Skip to main content
Erschienen in: Inflammation 4/2018

30.05.2018 | REVIEW

Microenvironment of Immune Cells Within the Visceral Adipose Tissue Sensu Lato vs. Epicardial Adipose Tissue: What Do We Know?

verfasst von: Martin Klein, Ivan Varga

Erschienen in: Inflammation | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

The chronic low-grade inflammation of the visceral adipose tissue is now fully established as one of the main contributors to metabolic disorders such as insulin resistance, subsequently leading to metabolic syndrome and other associated cardiometabolic pathologies. The orchestration of immune response and the “ratio of responsibility” of different immune cell populations have been studied extensively over the last few years within the visceral adipose tissue in general sense (sensu lato). However, it is essential to clearly distinguish different types of visceral fat distribution. Visceral adipose tissue is not only the classical omental or epididymal depot, but includes also specific type of fat in the close vicinity to the myocardium—the epicardial adipose tissue. Disruption of this type of fat during obesity was found to have a unique and direct influence over the cardiovascular disease development. Therefore, epicardial adipose tissue and other types of visceral adipose tissue depots should be studied separately. The purpose of this review is to explore the present knowledge about the morphology and dynamics of individual populations of immune cells within the visceral adipose tissue sensu lato in comparison to the knowledge regarding the epicardial adipose tissue specifically.
Literatur
1.
Zurück zum Zitat Kershaw, E.E., and J.S. Flier. 2004. Adipose tissue as an endocrine organ. The Journal of Clinical Endocrinology & Metabolism 89 (6): 2548–2556.CrossRef Kershaw, E.E., and J.S. Flier. 2004. Adipose tissue as an endocrine organ. The Journal of Clinical Endocrinology & Metabolism 89 (6): 2548–2556.CrossRef
2.
Zurück zum Zitat Maury, E., and S.M. Brichard. 2010. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Molecular and Cellular Endocrinology 314 (1): 1–16.PubMedCrossRef Maury, E., and S.M. Brichard. 2010. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Molecular and Cellular Endocrinology 314 (1): 1–16.PubMedCrossRef
3.
Zurück zum Zitat Berg, A.H., and P.E. Scherer. 2005. Adipose tissue, inflammation. and cardiovascular disease. Circulation Research 96 (9): 939–949.PubMed Berg, A.H., and P.E. Scherer. 2005. Adipose tissue, inflammation. and cardiovascular disease. Circulation Research 96 (9): 939–949.PubMed
4.
Zurück zum Zitat Könner, A.C., and J.C. Brüning. 2011. Toll-like receptors: linking inflammation to metabolism. Trends in Endocrinology & Metabolism 22 (1): 16–23.CrossRef Könner, A.C., and J.C. Brüning. 2011. Toll-like receptors: linking inflammation to metabolism. Trends in Endocrinology & Metabolism 22 (1): 16–23.CrossRef
5.
Zurück zum Zitat Ouchi, N., J.L. Parker, J.J. Lugus, and K. Walsh. 2011. Adipokines in inflammation and metabolic disease. Nature Reviews Immunology 11 (2): 85–97.PubMedPubMedCentralCrossRef Ouchi, N., J.L. Parker, J.J. Lugus, and K. Walsh. 2011. Adipokines in inflammation and metabolic disease. Nature Reviews Immunology 11 (2): 85–97.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Lin, Y.W., and L.N. Wei. 2017. Innate immunity orchestrates adipose tissue homeostasis. Hormone Molecular Biology and Clinical Investigation 31 (1). Lin, Y.W., and L.N. Wei. 2017. Innate immunity orchestrates adipose tissue homeostasis. Hormone Molecular Biology and Clinical Investigation 31 (1).
8.
Zurück zum Zitat Aravindhan, V., and H. Madhumitha. 2016. Metainflammation in Diabetic Coronary Artery Disease: Emerging Role of Innate and Adaptive Immune Responses. Journal of Diabetes Research 2016: 1–10.CrossRef Aravindhan, V., and H. Madhumitha. 2016. Metainflammation in Diabetic Coronary Artery Disease: Emerging Role of Innate and Adaptive Immune Responses. Journal of Diabetes Research 2016: 1–10.CrossRef
9.
Zurück zum Zitat Dahiya, R., S. Shultz, J. Cardinal, N. Byrne, A. Hills, K. Gibbons, et al. 2015. Resistance training improves metainflammation and body composition in obese adolescents. International Journal of Pediatric Endocrinology 2015 (Suppl 1): O40.PubMedCentralCrossRef Dahiya, R., S. Shultz, J. Cardinal, N. Byrne, A. Hills, K. Gibbons, et al. 2015. Resistance training improves metainflammation and body composition in obese adolescents. International Journal of Pediatric Endocrinology 2015 (Suppl 1): O40.PubMedCentralCrossRef
11.
Zurück zum Zitat Harms, M., and P. Seale. 2013. Brown and beige fat: development, function and therapeutic potential. Nature Medicine 19 (10): 1252–1263.PubMedCrossRef Harms, M., and P. Seale. 2013. Brown and beige fat: development, function and therapeutic potential. Nature Medicine 19 (10): 1252–1263.PubMedCrossRef
12.
Zurück zum Zitat Porter, S.A., J.M. Massaro, U. Hoffmann, R.S. Vasan, C.J. O’Donnel, and C.S. Fox. 2009. Abdominal subcutaneous adipose tissue: a protective fat depot? Diabetes Care 32 (6): 1068–1075.PubMedPubMedCentralCrossRef Porter, S.A., J.M. Massaro, U. Hoffmann, R.S. Vasan, C.J. O’Donnel, and C.S. Fox. 2009. Abdominal subcutaneous adipose tissue: a protective fat depot? Diabetes Care 32 (6): 1068–1075.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Booth, A., A. Magnuson, and M. Foster. 2014. Detrimental and protective fat: body fat distribution and its relation to metabolic disease. Hormone Molecular Biology and Clinical Investigation 17 (1): 13–27.PubMedCrossRef Booth, A., A. Magnuson, and M. Foster. 2014. Detrimental and protective fat: body fat distribution and its relation to metabolic disease. Hormone Molecular Biology and Clinical Investigation 17 (1): 13–27.PubMedCrossRef
14.
Zurück zum Zitat Iacobellis, G. 2009. Epicardial and pericardial fat: close. but very different. Obesity (Silver Spring) 17 (4): 625.CrossRef Iacobellis, G. 2009. Epicardial and pericardial fat: close. but very different. Obesity (Silver Spring) 17 (4): 625.CrossRef
15.
