Skip to main content
Erschienen in: BMC Medical Genetics 1/2019

Open Access 01.12.2019 | Case report

Metastatic colorectal cancer and severe hypocalcemia following irinotecan administration in a patient with X-linked agammaglobulinemia: a case report

verfasst von: Mingming Li, Wei Chen, Xiaomeng Sun, Zhipeng Wang, Xun Zou, Hua Wei, Zhan Wang, Wansheng Chen

Erschienen in: BMC Medical Genetics | Ausgabe 1/2019

Abstract

Background

X-linked agammaglobulinemia (XLA) is a primary immunodeficiency disorder caused by germline mutations in the Bruton tyrosine kinase (BTK) gene on X chromosome. These mutations disturb B-cell development, decrease immunoglobulin levels, increase susceptibility to infection or neoplasms, and increase the risk of developing colorectal cancer (CRC). For occasional cases of CRC have been reported in XLA patients, low levels of B lymphocytes and immunoglobulins induced by congenital immune disorder make them more susceptible to drug-related toxicities (DRT). Therefore, gene sequencing, therapeutic drug monitoring and any possible measurement to predict DRT should be considered before determining the course of chemotherapy for XLA patients with CRC.

Case presentation

In this study, we reported a 21-year-old male who developed metastatic CRC in the context of XLA. Since the whole exome sequencing and therapeutic drug monitoring did not reveal any predictive markers of DRT, we applied standard first-line chemotherapy to the patient. However, progressive disease occurred after the fifth treatment cycle. Therefore, the administration of oxaliplatin was changed to irinotecan as second-line therapy. After that, the patient firstly suffered from severe hypocalcemia and eventually died due to metastatic CRC after the eighth treatment cycle. The overall survival time was 7.5 months.

Conclusions

This study reported the first written record of a Chinese XLA patient with metastatic CRC and severe hypocalcemia. Whole exome sequencing and bioinformatic analysis indicated the somatic mutations in ABCA6, C6 and PAX3 genes might contribute to the early-onset and metastasis CRC. Besides, a number of germline mutations in genes related to calcium metabolism (CACNA2D4, CD36, etc.) and the administration of irinotecan were speculated to be the causes of severe hypocalcemia. We therefore suggested that in order to avoid severe DRT, clinicians should take genetic background and therapeutic drug monitoring into consideration while planning chemotherapy treatment for XLA patients with CRC.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12881-019-0880-1) contains supplementary material, which is available to authorized users.
Mingming Li and Wei Chen contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
5′-DFUR
Doxifluridine
5-FU
5-fluorouracil
ABCA6
ATP-Binding Cassette Subfamily A Member 6
BTK
Bruton tyrosine kinase
C6
Complement C6
Cap
Capecitabine
CRC
Colorectal cancer
DRT
Drug-related toxicities
ECOG
Eastern Cooperative Oncology Group
IVIG
Intravenous immunoglobulin
NAT2
N-acetyltransferase 2
NCCN
The National Comprehensive Cancer Network
PAX3
Paired Box 3
TDM
Therapeutic drug monitoring
TGFB1
Transcription of transforming growth factor beta 1
TYMP
Thymidine phosphorylase
WES
Whole exome sequencing
XLA
X-linked agammaglobulinemia

Background

X-linked agammaglobulinemia (XLA) is an X-linked inherited disease caused by genetic mutations in the Bruton tyrosine kinase (BTK) gene [1, 2], which suppress the development of mature B lymphocytes. The human BTK gene encompasses 37.5 kb containing 19 exons. BTKbase is an up-to-date database compiling 1796 entities showing 917 unique BTK mutations from 1749 individuals, two thirds of which are from unrelated families, while one third are believed to be sporadic cases [3]. These mutations are found throughout the entire BTK gene sequence. The incidence of XLA varies between 1/200,000 and 1/20,000,000 in Western countries, whereas it has not been calculated in China yet [4]. Based on estimation, there should be more than 1000 cumulative XLA cases below 14 years of age [5].
XLA patients are characterized by insufficient number of normal circulating B lymphocytes and immunoglobulins [6]. The concurrent hallmark symptoms and complications of XLA include lower respiratory tract infection (bronchitis/pneumonia), otitis media, persistent diarrhea and skin infections [7, 8]. XLA patients are also susceptible to certain types of cancer including colorectal cancer (CRC) [915]. According to the National Comprehensive Cancer Network (NCCN) guidelines for colon cancer and rectal cancer, 5-fluorouracil (5-FU)-based drugs are recommended and commonly used for first-line chemotherapy [16]. But patients receiving 5-FU-based chemotherapy, alone or in a combination regimen, may experience drug-related toxicities (DRT) involving hand-foot syndrome, leukopenia, neutropenia, thrombocytopenia, diarrhea, nausea and vomiting [17]. Severe DRT not only leads to an early termination of chemotherapy but also causes safety issues. With previous evidence of lymphopenia being an independent factor associated with first-line chemotherapy induced hematologic toxicities in CRC patients [18, 19], we assume that XLA patients, who are characterized by low levels of B lymphocytes and immunoglobulins, are more likely to develop DRTs when they are diagnosed with CRC and receive chemotherapy [11]. Therefore, gene sequencing, therapeutic drug monitoring and any possible measurement to predict DRT should be considered before making chemotherapy regimens for XLA patients with CRC.

