Skip to main content
Erschienen in: Endocrine 2/2018

20.06.2018 | Original Article

Melatonin treatment suppresses appetite genes and improves adipose tissue plasticity in diet-induced obese zebrafish

verfasst von: G. Montalbano, M. Mania, F. Abbate, M. Navarra, M. C. Guerrera, R. Laura, J. A. Vega, M. Levanti, A. Germanà

Erschienen in: Endocrine | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Overweight and obesity are important risk factors for diabetes, cardiovascular diseases, and premature death in modern society. Recently, numerous natural and synthetic compounds have been tested in diet-induced obese animal models, to counteract obesity. Melatonin is a circadian hormone, produced by pineal gland and extra-pineal sources, involved in processes which have in common a rhythmic expression. In teleost, it can control energy balance by activating or inhibiting appetite-related peptides. The study aims at testing effects of melatonin administration to control-fed and overfed zebrafish, in terms of expression levels of orexigenic (Ghrelin, orexin, NPY) and anorexigenic (leptin, POMC) genes expression and morphometry of visceral and subcutaneous fat depots.

Methods

Adult male zebrafish (n = 56) were divided into four dietary groups: control, overfed, control + melatonin, overfed + melatonin. The treatment lasted 5 weeks and BMI levels of every fish were measured each week. After this period fishes were sacrificed; morphological and morphometric studies have been carried out on histological sections of adipose tissue and adipocytes. Moreover, whole zebrafish brain and intestine were used for qRT-PCR.

Results

Our results demonstrate that melatonin supplementation may have an effect in mobilizing fat stores, in increasing basal metabolism and thus in preventing further excess fat accumulation. Melatonin stimulates the anorexigenic and inhibit the orexigenic signals.