Zurück zum Zitat Iacobellis, G., D. Corradi, and A.M. Sharma. 2005. Epicardial adipose tissue: anatomic biomolecular and clinical relationships with the heart. Nature Clinical Practice Cardiovascular Medicine 2 (10): 536–543.PubMedCrossRef Iacobellis, G., D. Corradi, and A.M. Sharma. 2005. Epicardial adipose tissue: anatomic biomolecular and clinical relationships with the heart. Nature Clinical Practice Cardiovascular Medicine 2 (10): 536–543.PubMedCrossRef
16.
Zurück zum Zitat Sacks, H.S., J.N. Fain, B. Holman, P. Cheema, A. Chary, F. Parks, et al. 2009. Uncoupling protein-1 and related messenger ribonucleic acids in human epicardial and other adipose tissues: epicardial fat functioning as brown fat. The Journal of Clinical Endocrinology & Metabolism 94 (9): 3611–3615.CrossRef Sacks, H.S., J.N. Fain, B. Holman, P. Cheema, A. Chary, F. Parks, et al. 2009. Uncoupling protein-1 and related messenger ribonucleic acids in human epicardial and other adipose tissues: epicardial fat functioning as brown fat. The Journal of Clinical Endocrinology & Metabolism 94 (9): 3611–3615.CrossRef
17.
Zurück zum Zitat Marchington, J.M., C.A. Mattacks, and C.M. Pond. 1989. Adipose tissue in the mammalian heart and pericardium: structure. foetal development and biochemical properties. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 94 (2): 225–232.CrossRef Marchington, J.M., C.A. Mattacks, and C.M. Pond. 1989. Adipose tissue in the mammalian heart and pericardium: structure. foetal development and biochemical properties. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 94 (2): 225–232.CrossRef
18.
Zurück zum Zitat Matloch, Z., T. Kotulák, and M. Haluzík. 2016. The role of epicardial adipose tissue in heart disease. Physiological Research 65 (1): 23–32.PubMed Matloch, Z., T. Kotulák, and M. Haluzík. 2016. The role of epicardial adipose tissue in heart disease. Physiological Research 65 (1): 23–32.PubMed
19.
Zurück zum Zitat Ouwens, D.M., H. Sell, S. Greulich, and J. Eckel. 2010. The role of epicardial and perivascular adipose tissue in the pathophysiology of cardiovascular disease. Journal of Cellular and Molecular Medicine 14 (9): 2223–2234.PubMedPubMedCentralCrossRef Ouwens, D.M., H. Sell, S. Greulich, and J. Eckel. 2010. The role of epicardial and perivascular adipose tissue in the pathophysiology of cardiovascular disease. Journal of Cellular and Molecular Medicine 14 (9): 2223–2234.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Silaghi, A.C., R. Pais, A. Valea, A.I. Mironiuc, and H. Silaghi. 2011. Epicardial adipose tissue and relationship with coronary artery disease. Central European Journal of Medicine 6 (3): 251–262. Silaghi, A.C., R. Pais, A. Valea, A.I. Mironiuc, and H. Silaghi. 2011. Epicardial adipose tissue and relationship with coronary artery disease. Central European Journal of Medicine 6 (3): 251–262.
21.
Zurück zum Zitat Gaborit, B., I. Abdesselam, and A. Dutour. 2013. Epicardial fat: more than just an "epi" phenomenon? Hormone and Metabolic Research 45 (13): 991–1001.PubMedCrossRef Gaborit, B., I. Abdesselam, and A. Dutour. 2013. Epicardial fat: more than just an "epi" phenomenon? Hormone and Metabolic Research 45 (13): 991–1001.PubMedCrossRef
22.
Zurück zum Zitat Nagy, E., A.L. Jermendy, B. Merkely, and P. Maurovich-Horvat. 2017. Clinical importance of epicardial adipose tissue. Archives of Medical Science 13 (4): 864–874.PubMedCrossRef Nagy, E., A.L. Jermendy, B. Merkely, and P. Maurovich-Horvat. 2017. Clinical importance of epicardial adipose tissue. Archives of Medical Science 13 (4): 864–874.PubMedCrossRef
23.
Zurück zum Zitat Iacobellis, G. 2014. Epicardial adipose tissue in endocrine and metabolic diseases. Endocrine 46 (1): 8–15.PubMedCrossRef Iacobellis, G. 2014. Epicardial adipose tissue in endocrine and metabolic diseases. Endocrine 46 (1): 8–15.PubMedCrossRef
24.
Zurück zum Zitat Akoumianakis, I., and C. Antoniades. 2017. The interplay between adipose tissue and the cardiovascular system: is fat always bad? Cardiovascular Research 113 (9): 999–1008.PubMedCrossRef Akoumianakis, I., and C. Antoniades. 2017. The interplay between adipose tissue and the cardiovascular system: is fat always bad? Cardiovascular Research 113 (9): 999–1008.PubMedCrossRef
25.
Zurück zum Zitat Antonopoulos, A.S., and C. Antoniades. 2017. The role of epicardial adipose tissue in cardiac biology: classic concepts and emerging roles. The Journal of Physiology 595 (12): 3907–3917.PubMedPubMedCentralCrossRef Antonopoulos, A.S., and C. Antoniades. 2017. The role of epicardial adipose tissue in cardiac biology: classic concepts and emerging roles. The Journal of Physiology 595 (12): 3907–3917.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Viviano, A., X. Yin, A. Zampetaki, M. Fava, M. Gallagher, M. Mayr, et al. 2017. Proteomics of the epicardial fat secretome and its role in post-operative atrial fibrillation. Europace in press. Viviano, A., X. Yin, A. Zampetaki, M. Fava, M. Gallagher, M. Mayr, et al. 2017. Proteomics of the epicardial fat secretome and its role in post-operative atrial fibrillation. Europace in press.
27.
Zurück zum Zitat Leggio, M., P. Severi, S. D’Emidio, and A. Mazza. 2017. Epicardial adipose tissue and atrial fibrillation: The other side of the coin. The Anatolian Journal of Cardiology 17 (5): 415–416.PubMedCrossRef Leggio, M., P. Severi, S. D’Emidio, and A. Mazza. 2017. Epicardial adipose tissue and atrial fibrillation: The other side of the coin. The Anatolian Journal of Cardiology 17 (5): 415–416.PubMedCrossRef
28.