Case presentation

Presenting concerns

A 21-year-old man with XLA was hospitalized for fecal occult blood, epigastric pain and bronchitis in 2016. The patient was not married. The timeline of hospitalization is shown in Fig. 1a.

Clinical findings

This patient was diagnosed with XLA when he was 4 years old. He had no family history of XLA. Regular intravenous immunoglobulin (IVIG) replacement therapy was applied since the diagnosis. The admission physical examination found no positive symptoms of XLA.

Diagnostic focus and assessment

Abdominal ultrasonography showed multiple hepatic parenchymal lesions, gallbladder stones, splenomegaly and a hypoechoic mass in the right lower abdomen. Colonoscopy showed a cauliflower-like mass in the ascending colon. Needle biopsy of focal liver lesions (Fig. 1b) and PET-CT (Fig. 1c) suggested metastatic adenocarcinoma. The Eastern Cooperative Oncology Group (ECOG) Performance Status was one [20].
Whole exome sequencing (WES) was conducted using blood and liver tumor tissue. It revealed 10 somatic (Table 1) and 200 germline SNVs, including one on the BTK gene (c.340_347del, p.F114delX115) (Additional file 2: Figure S1). Somatic mutation was absent in KRAS, NRAS, BRAF, or PIK3CA. There is also no mutation in genes related to efficacy or safety of 5-FU-based drugs (Additional file 3: Table S1).
Table 1
Somatic variants may initiate tumor development
SNP ID
Gene
Chrs
Gene Region
Function
Cancer-promoting gene
Diseases
rs188382333
ABCA6
17
exonic
nonsynonymous SNV
Y
Colorectal cancer, acute myeloid Leukemia
rs201064036
C6
5
exonic
nonsynonymous SNV
Y
C6 deficiency
rs79930314
CCDC144NL
17
exonic
Stop gain
N
Colorectal cancer; Renal cancer
rs41291550
CYP2C18
10
exonic
Stop gain
N
NA
rs1799931
NAT2
8
exonic
nonsynonymous SNV
N
Slow acetylation
rs192410865
NOX3
6
exonic
Stop gain
N
NA
NM_000438:exon2:c.232G>A:p.V78M
PAX3
2
exonic
nonsynonymous SNV
Y
Alveolar rhabdomyosarcomas, type1 and type3 Waardenburg syndrome
rs138133378
SCN7A
2
exonic
nonsynonymous SNV
N
NA
rs117153533
TC2N
14
exonic
nonsynonymous SNV
N
Colorectal cancer,
rs201277886
TOX
8
exonic
nonsynonymous SNV
N
Colorectal cancer, virus-associated hepatocellular cancer, gastric cancer, esophageal cancer
Each SNP was searched in the following databases to confirm its correlation with diseases and whether it belongs to a cancer-promoting gene: ClinVar, ICGC, COSMIC, HGMD and OMIM

Therapeutic focus and assessment

Standard first-line chemotherapy was started on Nov. 18th, 2016. The regimen is as follows: 130 mg/m2 oxaliplatin iv on day 1, 1000 mg/m2 capecitabine (Cap) twice po daily for 14 days, which was repeated every 3 weeks, and 500 mg/m2 cetuximab iv over 2 h on day 1 every 2 weeks. The tumor was stabilized after the first two treatment cycles (Fig. 1d-e), and the abdominal pain ceased, the abdominal lump was reduced, and CA-199 (from 1410 to 157 U/ml) and CEA (from 113.6 to 20.1 μg/L) levels decreased. During the second treatment cycle, TDM on Cap and its metabolites was conducted. Compared to 10 other random CRC patients without XLA, the XLA patient showed delayed Cmax of Cap, lower doxifluridine (5′-DFUR) level and higher 5-FU level (Fig. 2). These results suggested that the XLA patient had a slower ability to absorb Cap and increased thymidine phosphorylase (TYMP) activity. Since both low 5′-DFUR levels and induced TYMP activity are negatively associated with Cap-related toxicity [21, 22] and this patient did not show any sign of DRT, the original chemotherapy plan was not adjusted.

Follow-up and outcomes

After the fifth treatment, the metastatic tumor progressed (PFS 4.2 m) (Fig. 1f-g). The patient also experienced upper abdominal pain, an upper respiratory tract infection and a severe rash. From the sixth treatment, oxaliplatin was changed to irinotecan (180 mg/m2 iv over 30–90 min on day 1). After the sixth treatment cycle, hypocalcemia (mean, 5.8 mg/dL; range, 4.3–8.2 mg/dL; diagnostic lower limit, 14.0 mg/dL) and a tendency of hypokalemia (mean, 142.4 mEq/L; range, 118.6–161.1 mEq/L; diagnostic lower limit, 136.5 mEq/L) were observed (Fig. 1h). They were not relieved by intravenous calcium gluconate supplementation (1 g, twice daily).
Prior to the eighth treatment, a CT examination revealed an increase in total liver mass (Fig. 1i), which indicated PD (PFS 1.3 m). Unfortunately, the condition of the patient deteriorated with severe ascites and infection. Finally, best supportive care lasted for 1 month before he died (OS was 7.5 m).

