, D. K., Traboulsee, A., and Tam, R., Deep 3d convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans. Med. Imaging 35(5):1229–1239, 2016.PubMedCrossRef Brosch, T., Tang, L. Y., Yoo, Y., Li, D. K., Traboulsee, A., and Tam, R., Deep 3d convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans. Med. Imaging 35(5):1229–1239, 2016.PubMedCrossRef
90.
Zurück zum Zitat Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., and Ronneberger, O.: 3d u-net: Learning dense volumetric segmentation from sparse annotation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp. 424–432, 2016 Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., and Ronneberger, O.: 3d u-net: Learning dense volumetric segmentation from sparse annotation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp. 424–432, 2016
91.
Zurück zum Zitat Ceschin, R., Zahner, A., Reynolds, W., Gaesser, J., Zuccoli, G., Lo, C. W., Gopalakrishnan, V., and Panigrahy, A., A computational framework for the detection of subcortical brain dysmaturation in neonatal mri using 3d convolutional neural networks. NeuroImage 178:183–197, 2018.PubMedCrossRef Ceschin, R., Zahner, A., Reynolds, W., Gaesser, J., Zuccoli, G., Lo, C. W., Gopalakrishnan, V., and Panigrahy, A., A computational framework for the detection of subcortical brain dysmaturation in neonatal mri using 3d convolutional neural networks. NeuroImage 178:183–197, 2018.PubMedCrossRef
92.
Zurück zum Zitat Ghafoorian, M., Karssemeijer, N., Heskes, T., Bergkamp, M., Wissink, J., Obels, J., Keizer, K., de Leeuw, F.-E., van Ginneken, B., Marchiori, E., et al., Deep multi-scale location-aware 3d convolutional neural networks for automated detection of lacunes of presumed vascular origin. NeuroImage: Clinical 14:391–399, 2017.CrossRef Ghafoorian, M., Karssemeijer, N., Heskes, T., Bergkamp, M., Wissink, J., Obels, J., Keizer, K., de Leeuw, F.-E., van Ginneken, B., Marchiori, E., et al., Deep multi-scale location-aware 3d convolutional neural networks for automated detection of lacunes of presumed vascular origin. NeuroImage: Clinical 14:391–399, 2017.CrossRef
93.
Zurück zum Zitat Meijs, M., and Manniesing, R.: Artery and vein segmentation of the cerebral vasculature in 4d ct using a 3d fully convolutional neural network. In: Medical Imaging 2018: Computer-Aided Diagnosis, Vol. 10575, International Society for Optics and Photonics, p. 105751Q, 2018 Meijs, M., and Manniesing, R.: Artery and vein segmentation of the cerebral vasculature in 4d ct using a 3d fully convolutional neural network. In: Medical Imaging 2018: Computer-Aided Diagnosis, Vol. 10575, International Society for Optics and Photonics, p. 105751Q, 2018
94.
Zurück zum Zitat Kamnitsas, K., Ledig, C., Newcombe, V. F., Simpson, J. P., Kane, A. D., Menon, D. K., Rueckert, D., and Glocker, B., Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation. Med. Image Anal. 36:61–78, 2017.PubMedCrossRef Kamnitsas, K., Ledig, C., Newcombe, V. F., Simpson, J. P., Kane, A. D., Menon, D. K., Rueckert, D., and Glocker, B., Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation. Med. Image Anal. 36:61–78, 2017.PubMedCrossRef
95.
Zurück zum Zitat Seong, S.-B., Pae, C., and Park, H.-J., Geometric convolutional neural network for analyzing surface-based neuroimaging data. Frontiers in Neuroinformatics 12:42, 2018.PubMedPubMedCentralCrossRef Seong, S.-B., Pae, C., and Park, H.-J., Geometric convolutional neural network for analyzing surface-based neuroimaging data. Frontiers in Neuroinformatics 12:42, 2018.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Tzeng, E., Hoffman, J., Saenko, K., and Darrell, T.: Adversarial discriminative domain adaptation. In: Computer Vision and Pattern Recognition (CVPR), Vol. 1, p. 4, 2017 Tzeng, E., Hoffman, J., Saenko, K., and Darrell, T.: Adversarial discriminative domain adaptation. In: Computer Vision and Pattern Recognition (CVPR), Vol. 1, p. 4, 2017
Metadaten
Titel
Medical Image Analysis using Convolutional Neural Networks: A Review
verfasst von
Syed Muhammad Anwar
Muhammad Majid
Adnan Qayyum
Muhammad Awais
Majdi Alnowami
Muhammad Khurram Khan
Publikationsdatum
01.11.2018
Verlag
Springer US
Erschienen in
Journal of Medical Systems / Ausgabe 11/2018
Print ISSN: 0148-5598
Elektronische ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-018-1088-1

Weitere Artikel der Ausgabe 11/2018

Journal of Medical Systems 11/2018 Zur Ausgabe