Zurück zum Zitat Cakmak, H.A., B. Dincgez Cakmak, C. Abide Yayla, E. Inci Coskun, M. Erturk, and I. Keles. 2017. Assessment of relationships between novel inflammatory markers and presence and severity of preeclampsia: Epicardial fat thickness, pentraxin-3, and neutrophil-to-lymphocyte ratio. Hypertension in Pregnancy 36 (3): 233–239.PubMedCrossRef Cakmak, H.A., B. Dincgez Cakmak, C. Abide Yayla, E. Inci Coskun, M. Erturk, and I. Keles. 2017. Assessment of relationships between novel inflammatory markers and presence and severity of preeclampsia: Epicardial fat thickness, pentraxin-3, and neutrophil-to-lymphocyte ratio. Hypertension in Pregnancy 36 (3): 233–239.PubMedCrossRef
29.
Zurück zum Zitat Talman, A.H., P.J. Psaltis, J.D. Cameron, I.T. Meredith, S.K. Seneviratne, and D.T. Wong. 2014. Epicardial adipose tissue: far more than a fat depot. Cardiovascular Diagnosis & Therapy 4 (6): 416–429. Talman, A.H., P.J. Psaltis, J.D. Cameron, I.T. Meredith, S.K. Seneviratne, and D.T. Wong. 2014. Epicardial adipose tissue: far more than a fat depot. Cardiovascular Diagnosis & Therapy 4 (6): 416–429.
30.
Zurück zum Zitat Bouchi, R., M. Terashima, Y. Sasahara, M. Asakawa, T. Fukuda, T. Takeuchi, et al. 2017. Luseogliflozin reduces epicardial fat accumulation in patients with type 2 diabetes: a pilot study. Cardiovascular Diabetology 16 (1): 32.PubMedPubMedCentralCrossRef Bouchi, R., M. Terashima, Y. Sasahara, M. Asakawa, T. Fukuda, T. Takeuchi, et al. 2017. Luseogliflozin reduces epicardial fat accumulation in patients with type 2 diabetes: a pilot study. Cardiovascular Diabetology 16 (1): 32.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Pawlina, W. 2016. Cardiovascular System. In Histology. A Text and Atlas with Correlated Cell and Molecular Biology, 7th ed., 404-441. Philadelphia: Wolters Kluwer Health. Pawlina, W. 2016. Cardiovascular System. In Histology. A Text and Atlas with Correlated Cell and Molecular Biology, 7th ed., 404-441. Philadelphia: Wolters Kluwer Health.
32.
Zurück zum Zitat Iacobellis, G., F. Assael, M.C. Ribaudo, A. Zappaterreno, G. Alessi, U. Di Mario, et al. 2003. Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obesity Research 11 (2): 304–310.PubMedCrossRef Iacobellis, G., F. Assael, M.C. Ribaudo, A. Zappaterreno, G. Alessi, U. Di Mario, et al. 2003. Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obesity Research 11 (2): 304–310.PubMedCrossRef
33.
Zurück zum Zitat Meenakshi, K., M. Rajendran, S. Srikumar, and S. Chidambaram. 2016. Epicardial fat thickness: A surrogate marker of coronary artery disease – Assessment by echocardiography. Indian Heart Journal 68 (3): 336–341.PubMedPubMedCentralCrossRef Meenakshi, K., M. Rajendran, S. Srikumar, and S. Chidambaram. 2016. Epicardial fat thickness: A surrogate marker of coronary artery disease – Assessment by echocardiography. Indian Heart Journal 68 (3): 336–341.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Tachibana, M., T. Miyoshi, K. Osawa, N. Toh, H. Oe, K. Nakamura, et al. 2016. Measurement of epicardial fat thickness by transthoracic echocardiography for predicting high-risk coronary artery plaques. Heart and Vessels 31 (11): 1758–1766.PubMedCrossRef Tachibana, M., T. Miyoshi, K. Osawa, N. Toh, H. Oe, K. Nakamura, et al. 2016. Measurement of epicardial fat thickness by transthoracic echocardiography for predicting high-risk coronary artery plaques. Heart and Vessels 31 (11): 1758–1766.PubMedCrossRef
35.
Zurück zum Zitat Fatma, E., K. Bunyamin, S. Savas, U. Mehmet, Y. Selma, B. Ismail, et al. 2015. Epicardial fat thickness in patients with rheumatoid arthritis. African Health Sciences 15 (2): 489–495.PubMedPubMedCentralCrossRef Fatma, E., K. Bunyamin, S. Savas, U. Mehmet, Y. Selma, B. Ismail, et al. 2015. Epicardial fat thickness in patients with rheumatoid arthritis. African Health Sciences 15 (2): 489–495.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Aydogdu, A., E.Y. Karakas, E. Erkus, İ.H. Altıparmak, E. Savık, T. Ulas, et al. 2017. Epicardial fat thickness and oxidative stress parameters in patients with subclinical hypothyroidism. Archives of Medical Science 13 (2): 383–389.PubMedCrossRefPubMedCentral Aydogdu, A., E.Y. Karakas, E. Erkus, İ.H. Altıparmak, E. Savık, T. Ulas, et al. 2017. Epicardial fat thickness and oxidative stress parameters in patients with subclinical hypothyroidism. Archives of Medical Science 13 (2): 383–389.PubMedCrossRefPubMedCentral
37.
Zurück zum Zitat Opincariu, D., A. Mester, M. Dobra, et al. 2016. Prognostic Value of Epicardial Fat Thickness as a Biomarker of Increased Inflammatory Status in Patients with Type 2 Diabetes Mellitus and Acute Myocardial Infarction. Journal of Cardiovascular Emergencies 2 (1): 11–18.CrossRef Opincariu, D., A. Mester, M. Dobra, et al. 2016. Prognostic Value of Epicardial Fat Thickness as a Biomarker of Increased Inflammatory Status in Patients with Type 2 Diabetes Mellitus and Acute Myocardial Infarction. Journal of Cardiovascular Emergencies 2 (1): 11–18.CrossRef
38.
Zurück zum Zitat Spearman, J.V., M. Renker, U.J. Schoepf, A.W. Krazinski, T.L. Herbert, C.N. De Cecco, et al. 2015. Prognostic value of epicardial fat volume measurements by computed tomography: a systematic review of the literature. European Radiology 25 (11): 3372–3381.PubMedPubMedCentralCrossRef Spearman, J.V., M. Renker, U.J. Schoepf, A.W. Krazinski, T.L. Herbert, C.N. De Cecco, et al. 2015. Prognostic value of epicardial fat volume measurements by computed tomography: a systematic review of the literature. European Radiology 25 (11): 3372–3381.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Han, S., H.M. Sun, K.C. Hwang, and S.W. Kim. 2015. Adipose-Derived Stromal Vascular Fraction Cells: Update on Clinical Utility and Efficacy. Critical Reviews in Eukaryotic Gene Expression 25 (2): 145–152.PubMedCrossRef Han, S., H.M. Sun, K.C. Hwang, and S.W. Kim. 2015. Adipose-Derived Stromal Vascular Fraction Cells: Update on Clinical Utility and Efficacy. Critical Reviews in Eukaryotic Gene Expression 25 (2): 145–152.PubMedCrossRef
41.