Discussion and conclusions

Primary immunodeficiency caused by the BTK mutation is the main reason for XLA-associated diseases, which include recurrent bacterial infections, arthritis and types of cancer [23, 24]. In this study, the diagnosis of XLA was confirmed by WES, where a hemizygous pathogenic mutation (c.340_347del, p.F114delX115) of the BTK gene was found (Additional file 1). The 8 bp deletion of TTCTCCCC resulted in a frameshift mutation that affected general membrane targeting and the regulatory function of BTK [25]. Immunohistochemistry showed similar low expression of BTK in the tumor and tumor-adjacent tissue (Additional file 4: Figure S2).
It has been hypothesized that male XLA patients tend to have an early-onset CRC [11, 12]. B-cell deficiency is a risk factor for a narrow range of solid cancers, including CRC [26]. However, the correlation between CRC and XLA has not yet been statistically confirmed with a reasonable sample size. One study found colorectal adenomatous polyps from 2 out of 4 XLA patients in the Netherlands [27]. However, two other studies found that among 44 and 27 XLA patients from the United Kingdom and mainland China, respectively, none of the patients developed CRC [5, 28]. In the case studied in this report, the onset of CRC was more likely due to sporadic colorectal mutations. First, the XLA patient had no family history of immunodeficiency within 3 generations. Second, among the 10 somatic variants, the most convincing candidate CRC-driver mutations in ABCA6, C6, and PAX3 provided by the DriverDBv2 database are not functionally related [29]. C6 encodes for one of the membrane attack proteins, which plays a key role in the innate and adaptive immune responses by forming pores in the plasma membrane of target cells. It has been shown that dextran-sulfate-sodium (DSS) induced colitis was aggravated in C6-deficient mice with a series of enhanced production of pro-inflammatory mediators, including IL-1β, IL-6, CXCL-1, CCL-3, TGF-β1 and IL-17F, compared with wild-type mice [30]. In addition, exogenous C6 could ameliorate DSS-induced colitis in C6-deficient mice [30]. Since both colitis and enhanced inflammatory are risk factors of colorectal cancer, the deficiency of C6 may also participate in CRC development [31]. PAX3 encodes a transcription factor with an N-terminal DNA binding domain consisting of a paired box. It acts as a transcriptional regulator to activate or repress target genes of carcinogenesis [32, 33]. ABCA6 is a member of the ATP-binding cassette transporter family. It is ubiquitously expressed in the liver, heart and brain, contributing to drug resistance and tumor metastasis [34, 35]. In addition to these cancer-promoting mutations, the mutation (c.857G > A) of N-acetyltransferase 2 (NAT2) has been shown to be associated with slow acetylator phenotypes, which is normally correlated with the effectiveness of drugs and xenobiotic toxicity [36].
Because the incidence of CRC in China has increased rapidly over the past two decades [37, 38], and XLA patients are more prone to carcinogenesis. It is suggested to begin surveillance programs on XLA patients for CRC screening, especially for patients over the age of 20 and 30. As most XLA patients with gastric cancer or CRC have been found at these ages [23].
Regarding severe hypocalcemia, it is speculated to be a joint result of a number of germline mutations in genes related to calcium metabolism and the administration of irinotecan. First, based on the enrichment analysis of genes having germline mutations, the largest enriched group was calcium-related proteins (n = 48, p = 1.2E-7) (Additional file 5 and Additional file 6: Table S2). This group contains genes that bind at least one calcium atom or proteins whose function is calcium-dependent [3941]. Among them, 11 genes are directly involved in calcium metabolism and transportation (Table 2). Mutations in these genes may make the patient prone to abnormal calcium metabolism such as hypocalcemia. Second, the onset of hypocalcemia occurred immediately after the administration of irinotecan. Several studies have reported that hypocalcemia may be one of the rare DRTs of irinotecan (Table 3). Most of these cases had concurrent electrolyte abnormalities such as hypokalemia and hypomagnesemia. Consistently, the patient in this study also showed a trend of hypokalemia (Fig. 2j). However, the magnesium level was not measured in this study.
Table 2
Germline variants related to calcium metabolism
SNP ID
Gene
Chrs
Gene Region
Function
Calcium-related function or diseases
p.F114delX115
BTK
X
exonic
nonsynonymous SNV
Induces calcium mobilization and calcium-mediated signaling.
rs202054008
CACNA2D4
4
exonic
nonsynonymous SNV
Regulates calcium current density and activation/inactivation of calcium channels
rs75326924
CD36
3
exonic
nonsynonymous SNV
Regulates intracellular calcium levels by long-chain fatty acids.
rs2229291
CPT2
15
splicing
NA
Calcium metabolism and abnormal calcium deposition.
rs3888798
CTSC
X
exonic
frameshift deletion
Deposition of calcium salts in a tissue or location in which calcification does not normally occur.
rs147630160
CXCL16
10
exonic
nonsynonymous SNV
Induces calcium mobilization.
rs117643139
DRD2
4
exonic
nonsynonymous SNV
Pituitary adenoma-related hypokalemia and hypocalcemia [42]
rs139997095
PKD1L2
7
exonic
nonsynonymous SNV
Calcium ion transmembrane transport.
rs201550522
PRSS1
6
exonic
nonsynonymous SNV
Deposition of calcium salts in a tissue or location in which calcification does not normally occur.
rs201533738
SLX4
7
exonic
nonsynonymous SNV
Calcium metabolism.
rs182693954
TRPV1
12
exonic
nonsynonymous SNV
Ligand-activated nonselective calcium permeant cation channel involved in the detection of noxious chemical and thermal stimuli.
Table 3
Reported cases showing a positive association between irinotecan and hypocalcemia
Case
Country
Tumor
Stage
Age
Drug treatment
Serum electrolyte abnormalities
Onset time
2003 [43]
United states
Solid tumors
NA
4–21
Cisplatin, irinotecan, amifostine
Hypocalcemia
Within 24 h after 1st treatment
2005 [44, 45]
United states
Colorectal cancer
TxNxM1
34
Cetuximab, irinotecan
Hypocalcemia, hypomagnesemia
8 weeks after 1st treatment
2009 [46]
United states
Colorectal cancer
T3N2M0
77
Cap, irinotecan, bevacizumab
Hypocalcemia, hypophosphatemia, hypokalemia, hypouricemia
5 days after the 11th treatment
2010 [47]
Japan
Colorectal cancer
TxNxM1
61
Cetuximab, irinotecan
Hypocalcemia, hypomagnesemia
NA
2012 [48]
Turkey
Breast cancer
T2N0M0
57
Irinotecan, trastuzumab
Hypokalemia, hypocalcemia, hypomagnesemia
6th week of treatment
In conclusion, this study reported the first written record of a Chinese XLA patient with metastatic CRC and severe hypocalcemia following irinotecan administration. The chemotherapy regimen was carefully determined based on TDM and WES. Based on WES results and bioinformatic analysis, a germline mutation of BTK was confirmed to be the cause of XLA, and somatic mutations of ABCA6, C6, and PAX3 may contribute to the onset and metastasis of CRC. The administration of irinotecan and a number of germline mutations on genes related to calcium metabolism might collectively cause hypocalcemia.