Conclusions

It seems that adequate melatonin treatment exerts anti-obesity protective effects, also in a diet-induced obesity zebrafish model, that might be the result of the restoration of many factors: the final endpoint reached is weight loss and stabilization of weight gain.
Literatur
4.
Zurück zum Zitat N.M. Iyengar, C.A. Hudis, A.J. Dannenberg, Obesity and inflammation: new insights into breast cancer development and progression. Am. Soc. Clin. Oncol. Educ. Book (2013). https://doi.org/10.1200/EdBook_AM.2013.33.46CrossRef N.M. Iyengar, C.A. Hudis, A.J. Dannenberg, Obesity and inflammation: new insights into breast cancer development and progression. Am. Soc. Clin. Oncol. Educ. Book (2013). https://​doi.​org/​10.​1200/​EdBook_​AM.​2013.​33.​46CrossRef
6.
Zurück zum Zitat B. de Luxán-Delgado, B. Caballero, Y. Potes, A. Rubio-González, I. Rodríguez, J. Gutiérrez-Rodríguez, J.J. Solano, A. Coto-Montes, Melatonin administration decreases adipogenesis in the liver of ob/ob mice through autophagy modulation. J. Pineal Res. 56(2), 126–133 (2014). https://doi.org/10.1111/jpi.12104 CrossRefPubMed B. de Luxán-Delgado, B. Caballero, Y. Potes, A. Rubio-González, I. Rodríguez, J. Gutiérrez-Rodríguez, J.J. Solano, A. Coto-Montes, Melatonin administration decreases adipogenesis in the liver of ob/ob mice through autophagy modulation. J. Pineal Res. 56(2), 126–133 (2014). https://​doi.​org/​10.​1111/​jpi.​12104 CrossRefPubMed
10.
Zurück zum Zitat D. Gnocchi, G. Bruscalup, Circadian rhythms and hormonal homeostasis: pathophysiological implications. Biology 6(1) (2017). https://doi.org/10.3390/biology6010010.CrossRef D. Gnocchi, G. Bruscalup, Circadian rhythms and hormonal homeostasis: pathophysiological implications. Biology 6(1) (2017). https://​doi.​org/​10.​3390/​biology6010010.​CrossRef
14.
Zurück zum Zitat G.A. Bubenik, Gastrointestinal melatonin: localization, function, and clinical relevance. Dig. Dis. Sci. 47(10), 2336–2348 (2002)CrossRef G.A. Bubenik, Gastrointestinal melatonin: localization, function, and clinical relevance. Dig. Dis. Sci. 47(10), 2336–2348 (2002)CrossRef
17.
Zurück zum Zitat M.L. Pinillos, N. De Pedro, A.L. Alonso-Gomez, M. Alonso-Bedate, M.J. Delgado, Food intake inhibition by melatonin in goldfish (Carassius auratus). Physiol. Behav. 72(5), 629–634 (2001)CrossRef M.L. Pinillos, N. De Pedro, A.L. Alonso-Gomez, M. Alonso-Bedate, M.J. Delgado, Food intake inhibition by melatonin in goldfish (Carassius auratus). Physiol. Behav. 72(5), 629–634 (2001)CrossRef
22.
Zurück zum Zitat P.J. Lardone, S.N. Alvarez-Sanchez, J.M. Guerrero, A. Carrillo-Vico, Melatonin and glucose metabolism: clinical relevance. Curr. Pharm. Des. 20(30), 4841–4853 (2014)CrossRef P.J. Lardone, S.N. Alvarez-Sanchez, J.M. Guerrero, A. Carrillo-Vico, Melatonin and glucose metabolism: clinical relevance. Curr. Pharm. Des. 20(30), 4841–4853 (2014)CrossRef
35.
Zurück zum Zitat H. Zhu, Q. Jin, Y. Li, Q. Ma, J. Wang, D. Li, H. Zhou, Y. Chen, Melatonin protected cardiac microvascular endothelial cells against oxidative stress injury via suppression of IP3R-[Ca(2+)]c/VDAC-[Ca(2+)]m axis by activation of MAPK/ERK signaling pathway. Cell Stress Chaperon-. 23(1), 101–113 (2018). https://doi.org/10.1007/s12192-017-0827-4 CrossRef H. Zhu, Q. Jin, Y. Li, Q. Ma, J. Wang, D. Li, H. Zhou, Y. Chen, Melatonin protected cardiac microvascular endothelial cells against oxidative stress injury via suppression of IP3R-[Ca(2+)]c/VDAC-[Ca(2+)]m axis by activation of MAPK/ERK signaling pathway. Cell Stress Chaperon-. 23(1), 101–113 (2018). https://​doi.​org/​10.​1007/​s12192-017-0827-4 CrossRef
39.
Zurück zum Zitat H. Gurer-Orhan, S. Suzen, Melatonin, its metabolites and its synthetic analogs as multi-faceted compounds: antioxidant, prooxidant and inhibitor of bioactivation reactions. Curr. Med. Chem. 22(4), 490–499 (2015)CrossRef H. Gurer-Orhan, S. Suzen, Melatonin, its metabolites and its synthetic analogs as multi-faceted compounds: antioxidant, prooxidant and inhibitor of bioactivation reactions. Curr. Med. Chem. 22(4), 490–499 (2015)CrossRef
42.
Zurück zum Zitat V. Srinivasan, Y. Ohta, J. Espino, J.A. Pariente, A.B. Rodriguez, M. Mohamed, R. Zakaria, Metabolic syndrome, its pathophysiology and the role of melatonin. Recent Pat. Endocr. Metab. Immun. Drug Discov. 7(1), 11–25 (2013)CrossRef V. Srinivasan, Y. Ohta, J. Espino, J.A. Pariente, A.B. Rodriguez, M. Mohamed, R. Zakaria, Metabolic syndrome, its pathophysiology and the role of melatonin. Recent Pat. Endocr. Metab. Immun. Drug Discov. 7(1), 11–25 (2013)CrossRef
50.
Zurück zum Zitat C.C. Piccinetti, L.A. Ricci, N. Tokle, G. Radaelli, F. Pascoli, L. Cossignani, F. Palermo, G. Mosconi, V. Nozzi, F. Raccanello, I. Olivotto, Malnutrition may affect common sole (Solea solea L.) growth, pigmentation and stress response: molecular, biochemical and histological implications. Comparative biochemistry and physiology. Part A Mol. Integr. Physiol. 161(4), 361–371 (2012). https://doi.org/10.1016/j.cbpa.2011.12.009 CrossRef C.C. Piccinetti, L.A. Ricci, N. Tokle, G. Radaelli, F. Pascoli, L. Cossignani, F. Palermo, G. Mosconi, V. Nozzi, F. Raccanello, I. Olivotto, Malnutrition may affect common sole (Solea solea L.) growth, pigmentation and stress response: molecular, biochemical and histological implications. Comparative biochemistry and physiology. Part A Mol. Integr. Physiol. 161(4), 361–371 (2012). https://​doi.​org/​10.​1016/​j.​cbpa.​2011.​12.​009 CrossRef
52.
Zurück zum Zitat H. Mangge, K. Summers, G. Almer, R. Prassl, D. Weghuber, W. Schnedl, D. Fuchs, Antioxidant food supplements and obesity-related inflammation. Curr. Med. Chem. 20(18), 2330–2337 (2013)CrossRef H. Mangge, K. Summers, G. Almer, R. Prassl, D. Weghuber, W. Schnedl, D. Fuchs, Antioxidant food supplements and obesity-related inflammation. Curr. Med. Chem. 20(18), 2330–2337 (2013)CrossRef
56.
Zurück zum Zitat R.D. Cone, The Central Melanocortin System and Energy Homeostasis. Trends Endocrinol. Metab. 10(6), 211–216 (1999)CrossRef R.D. Cone, The Central Melanocortin System and Energy Homeostasis. Trends Endocrinol. Metab. 10(6), 211–216 (1999)CrossRef
Metadaten
Titel
Melatonin treatment suppresses appetite genes and improves adipose tissue plasticity in diet-induced obese zebrafish
verfasst von
G. Montalbano
M. Mania
F. Abbate
M. Navarra
M. C. Guerrera
R. Laura
J. A. Vega
M. Levanti
A. Germanà
Publikationsdatum
20.06.2018
Verlag
Springer US
Erschienen in
Endocrine / Ausgabe 2/2018
Print ISSN: 1355-008X
Elektronische ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-018-1653-x

Weitere Artikel der Ausgabe 2/2018

Endocrine 2/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.