Zurück zum Zitat Huh, J.Y., Y.J. Park, M. Ham, and J.B. Kim. 2014. Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Molecules and Cells 37 (5): 365–371.PubMedPubMedCentralCrossRef Huh, J.Y., Y.J. Park, M. Ham, and J.B. Kim. 2014. Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Molecules and Cells 37 (5): 365–371.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Hill, A.A., W. Reid Bolus, and A.H. Hasty. 2014. A decade of progress in adipose tissue macrophage biology. Immunological Reviews 262 (1): 134–152.PubMedPubMedCentralCrossRef Hill, A.A., W. Reid Bolus, and A.H. Hasty. 2014. A decade of progress in adipose tissue macrophage biology. Immunological Reviews 262 (1): 134–152.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Kim, D., J. Kim, J.H. Yoon, J. Ghim, K. Yea, P. Song, et al. 2014. CXCL12 secreted from adipose tissue recruits macrophages and induces insulin resistance in mice. Diabetologia 57 (7): 1456–1465.PubMedCrossRef Kim, D., J. Kim, J.H. Yoon, J. Ghim, K. Yea, P. Song, et al. 2014. CXCL12 secreted from adipose tissue recruits macrophages and induces insulin resistance in mice. Diabetologia 57 (7): 1456–1465.PubMedCrossRef
45.
Zurück zum Zitat Nomiyama, T., D. Perez-Tilve, D. Ogawa, F. Gizard, Y. Zhao, E.B. Heywood, et al. 2007. Osteopontin mediates obesity-induced adipose tissue macrophage infiltration and insulin resistance in mice. The Journal of Clinical Investigation 117 (10): 2877–2888.PubMedPubMedCentralCrossRef Nomiyama, T., D. Perez-Tilve, D. Ogawa, F. Gizard, Y. Zhao, E.B. Heywood, et al. 2007. Osteopontin mediates obesity-induced adipose tissue macrophage infiltration and insulin resistance in mice. The Journal of Clinical Investigation 117 (10): 2877–2888.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Patsouris, D., J.G. Neels, W. Fan, P. Li, M.T.A. Nguyen, and J.M. Olefsky. 2009. Glucocorticoids and thiazolidinediones interfere with adipocyte-mediated macrophage chemotaxis and recruitment. The Journal of Biological Chemistry 284 (45): 31223–31235.PubMedPubMedCentralCrossRef Patsouris, D., J.G. Neels, W. Fan, P. Li, M.T.A. Nguyen, and J.M. Olefsky. 2009. Glucocorticoids and thiazolidinediones interfere with adipocyte-mediated macrophage chemotaxis and recruitment. The Journal of Biological Chemistry 284 (45): 31223–31235.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Saberi, M., N.B. Woods, C. de Luca, S. Schenk, J.C. Lu, G. Bandyopadhyay, et al. 2009. Hematopoietic cell-specific deletion of toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice. Cell Metabolism 10 (5): 419–429.PubMedPubMedCentralCrossRef Saberi, M., N.B. Woods, C. de Luca, S. Schenk, J.C. Lu, G. Bandyopadhyay, et al. 2009. Hematopoietic cell-specific deletion of toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice. Cell Metabolism 10 (5): 419–429.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Hosogai, N., A. Fukuhara, K. Oshima, Y. Miyata, S. Tanaka, K. Segawa, et al. 2007. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56 (4): 901–911.PubMedCrossRef Hosogai, N., A. Fukuhara, K. Oshima, Y. Miyata, S. Tanaka, K. Segawa, et al. 2007. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56 (4): 901–911.PubMedCrossRef
49.
Zurück zum Zitat Gruen, M.L., M. Hao, D.W. Piston, and A.H. Hasty. 2007. Leptin requires canonical migratory signaling pathways for induction of monocyte and macrophage chemotaxis. American Journal of Physiology-CellPhysiology 293 (5): C1481–C1488.CrossRef Gruen, M.L., M. Hao, D.W. Piston, and A.H. Hasty. 2007. Leptin requires canonical migratory signaling pathways for induction of monocyte and macrophage chemotaxis. American Journal of Physiology-CellPhysiology 293 (5): C1481–C1488.CrossRef
50.
Zurück zum Zitat Kosteli, A., E. Sugaru, G. Haemmerle, J.F. Martin, J. Lei, R. Zechner, et al. 2010. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. The Journal of Clinical Investigation 120 (10): 3466–3479.PubMedPubMedCentralCrossRef Kosteli, A., E. Sugaru, G. Haemmerle, J.F. Martin, J. Lei, R. Zechner, et al. 2010. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. The Journal of Clinical Investigation 120 (10): 3466–3479.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Sasaki, Y., M. Ohta, D. Desai, J.L. Figueiredo, M.C. Whelan, T. Sugano, et al. 2015. Angiopoietin Like Protein 2 (ANGPTL2) Promotes Adipose Tissue Macrophage and T lymphocyte Accumulation and Leads to Insulin Resistance. PLoS ONE 10 (7): e0131176.PubMedPubMedCentralCrossRef Sasaki, Y., M. Ohta, D. Desai, J.L. Figueiredo, M.C. Whelan, T. Sugano, et al. 2015. Angiopoietin Like Protein 2 (ANGPTL2) Promotes Adipose Tissue Macrophage and T lymphocyte Accumulation and Leads to Insulin Resistance. PLoS ONE 10 (7): e0131176.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Har, D., M. Carey, and M. Hawkins. 2013. Coordinated Regulation of Adipose Tissue Macrophages by Cellular and Nutritional Signals. Journal of Investigative Medicine : The Official Publication of the American Federation for Clinical Research 61 (6): 937–941.CrossRef Har, D., M. Carey, and M. Hawkins. 2013. Coordinated Regulation of Adipose Tissue Macrophages by Cellular and Nutritional Signals. Journal of Investigative Medicine : The Official Publication of the American Federation for Clinical Research 61 (6): 937–941.CrossRef
53.