Acknowledgments

The authors gratefully acknowledge the Shanghai Committee of Science and Technology at the Shanghai Shenkang Hospital Development Center for providing funding and resources and Genesky Biotechnologies, Inc., Shanghai for preforming WES. The funders had no role in the study design, data collection, analysis, decision to publish, or preparation of the manuscript.
The study was approved by the Changzheng Hospital Biomedical Research Ethics Committee. The patients and their families have read and signed the informed consent form.
Written informed consent was obtained from all patients included in this report for the use of clinical-related materials for scientific research and publications. These materials include diagnostic images, treatment and prognostic information, genetic testing results and other related data used in this report.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I, et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell. 1993;72:279–90.CrossRef Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I, et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell. 1993;72:279–90.CrossRef
2.
Zurück zum Zitat Vetrie D, Vořechovský I, Sideras P, Holland J, Davies A, Flinter F, et al. Pillars Article: The Gene Involved in X-linked Agammaglobulinaemia Is a Member of the Src Family of Protein-Tyrosine Kinases. Nature. 1993;361:226–33 The Journal of Immunology. 2012;188:2948–55.CrossRef Vetrie D, Vořechovský I, Sideras P, Holland J, Davies A, Flinter F, et al. Pillars Article: The Gene Involved in X-linked Agammaglobulinaemia Is a Member of the Src Family of Protein-Tyrosine Kinases. Nature. 1993;361:226–33 The Journal of Immunology. 2012;188:2948–55.CrossRef
3.
Zurück zum Zitat Wilkie A, Vetrie D, Vorechovsky I, Sideras P, Holland J, Davies A, et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. J Med Genet. 1993;30:444.CrossRef Wilkie A, Vetrie D, Vorechovsky I, Sideras P, Holland J, Davies A, et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. J Med Genet. 1993;30:444.CrossRef
4.
Zurück zum Zitat Väliaho J, Smith CIE, Vihinen M. BTKbase: the mutation database for X-linked agammaglobulinemia. Hum Mutat. 2006;27:1209–17.CrossRef Väliaho J, Smith CIE, Vihinen M. BTKbase: the mutation database for X-linked agammaglobulinemia. Hum Mutat. 2006;27:1209–17.CrossRef
5.
Zurück zum Zitat Wang Y, Kanegane H, Wang X, Han X, Zhang Q, Zhao S, et al. Mutation of the BTK gene and clinical feature of X-linked agammaglobulinemia in mainland China. J Clin Immunol. 2009;29:352–6.CrossRef Wang Y, Kanegane H, Wang X, Han X, Zhang Q, Zhao S, et al. Mutation of the BTK gene and clinical feature of X-linked agammaglobulinemia in mainland China. J Clin Immunol. 2009;29:352–6.CrossRef
6.
Zurück zum Zitat Ochs HD, Smith CI. X-linked agammaglobulinemia. A clinical and molecular analysis. Medicine (Baltimore). 1996;75:287–99.CrossRef Ochs HD, Smith CI. X-linked agammaglobulinemia. A clinical and molecular analysis. Medicine (Baltimore). 1996;75:287–99.CrossRef
7.
Zurück zum Zitat Van der Hilst JCH, Smits BW, van der Meer JWM. Hypogammaglobulinaemia: cumulative experience in 49 patients in a tertiary care institution. Neth J Med. 2002;60:140–7.PubMed Van der Hilst JCH, Smits BW, van der Meer JWM. Hypogammaglobulinaemia: cumulative experience in 49 patients in a tertiary care institution. Neth J Med. 2002;60:140–7.PubMed
8.
Zurück zum Zitat Chen X-F, Wang W-F, Zhang Y-D, Zhao W, Wu J, Chen T-X. Clinical characteristics and genetic profiles of 174 patients with X-linked agammaglobulinemia: report from Shanghai, China (2000–2015). Medicine. 2016;95:e4544.CrossRef Chen X-F, Wang W-F, Zhang Y-D, Zhao W, Wu J, Chen T-X. Clinical characteristics and genetic profiles of 174 patients with X-linked agammaglobulinemia: report from Shanghai, China (2000–2015). Medicine. 2016;95:e4544.CrossRef
9.
Zurück zum Zitat Kinlen LJ, Webster AD, Bird AG, Haile R, Peto J, Soothill JF, et al. Prospective study of cancer in patients with hypogammaglobulinaemia. Lancet. 1985;1:263–6.CrossRef Kinlen LJ, Webster AD, Bird AG, Haile R, Peto J, Soothill JF, et al. Prospective study of cancer in patients with hypogammaglobulinaemia. Lancet. 1985;1:263–6.CrossRef
10.
Zurück zum Zitat van der Meer JWM, van Munster IP, Nagengast FM, Weening RS, Schellekens PTA. Colorectal cancer in patients with X-linked agammaglobulinaemia. Lancet. 1993;341:1439–40.CrossRef van der Meer JWM, van Munster IP, Nagengast FM, Weening RS, Schellekens PTA. Colorectal cancer in patients with X-linked agammaglobulinaemia. Lancet. 1993;341:1439–40.CrossRef
11.
Zurück zum Zitat Brosens LAA, Tytgat KMAJ, Morsink FHM, Sinke RJ, Berge IJMTEN, Giardiello FM, et al. Multiple colorectal neoplasms in X-linked Agammaglobulinemia. Clin Gastroenterol Hepatol. 2008;6:115–9.CrossRef Brosens LAA, Tytgat KMAJ, Morsink FHM, Sinke RJ, Berge IJMTEN, Giardiello FM, et al. Multiple colorectal neoplasms in X-linked Agammaglobulinemia. Clin Gastroenterol Hepatol. 2008;6:115–9.CrossRef
12.
Zurück zum Zitat Bachmeyer C, Monge M, Cazier A, Le Deist F, de Saint BG, Durandy A, et al. Gastric adenocarcinoma in a patient with X-linked agammaglobulinaemia. Eur J Gastroenterol Hepatol. 2000;12:1033–5.CrossRef Bachmeyer C, Monge M, Cazier A, Le Deist F, de Saint BG, Durandy A, et al. Gastric adenocarcinoma in a patient with X-linked agammaglobulinaemia. Eur J Gastroenterol Hepatol. 2000;12:1033–5.CrossRef
13.
Zurück zum Zitat Lackmann GM, Wahn V, Poremba C, Niehues T. A teenager with X-linked agammaglobulinemia and vitamin B12 deficiency anemia. J Pediatr Gastroenterol Nutr. 2005;41:360–2.CrossRef Lackmann GM, Wahn V, Poremba C, Niehues T. A teenager with X-linked agammaglobulinemia and vitamin B12 deficiency anemia. J Pediatr Gastroenterol Nutr. 2005;41:360–2.CrossRef
14.
Zurück zum Zitat Hajjar J, Hasan S, Forbes LR, Hemmige V, Orange JS. Gastric adenocarcinoma in a patient with X-linked Agammaglobulinemia and HIV: case report and review of the literature. Front Pediatr. 2016;4:100.CrossRef Hajjar J, Hasan S, Forbes LR, Hemmige V, Orange JS. Gastric adenocarcinoma in a patient with X-linked Agammaglobulinemia and HIV: case report and review of the literature. Front Pediatr. 2016;4:100.CrossRef
15.
Zurück zum Zitat Mueller BU, Pizzo PA. Cancer in children with primary or secondary immunodeficiencies. J Pediatr. 1995;126:1–10.CrossRef Mueller BU, Pizzo PA. Cancer in children with primary or secondary immunodeficiencies. J Pediatr. 1995;126:1–10.CrossRef
16.
Zurück zum Zitat Benson AB, Venook AP, Al-Hawary MM, Cederquist L, Chen Y-J, Ciombor KK, et al. NCCN guidelines insights: Colon Cancer, version 2.2018. J Natl Compr Cancer Netw. 2018;16:359–69.CrossRef Benson AB, Venook AP, Al-Hawary MM, Cederquist L, Chen Y-J, Ciombor KK, et al. NCCN guidelines insights: Colon Cancer, version 2.2018. J Natl Compr Cancer Netw. 2018;16:359–69.CrossRef
17.
Zurück zum Zitat Kadoyama K, Miki I, Tamura T, Brown JB, Sakaeda T. Adverse Event Profiles of 5-Fluorouracil and Capecitabine : Data Mining of the Public Version of the FDA Adverse Event Reporting System , AERS , and Reproducibility of Clinical Observations; 2012. Kadoyama K, Miki I, Tamura T, Brown JB, Sakaeda T. Adverse Event Profiles of 5-Fluorouracil and Capecitabine : Data Mining of the Public Version of the FDA Adverse Event Reporting System , AERS , and Reproducibility of Clinical Observations; 2012.
18.
Zurück zum Zitat Cézé N, Thibault G, Goujon G, Viguier J, Watier H, Dorval E, et al. Pre-treatment lymphopenia as a prognostic biomarker in colorectal cancer patients receiving chemotherapy. Cancer Chemother Pharmacol. 2011;68:1305–13.CrossRef Cézé N, Thibault G, Goujon G, Viguier J, Watier H, Dorval E, et al. Pre-treatment lymphopenia as a prognostic biomarker in colorectal cancer patients receiving chemotherapy. Cancer Chemother Pharmacol. 2011;68:1305–13.CrossRef