Zurück zum Zitat Morris, D.L., K.W. Cho, J.L. DelProposto, K.E. Oatmen, L.M. Geletka, G. Martinez-Santibanez, et al. 2013. Adipose tissue macrophages function as antigen-presenting cells and regulate adipose tissue CD4+ T cells in mice. Diabetes 62 (8): 2762–2772.PubMedPubMedCentralCrossRef Morris, D.L., K.W. Cho, J.L. DelProposto, K.E. Oatmen, L.M. Geletka, G. Martinez-Santibanez, et al. 2013. Adipose tissue macrophages function as antigen-presenting cells and regulate adipose tissue CD4+ T cells in mice. Diabetes 62 (8): 2762–2772.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Li, P., M. Lu, M.T. Nguyen, E.J. Bae, J. Chapman, D. Feng, et al. 2010. Functional heterogeneity of CD11c-positive adipose tissue macrophages in diet-induced obese mice. Journal of Biological Chemistry 285 (20): 15333–15345.PubMedCrossRefPubMedCentral Li, P., M. Lu, M.T. Nguyen, E.J. Bae, J. Chapman, D. Feng, et al. 2010. Functional heterogeneity of CD11c-positive adipose tissue macrophages in diet-induced obese mice. Journal of Biological Chemistry 285 (20): 15333–15345.PubMedCrossRefPubMedCentral
55.
Zurück zum Zitat Lumeng, C.N., J.B. DelProposto, D.J. Westcott, and A.R. Saltiel. 2008. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes 57 (12): 3239–3246.PubMedPubMedCentralCrossRef Lumeng, C.N., J.B. DelProposto, D.J. Westcott, and A.R. Saltiel. 2008. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes 57 (12): 3239–3246.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Altintas, M.M., A. Azad, B. Nayer, G. Contreras, J. Zaias, C. Faul, et al. 2011. Mast cells, macrophages, and crown-like structures distinguish subcutaneous from visceral fat in mice. Journal of Lipid Research 52 (3): 480–488.PubMedPubMedCentralCrossRef Altintas, M.M., A. Azad, B. Nayer, G. Contreras, J. Zaias, C. Faul, et al. 2011. Mast cells, macrophages, and crown-like structures distinguish subcutaneous from visceral fat in mice. Journal of Lipid Research 52 (3): 480–488.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Cancello, R., J. Tordjman, C. Poitou, G. Guihem, J.L. Bouillot, D. Hugol, et al. 2006. Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes 55 (6): 1554–1561.PubMedCrossRef Cancello, R., J. Tordjman, C. Poitou, G. Guihem, J.L. Bouillot, D. Hugol, et al. 2006. Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes 55 (6): 1554–1561.PubMedCrossRef
58.
Zurück zum Zitat Aron-Wisnewsky, J., J. Tordjman, C. Poitou, F. Darakhshan, D. Hugol, A. Basdevant, et al. 2009. Human adipose tissue macrophages: m1 and m2 cell surface markers in subcutaneous and omental depots and after weight loss. The Journal of Clinical Endocrinology & Metabolism 94 (11): 4619–4623.CrossRef Aron-Wisnewsky, J., J. Tordjman, C. Poitou, F. Darakhshan, D. Hugol, A. Basdevant, et al. 2009. Human adipose tissue macrophages: m1 and m2 cell surface markers in subcutaneous and omental depots and after weight loss. The Journal of Clinical Endocrinology & Metabolism 94 (11): 4619–4623.CrossRef
59.
Zurück zum Zitat Wentworth, J.M., G. Naselli, W.A. Brown, L. Doyle, B. Phipson, G.K. Smyth, et al. 2010. Pro-inflammatory CD11c+CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes 59 (7): 1648–1656.PubMedPubMedCentralCrossRef Wentworth, J.M., G. Naselli, W.A. Brown, L. Doyle, B. Phipson, G.K. Smyth, et al. 2010. Pro-inflammatory CD11c+CD206+ adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes 59 (7): 1648–1656.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Morris, D.L., K. Singer, and C.N. Lumeng. 2011. Adipose tissue macrophages: phenotypic plasticity and diversity in lean and obese states. Current Opinion in Clinical Nutrition and Metabolic Care 14 (4): 341–346.PubMedPubMedCentralCrossRef Morris, D.L., K. Singer, and C.N. Lumeng. 2011. Adipose tissue macrophages: phenotypic plasticity and diversity in lean and obese states. Current Opinion in Clinical Nutrition and Metabolic Care 14 (4): 341–346.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Yong, S.B., Y. Song, and Y.H. Kim. 2017. Visceral adipose tissue macrophage-targeted TACE silencing to treat obesity-induced type 2 diabetes. Biomaterials 148: 81–89.PubMedCrossRef Yong, S.B., Y. Song, and Y.H. Kim. 2017. Visceral adipose tissue macrophage-targeted TACE silencing to treat obesity-induced type 2 diabetes. Biomaterials 148: 81–89.PubMedCrossRef
64.
Zurück zum Zitat Hirata, Y., M. Tabata, H. Kurobe, T. Motoki, M. Akaike, C. Nishio, et al. 2011. Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue. Journal of American College of Cardiology 58 (3): 248–255.CrossRef Hirata, Y., M. Tabata, H. Kurobe, T. Motoki, M. Akaike, C. Nishio, et al. 2011. Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue. Journal of American College of Cardiology 58 (3): 248–255.CrossRef
65.
Zurück zum Zitat Vianello, E., E. Dozio, F. Arnaboldi, M.G. Marazzi, C. Martinelli, J. Lamont, et al. 2016. Epicardial adipocyte hypertrophy: Association with M1-polarization and toll-like receptor pathways in coronary artery disease patients. Nutrition, Metabolism and Cardiovascular Diseases 26 (3): 246–253.PubMedCrossRef Vianello, E., E. Dozio, F. Arnaboldi, M.G. Marazzi, C. Martinelli, J. Lamont, et al. 2016. Epicardial adipocyte hypertrophy: Association with M1-polarization and toll-like receptor pathways in coronary artery disease patients. Nutrition, Metabolism and Cardiovascular Diseases 26 (3): 246–253.PubMedCrossRef
66.
Zurück zum Zitat Kitagawa, T., H. Yamamoto, K. Sentani, S. Takahashi, H. Tsushima, A. Senoo, et al. 2015. The relationship between inflammation and neoangiogenesis of epicardial adipose tissue and coronary atherosclerosis based on computed tomography analysis. Atherosclerosis 243 (1): 293–299.PubMedCrossRef Kitagawa, T., H. Yamamoto, K. Sentani, S. Takahashi, H. Tsushima, A. Senoo, et al. 2015. The relationship between inflammation and neoangiogenesis of epicardial adipose tissue and coronary atherosclerosis based on computed tomography analysis. Atherosclerosis 243 (1): 293–299.PubMedCrossRef
67.
Zurück zum Zitat Gurses, K.M., F. Ozmen, D. Kocyigit, N. Yersal, E. Bilgic, E. Kaya, et al. 2017. Netrin-1 is associated with macrophage infiltration and polarization in human epicardial adipose tissue in coronary artery disease. Journal of Cardiology 69 (6): 851–858.PubMedCrossRef Gurses, K.M., F. Ozmen, D. Kocyigit, N. Yersal, E. Bilgic, E. Kaya, et al. 2017. Netrin-1 is associated with macrophage infiltration and polarization in human epicardial adipose tissue in coronary artery disease. Journal of Cardiology 69 (6): 851–858.PubMedCrossRef
68.
Zurück zum Zitat Cools, N., P. Ponsaerts, V.F. Van Tendeloo, and Z.N. Berneman. 2007. Balancing between immunity and tolerance: an interplay between dendritic cells, regulatory T cells, and effector T cells. Journal of Leukocyte Biology 82 (6): 1365–1374.PubMedCrossRef Cools, N., P. Ponsaerts, V.F. Van Tendeloo, and Z.N. Berneman. 2007. Balancing between immunity and tolerance: an interplay between dendritic cells, regulatory T cells, and effector T cells. Journal of Leukocyte Biology 82 (6): 1365–1374.PubMedCrossRef
69.
Zurück zum Zitat Chung, C.Y.J., D. Ysebaert, Z.N. Berneman, and N. Cools. 2013. Dendritic Cells: cellular mediators for immunological tolerance. Clinical and Developmental Immunology 2013: 972865.PubMedPubMedCentralCrossRef Chung, C.Y.J., D. Ysebaert, Z.N. Berneman, and N. Cools. 2013. Dendritic Cells: cellular mediators for immunological tolerance. Clinical and Developmental Immunology 2013: 972865.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Pamir, N., N.C. Liu, A. Irwin, L. Becker, Y. Peng, G.E. Ronsein, et al. 2015. Granulocyte/Macrophage Colony-stimulating Factor-dependent Dendritic Cells Restrain Lean Adipose Tissue Expansion. The Journal of Biological Chemistry 290 (23): 14656–14667.PubMedPubMedCentralCrossRef Pamir, N., N.C. Liu, A. Irwin, L. Becker, Y. Peng, G.E. Ronsein, et al. 2015. Granulocyte/Macrophage Colony-stimulating Factor-dependent Dendritic Cells Restrain Lean Adipose Tissue Expansion. The Journal of Biological Chemistry 290 (23): 14656–14667.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Stefanovic-Racic, M., X. Yang, M.S. Turner, B.S. Mantell, D.B. Stolz, T.L. Sumpter, et al. 2012. Dendritic cells promote macrophage infiltration and comprise a substantial proportion of obesity-associated increases in CD11c+ cells in adipose tissue and liver. Diabetes 61 (9): 2330–2339.PubMedPubMedCentralCrossRef Stefanovic-Racic, M., X. Yang, M.S. Turner, B.S. Mantell, D.B. Stolz, T.L. Sumpter, et al. 2012. Dendritic cells promote macrophage infiltration and comprise a substantial proportion of obesity-associated increases in CD11c+ cells in adipose tissue and liver. Diabetes 61 (9): 2330–2339.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Chen, Y., J. Tian, X. Tian, X. Tang, K. Rui, J. Tong, et al. 2014. Adipose tissue dendritic cells enhances inflammation by prompting the generation of Th17 cells. PLoS ONE 9 (3): e92450.PubMedPubMedCentralCrossRef Chen, Y., J. Tian, X. Tian, X. Tang, K. Rui, J. Tong, et al. 2014. Adipose tissue dendritic cells enhances inflammation by prompting the generation of Th17 cells. PLoS ONE 9 (3): e92450.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Bertola, A., T. Ciucci, D. Rousseau, V. Bourlier, C. Duffaut, S. Bonnafous, et al. 2012. Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes 2012 61 (9): 2238–2247. Bertola, A., T. Ciucci, D. Rousseau, V. Bourlier, C. Duffaut, S. Bonnafous, et al. 2012. Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes 2012 61 (9): 2238–2247.
74.
Zurück zum Zitat Cho, K.W., B.F. Zamarron, L.A. Muir, K. Singer, C.E. Porsche, J.B. DelProposto, et al. 2016. Adipose Tissue Dendritic Cells Are Independent Contributors to Obesity-Induced Inflammation and Insulin Resistance. The Journal of Immunology 197 (9): 3650–3661.PubMedCrossRef Cho, K.W., B.F. Zamarron, L.A. Muir, K. Singer, C.E. Porsche, J.B. DelProposto, et al. 2016. Adipose Tissue Dendritic Cells Are Independent Contributors to Obesity-Induced Inflammation and Insulin Resistance. The Journal of Immunology 197 (9): 3650–3661.PubMedCrossRef
75.
Zurück zum Zitat Ghosh, A.R., R. Bhattacharya, S. Bhattacharya, T. Nargis, O. Rahaman, P. Duttagupta, et al. 2016. Adipose Recruitment and Activation of Plasmacytoid Dendritic Cells Fuel Metaflammation. Diabetes 65 (11): 3440–3452.PubMedCrossRef Ghosh, A.R., R. Bhattacharya, S. Bhattacharya, T. Nargis, O. Rahaman, P. Duttagupta, et al. 2016. Adipose Recruitment and Activation of Plasmacytoid Dendritic Cells Fuel Metaflammation. Diabetes 65 (11): 3440–3452.PubMedCrossRef
76.