19.
Zurück zum Zitat Kou F, Lu Z, Li J, Zhang X, Lu M, Zhou J, et al. Pretreatment lymphopenia is an easily detectable predictive and prognostic marker in patients with metastatic esophagus squamous cell carcinoma receiving first-line chemotherapy. Cancer Med. 2016;5:778–86.CrossRef Kou F, Lu Z, Li J, Zhang X, Lu M, Zhou J, et al. Pretreatment lymphopenia is an easily detectable predictive and prognostic marker in patients with metastatic esophagus squamous cell carcinoma receiving first-line chemotherapy. Cancer Med. 2016;5:778–86.CrossRef
20.
Zurück zum Zitat Oken MM, Creech RH, Tormey DC, Horton J, Davis TE, McFadden ET, et al. Toxicity and response criteria of the eastern cooperative oncology group. Am J Clin Oncol. 1982;5:649–55.CrossRef Oken MM, Creech RH, Tormey DC, Horton J, Davis TE, McFadden ET, et al. Toxicity and response criteria of the eastern cooperative oncology group. Am J Clin Oncol. 1982;5:649–55.CrossRef
21.
Zurück zum Zitat Daher Abdi Z, Lavau-Denes S, Prémaud A, Urien S, Sauvage FL, Martin J, et al. Pharmacokinetics and exposure-effect relationships of capecitabine in elderly patients with breast or colorectal cancer. Cancer Chemother Pharmacol. 2014;73:1285–93.CrossRef Daher Abdi Z, Lavau-Denes S, Prémaud A, Urien S, Sauvage FL, Martin J, et al. Pharmacokinetics and exposure-effect relationships of capecitabine in elderly patients with breast or colorectal cancer. Cancer Chemother Pharmacol. 2014;73:1285–93.CrossRef
22.
Zurück zum Zitat Ab Mutalib N-S, Md Yusof NF, Abdul S-N, Jamal R. Pharmacogenomics DNA biomarkers in colorectal Cancer: current update. Front Pharmacol. 2017;8:736.CrossRef Ab Mutalib N-S, Md Yusof NF, Abdul S-N, Jamal R. Pharmacogenomics DNA biomarkers in colorectal Cancer: current update. Front Pharmacol. 2017;8:736.CrossRef
23.
Zurück zum Zitat Staines Boone AT, Torres Martínez MG, López Herrera G, de Leija Portilla JO, Espinosa Padilla SE, Espinosa Rosales FJ, et al. Gastric adenocarcinoma in the context of X-linked agammaglobulinemia: case report and review of the literature. J Clin Immunol. 2014;34:134–7.CrossRef Staines Boone AT, Torres Martínez MG, López Herrera G, de Leija Portilla JO, Espinosa Padilla SE, Espinosa Rosales FJ, et al. Gastric adenocarcinoma in the context of X-linked agammaglobulinemia: case report and review of the literature. J Clin Immunol. 2014;34:134–7.CrossRef
24.
Zurück zum Zitat Sharma D, Gupta A, Goel S, Sharma M, Rawat A, Singh S. Large BTK gene mutation in a child with X-linked agammaglobulinemia and polyarthritis. Clin Immunol. 2017;183:109–11.CrossRef Sharma D, Gupta A, Goel S, Sharma M, Rawat A, Singh S. Large BTK gene mutation in a child with X-linked agammaglobulinemia and polyarthritis. Clin Immunol. 2017;183:109–11.CrossRef
25.
Zurück zum Zitat Saito K, Scharenberg AM, Kinet JP. Interaction between the Btk PH domain and phosphatidylinositol-3,4,5-trisphosphate directly regulates Btk. J Biol Chem. 2001;276:16201–6.CrossRef Saito K, Scharenberg AM, Kinet JP. Interaction between the Btk PH domain and phosphatidylinositol-3,4,5-trisphosphate directly regulates Btk. J Biol Chem. 2001;276:16201–6.CrossRef
26.
Zurück zum Zitat Wang X, Wang Y, Kanegane H, Toshio M, Yu Y. Gene diagnosis of X-linked agammaglobulinemia. Zhonghua er ke za zhi = Chin J Pediatr. 2005;43:449–52. Wang X, Wang Y, Kanegane H, Toshio M, Yu Y. Gene diagnosis of X-linked agammaglobulinemia. Zhonghua er ke za zhi = Chin J Pediatr. 2005;43:449–52.
27.
Zurück zum Zitat Maarschalk-Ellerbroek LJ, Oldenburg B, Mombers IMH, Hoepelman AIM, Brosens LA, GJA O, et al. Outcome of screening endoscopy in common variable immunodeficiency disorder and X-linked agammaglobulinemia. Endoscopy. 2013;45:320–3.CrossRef Maarschalk-Ellerbroek LJ, Oldenburg B, Mombers IMH, Hoepelman AIM, Brosens LA, GJA O, et al. Outcome of screening endoscopy in common variable immunodeficiency disorder and X-linked agammaglobulinemia. Endoscopy. 2013;45:320–3.CrossRef