Zurück zum Zitat Shi, M.A., and G.P. Shi. 2012. Different roles of mast cells in obesity and diabetes: lessons from experimental animals and humans. Frontiers in Immunology 3: 7.PubMedPubMedCentralCrossRef Shi, M.A., and G.P. Shi. 2012. Different roles of mast cells in obesity and diabetes: lessons from experimental animals and humans. Frontiers in Immunology 3: 7.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Ishijima, Y., S. Ohmori, and K. Ohneda. 2013. Mast cell deficiency results in the accumulation of preadipocytes in adipose tissue in both obese and non-obese mice. FEBS Open Bio 4: 18–24.PubMedPubMedCentralCrossRef Ishijima, Y., S. Ohmori, and K. Ohneda. 2013. Mast cell deficiency results in the accumulation of preadipocytes in adipose tissue in both obese and non-obese mice. FEBS Open Bio 4: 18–24.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Divoux, A., S. Moutel, C. Poitou, D. Lacasa, N. Veyrie, A. Aissat, et al. 2012. Mast cells in human adipose tissue: link with morbid obesity, inflammatory status, and diabetes. The Journal of Clinical Endocrinology & Metabolism 97 (9): E1677–E1685.CrossRef Divoux, A., S. Moutel, C. Poitou, D. Lacasa, N. Veyrie, A. Aissat, et al. 2012. Mast cells in human adipose tissue: link with morbid obesity, inflammatory status, and diabetes. The Journal of Clinical Endocrinology & Metabolism 97 (9): E1677–E1685.CrossRef
79.
Zurück zum Zitat Liu, J., A. Divoux, J. Sun, J. Zhang, K. Clément, J.N. Glickman, et al. 2009. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nature Medicine 15 (8): 940–945.PubMedPubMedCentralCrossRef Liu, J., A. Divoux, J. Sun, J. Zhang, K. Clément, J.N. Glickman, et al. 2009. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nature Medicine 15 (8): 940–945.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Gutierrez, D.A., S. Muralidhar, T.B. Feyerabend, S. Herzig, and H.R. Rodewald. 2015. Hematopoietic Kit Deficiency, rather than Lack of Mast Cells, Protects Mice from Obesity and Insulin Resistance. Cell Metabolism 21 (5): 678–691.PubMedCrossRef Gutierrez, D.A., S. Muralidhar, T.B. Feyerabend, S. Herzig, and H.R. Rodewald. 2015. Hematopoietic Kit Deficiency, rather than Lack of Mast Cells, Protects Mice from Obesity and Insulin Resistance. Cell Metabolism 21 (5): 678–691.PubMedCrossRef
81.
Zurück zum Zitat Chmelař, J., A. Chatzigeorgiou, K.-J. Chung, M. Prucnal, D. Voehringer, A. Roers, et al. 2016. No Role for Mast Cells in Obesity-Related Metabolic Dysregulation. Frontiers in Immunology 7: 524.PubMedPubMedCentralCrossRef Chmelař, J., A. Chatzigeorgiou, K.-J. Chung, M. Prucnal, D. Voehringer, A. Roers, et al. 2016. No Role for Mast Cells in Obesity-Related Metabolic Dysregulation. Frontiers in Immunology 7: 524.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Einwallner, E., F.W. Kiefer, G. Di Caro, M. Orthofer, N. Witzeneder, G. Hörmann, et al. 2016. Mast cells are not associated with systemic insulin resistance. European Journal of Clinical Investigation 46 (11): 911–919.PubMedCrossRef Einwallner, E., F.W. Kiefer, G. Di Caro, M. Orthofer, N. Witzeneder, G. Hörmann, et al. 2016. Mast cells are not associated with systemic insulin resistance. European Journal of Clinical Investigation 46 (11): 911–919.PubMedCrossRef
83.
Zurück zum Zitat Bais, S., R. Kumari, Y. Prashar, and N.S. Gill. 2017. Review of various molecular targets on mast cells and its relation to obesity: A future perspective. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 11 (Suppl 2): S1001–S1007.CrossRef Bais, S., R. Kumari, Y. Prashar, and N.S. Gill. 2017. Review of various molecular targets on mast cells and its relation to obesity: A future perspective. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 11 (Suppl 2): S1001–S1007.CrossRef
84.
Zurück zum Zitat Laine, P., M. Kaartinen, A. Penttilä, P. Panula, T. Paavonen, and P.T. Kovanen. 1999. Association between myocardial infarction and the mast cells in the adventitia of the infarct-related coronary artery. Circulation 99 (3): 361–369.PubMedCrossRef Laine, P., M. Kaartinen, A. Penttilä, P. Panula, T. Paavonen, and P.T. Kovanen. 1999. Association between myocardial infarction and the mast cells in the adventitia of the infarct-related coronary artery. Circulation 99 (3): 361–369.PubMedCrossRef
85.
Zurück zum Zitat Laine, P., A. Naukkarinen, L. Heikkilä, A. Penttilä, and P.T. Kovanen. 2000. Adventitial mast cells connect with sensory nerve fibers in atherosclerotic coronary arteries. Circulation 101 (14): 1665–1669.PubMedCrossRef Laine, P., A. Naukkarinen, L. Heikkilä, A. Penttilä, and P.T. Kovanen. 2000. Adventitial mast cells connect with sensory nerve fibers in atherosclerotic coronary arteries. Circulation 101 (14): 1665–1669.PubMedCrossRef
86.
Zurück zum Zitat Elgazar-Carmon, V., A. Rudich, N. Hadad, and R. Levy. 2008. Neutrophils transiently infiltrate intra–abdominal fat early in the course of high–fat feeding. Journal of Lipid Research 49 (9): 1894–1903.PubMedCrossRef Elgazar-Carmon, V., A. Rudich, N. Hadad, and R. Levy. 2008. Neutrophils transiently infiltrate intra–abdominal fat early in the course of high–fat feeding. Journal of Lipid Research 49 (9): 1894–1903.PubMedCrossRef
87.
Zurück zum Zitat Hadad, N., O. Burgazliev, V. Elgazar-Carmon, Y. Solomonov, S. Wueest, F. Item, et al. 2013. Induction of Cytosolic Phospholipase A2α Is Required for Adipose Neutrophil Infiltration and Hepatic Insulin Resistance Early in the Course of High-Fat Feeding. Diabetes 62 (9): 3053–3063.PubMedPubMedCentralCrossRef Hadad, N., O. Burgazliev, V. Elgazar-Carmon, Y. Solomonov, S. Wueest, F. Item, et al. 2013. Induction of Cytosolic Phospholipase A2α Is Required for Adipose Neutrophil Infiltration and Hepatic Insulin Resistance Early in the Course of High-Fat Feeding. Diabetes 62 (9): 3053–3063.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Bijnen, M., T. Josefs, I. Cuijpers, C.J. Maalsen, J. van de Gaar, M. Vroomen, et al. 2017. Adipose tissue macrophages induce hepatic neutrophil recruitment and macrophage accumulation in mice. Gut 2017 (in press). Bijnen, M., T. Josefs, I. Cuijpers, C.J. Maalsen, J. van de Gaar, M. Vroomen, et al. 2017. Adipose tissue macrophages induce hepatic neutrophil recruitment and macrophage accumulation in mice. Gut 2017 (in press).