28.
Zurück zum Zitat Fallah-Rad N, Ross MA. Managing hypercalcaemia and hypocalcaemia in cancer patients. Curr Opin Support Palliat Care. 2013;7:265–71.CrossRef Fallah-Rad N, Ross MA. Managing hypercalcaemia and hypocalcaemia in cancer patients. Curr Opin Support Palliat Care. 2013;7:265–71.CrossRef
29.
Zurück zum Zitat Chung IF, Chen C-Y, Su S-C, Li C-Y, Wu K-J, Wang H-W, et al. DriverDBv2: a database for human cancer driver gene research. Nucleic Acids Res. 2016;44:D975–9.CrossRef Chung IF, Chen C-Y, Su S-C, Li C-Y, Wu K-J, Wang H-W, et al. DriverDBv2: a database for human cancer driver gene research. Nucleic Acids Res. 2016;44:D975–9.CrossRef
30.
Zurück zum Zitat Ding P, Li L, Huang T, Yang C, Xu E, Wang N, et al. Complement component 6 deficiency increases susceptibility to dextran sulfate sodium-induced murine colitis. Immunobiology. 2016;221:1293–303.CrossRef Ding P, Li L, Huang T, Yang C, Xu E, Wang N, et al. Complement component 6 deficiency increases susceptibility to dextran sulfate sodium-induced murine colitis. Immunobiology. 2016;221:1293–303.CrossRef
31.
Zurück zum Zitat Terzić J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology. 2010;138:2101–2114.e5.CrossRef Terzić J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology. 2010;138:2101–2114.e5.CrossRef
32.
Zurück zum Zitat Mayanil CS, George D, Freilich L, Miljan EJ, Mania-Farnell B, McLone DG, et al. Microarray analysis detects novel Pax3 downstream target genes. J Biol Chem. 2001;276:49299–309.CrossRef Mayanil CS, George D, Freilich L, Miljan EJ, Mania-Farnell B, McLone DG, et al. Microarray analysis detects novel Pax3 downstream target genes. J Biol Chem. 2001;276:49299–309.CrossRef
33.
Zurück zum Zitat Wang Q, Fang W-H, Krupinski J, Kumar S, Slevin M, Kumar P. Pax genes in embryogenesis and oncogenesis. J Cell Mol Med. 2008;12:2281–94.CrossRef Wang Q, Fang W-H, Krupinski J, Kumar S, Slevin M, Kumar P. Pax genes in embryogenesis and oncogenesis. J Cell Mol Med. 2008;12:2281–94.CrossRef
35.
Zurück zum Zitat Jelinek DF, Tschumper RC, Stolovitzky GA, Iturria SJ, Tu YH, Lepre J, et al. Identification of a global gene expression signature of B-chronic lymphocytic leukemia. Mol Cancer Res. 2003;1:346–61.PubMed Jelinek DF, Tschumper RC, Stolovitzky GA, Iturria SJ, Tu YH, Lepre J, et al. Identification of a global gene expression signature of B-chronic lymphocytic leukemia. Mol Cancer Res. 2003;1:346–61.PubMed
36.
Zurück zum Zitat Magalon H, Patin E, Austerlitz F, Hegay T, Aldashev A, Quintana-Murci L, et al. Population genetic diversity of the NAT2 gene supports a role of acetylation in human adaptation to farming in Central Asia. Eur J Hum Genet. 2008;16:243–51.CrossRef Magalon H, Patin E, Austerlitz F, Hegay T, Aldashev A, Quintana-Murci L, et al. Population genetic diversity of the NAT2 gene supports a role of acetylation in human adaptation to farming in Central Asia. Eur J Hum Genet. 2008;16:243–51.CrossRef
37.
Zurück zum Zitat Torre LA, Siegel RL, Ward EM, Jemal A. Global Cancer incidence and mortality rates and trends--an update. Cancer Epidemiol Biomark Prev. 2016;25:16–27.CrossRef Torre LA, Siegel RL, Ward EM, Jemal A. Global Cancer incidence and mortality rates and trends--an update. Cancer Epidemiol Biomark Prev. 2016;25:16–27.CrossRef
38.
Zurück zum Zitat Zhang Q-L, Zhao L-G, Li H-L, Gao J, Yang G, Wang J, et al. The joint effects of major lifestyle factors on colorectal cancer risk among Chinese men: a prospective cohort study: combined lifestyle and colorectal cancer risk. Int J Cancer. 2018;142:1093–101.CrossRef Zhang Q-L, Zhao L-G, Li H-L, Gao J, Yang G, Wang J, et al. The joint effects of major lifestyle factors on colorectal cancer risk among Chinese men: a prospective cohort study: combined lifestyle and colorectal cancer risk. Int J Cancer. 2018;142:1093–101.CrossRef
39.
Zurück zum Zitat Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13.CrossRef Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1–13.CrossRef
40.
Zurück zum Zitat Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.CrossRef Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.CrossRef
41.
Zurück zum Zitat Stelzer G, Plaschkes I, Oz-Levi D, Alkelai A, Olender T, Zimmerman S, et al. VarElect: the phenotype-based variation prioritizer of the GeneCards suite. BMC Genomics. 2016;17:444.CrossRef Stelzer G, Plaschkes I, Oz-Levi D, Alkelai A, Olender T, Zimmerman S, et al. VarElect: the phenotype-based variation prioritizer of the GeneCards suite. BMC Genomics. 2016;17:444.CrossRef
42.
Zurück zum Zitat Saif MW, Fekrazad MH, Ledbetter L, Diasio RB. Hypokalemia secondary to capecitabine: a hidden toxicity? Ther Clin Risk Manag. 2007;3:177–80.CrossRef Saif MW, Fekrazad MH, Ledbetter L, Diasio RB. Hypokalemia secondary to capecitabine: a hidden toxicity? Ther Clin Risk Manag. 2007;3:177–80.CrossRef
43.
Zurück zum Zitat Souid A-K, Dubowy RL, Blaney SM, Hershon L, Sullivan J, McLeod WD, et al. Phase I clinical and pharmacologic study of weekly cisplatin and irinotecan combined with amifostine for refractory solid tumors. Clin Cancer Res. 2003;9:703–10.PubMed Souid A-K, Dubowy RL, Blaney SM, Hershon L, Sullivan J, McLeod WD, et al. Phase I clinical and pharmacologic study of weekly cisplatin and irinotecan combined with amifostine for refractory solid tumors. Clin Cancer Res. 2003;9:703–10.PubMed
44.
Zurück zum Zitat Schrag D, Chung KY, Flombaum C, Saltz L. Cetuximab therapy and symptomatic hypomagnesemia. J Natl Cancer Inst. 2005;97:1221–4.CrossRef Schrag D, Chung KY, Flombaum C, Saltz L. Cetuximab therapy and symptomatic hypomagnesemia. J Natl Cancer Inst. 2005;97:1221–4.CrossRef
45.
Zurück zum Zitat Altundag K, Altundag O, Baptista MZ, Turen S, Atik MA. Re: Cetuximab therapy and symptomatic hypomagnesemia. J Natl Cancer Inst. 2005;97:1791–2.CrossRef Altundag K, Altundag O, Baptista MZ, Turen S, Atik MA. Re: Cetuximab therapy and symptomatic hypomagnesemia. J Natl Cancer Inst. 2005;97:1791–2.CrossRef
46.
Zurück zum Zitat Shaikh A, Wiisanen ME, Gunderson HD, Leung N. Acquired Fanconi syndrome after treatment with capecitabine, irinotecan, and bevacizumab. Ann Pharmacother. 2009;43:1370–3.CrossRef Shaikh A, Wiisanen ME, Gunderson HD, Leung N. Acquired Fanconi syndrome after treatment with capecitabine, irinotecan, and bevacizumab. Ann Pharmacother. 2009;43:1370–3.CrossRef
47.
Zurück zum Zitat Kono T, Satomi M, Asama T, Ebisawa Y, Chisato N, Suno M, et al. Cetuximab-induced hypomagnesaemia aggravates peripheral sensory neurotoxicity caused by oxaliplatin. J Gastrointest Oncol. 2010;1:97–101.PubMedPubMedCentral Kono T, Satomi M, Asama T, Ebisawa Y, Chisato N, Suno M, et al. Cetuximab-induced hypomagnesaemia aggravates peripheral sensory neurotoxicity caused by oxaliplatin. J Gastrointest Oncol. 2010;1:97–101.PubMedPubMedCentral
48.
Zurück zum Zitat Petekkaya I, Akin T, Gezgen G, Roach EC, Ozisik Y, Altundag K. Electrolyte abnormalities due to irinotecan administration in metastatic HER-2 positive breast cancer patients. J BUON. 2012;17:800.PubMed Petekkaya I, Akin T, Gezgen G, Roach EC, Ozisik Y, Altundag K. Electrolyte abnormalities due to irinotecan administration in metastatic HER-2 positive breast cancer patients. J BUON. 2012;17:800.PubMed
Metadaten
Titel
Metastatic colorectal cancer and severe hypocalcemia following irinotecan administration in a patient with X-linked agammaglobulinemia: a case report
verfasst von
Mingming Li
Wei Chen
Xiaomeng Sun
Zhipeng Wang
Xun Zou
Hua Wei
Zhan Wang
Wansheng Chen
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
BMC Medical Genetics / Ausgabe 1/2019
Elektronische ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-019-0880-1

Weitere Artikel der Ausgabe 1/2019

BMC Medical Genetics 1/2019 Zur Ausgabe