89.
Zurück zum Zitat Talukdar, S., D.Y. Oh, G. Bandyopadhyay, D. Li, J. Xu, J. McNelis, et al. 2012. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nature Medicine 18 (9): 1407–1412.PubMedPubMedCentralCrossRef Talukdar, S., D.Y. Oh, G. Bandyopadhyay, D. Li, J. Xu, J. McNelis, et al. 2012. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nature Medicine 18 (9): 1407–1412.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Mansuy-Aubert, V., Q.L. Zhou, X. Xie, Z. Gong, J.Y. Huang, A.R. Khan, et al. 2013. Imbalance between neutrophil elastase and its inhibitor α1-antitrypsin in obesity alters insulin sensitivity, inflammation, and energy expenditure. Cell Metabolism 17 (4): 534–548.PubMedPubMedCentralCrossRef Mansuy-Aubert, V., Q.L. Zhou, X. Xie, Z. Gong, J.Y. Huang, A.R. Khan, et al. 2013. Imbalance between neutrophil elastase and its inhibitor α1-antitrypsin in obesity alters insulin sensitivity, inflammation, and energy expenditure. Cell Metabolism 17 (4): 534–548.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Wang, Q., Z. Xie, W. Zhang, J. Zhou, Y. Wu, M. Zhang, et al. 2014. Myeloperoxidase Deletion Prevents High-Fat Diet–Induced Obesity and Insulin Resistance. Diabetes 63 (12): 4172–4185.PubMedPubMedCentralCrossRef Wang, Q., Z. Xie, W. Zhang, J. Zhou, Y. Wu, M. Zhang, et al. 2014. Myeloperoxidase Deletion Prevents High-Fat Diet–Induced Obesity and Insulin Resistance. Diabetes 63 (12): 4172–4185.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Tagzirt, M., D. Corseaux, L. Pasquesoone, F. Mouquet, C. Roma-Lavisse, A. Ung, et al. 2014. Alterations in Neutrophil Production and Function at an Early Stage in the High-Fructose Rat Model of Metabolic Syndrome. American Journal of Hypertension 27 (8): 1096–1104.PubMedCrossRef Tagzirt, M., D. Corseaux, L. Pasquesoone, F. Mouquet, C. Roma-Lavisse, A. Ung, et al. 2014. Alterations in Neutrophil Production and Function at an Early Stage in the High-Fructose Rat Model of Metabolic Syndrome. American Journal of Hypertension 27 (8): 1096–1104.PubMedCrossRef
93.
Zurück zum Zitat Akbas, E.M., L. Demirtas, A. Ozcicek, A. Timuroglu, E.M. Bakirci, H. Hamur, et al. 2014. Association of epicardial adipose tissue, neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio with diabetic nephropathy. International Journal of Clinical and Experimental Medicine 7 (7): 1794–1801.PubMedPubMedCentral Akbas, E.M., L. Demirtas, A. Ozcicek, A. Timuroglu, E.M. Bakirci, H. Hamur, et al. 2014. Association of epicardial adipose tissue, neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio with diabetic nephropathy. International Journal of Clinical and Experimental Medicine 7 (7): 1794–1801.PubMedPubMedCentral
94.
Zurück zum Zitat Akdag, S., H. Simsek, M. Sahin, A. Akyol, R. Duz, and N. Babat. 2015. Association of epicardial adipose tissue thickness and inflammation parameters with CHA2DS2-VASASc score in patients with nonvalvular atrial fibrillation. Therapeutics and Clinical Risk Management 11: 1675–1681.PubMedPubMedCentralCrossRef Akdag, S., H. Simsek, M. Sahin, A. Akyol, R. Duz, and N. Babat. 2015. Association of epicardial adipose tissue thickness and inflammation parameters with CHA2DS2-VASASc score in patients with nonvalvular atrial fibrillation. Therapeutics and Clinical Risk Management 11: 1675–1681.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Akbas, E.M., H. Hamur, L. Demirtas, E.M. Bakirci, A. Ozcicek, F. Ozcicek, et al. 2014. Predictors of epicardial adipose tissue in patients with type 2 diabetes mellitus. Diabetology & Metabolic Syndrome 6: 55.CrossRef Akbas, E.M., H. Hamur, L. Demirtas, E.M. Bakirci, A. Ozcicek, F. Ozcicek, et al. 2014. Predictors of epicardial adipose tissue in patients with type 2 diabetes mellitus. Diabetology & Metabolic Syndrome 6: 55.CrossRef
96.
Zurück zum Zitat Bakirci, E.M., H. Degirmenci, H. Duman, S. Inci, H. Hamur, M. Buyuklu, et al. 2015. Increased Epicardial Adipose Tissue Thickness is Associated With Angiographic Thrombus Burden in the Patients With Non-ST-Segment Elevation Myocardial Infarction. Clinical and Applied Thrombosis/Hemostasis 21 (7): 612–618.CrossRef Bakirci, E.M., H. Degirmenci, H. Duman, S. Inci, H. Hamur, M. Buyuklu, et al. 2015. Increased Epicardial Adipose Tissue Thickness is Associated With Angiographic Thrombus Burden in the Patients With Non-ST-Segment Elevation Myocardial Infarction. Clinical and Applied Thrombosis/Hemostasis 21 (7): 612–618.CrossRef
97.
Zurück zum Zitat Ozcicek, A., F. Ozcicek, G. Yildiz, A. Timuroglu, L. Demirtas, M. Buyuklu, et al. 2017. Neutrophil-to-lymphocyte ratio as a possible indicator of epicardial adipose tissue in patients undergoing hemodialysis. Archives of Medical Science 13 (1): 118–123.PubMedCrossRef Ozcicek, A., F. Ozcicek, G. Yildiz, A. Timuroglu, L. Demirtas, M. Buyuklu, et al. 2017. Neutrophil-to-lymphocyte ratio as a possible indicator of epicardial adipose tissue in patients undergoing hemodialysis. Archives of Medical Science 13 (1): 118–123.PubMedCrossRef
98.
Zurück zum Zitat Molofsky, A.B., J.C. Nussbaum, H.E. Liang, S.J. Van Dyken, L.E. Cheng, A. Mohapatra, et al. 2013. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. The Journal of Experimental Medicine 210 (3): 535–549.PubMedPubMedCentralCrossRef Molofsky, A.B., J.C. Nussbaum, H.E. Liang, S.J. Van Dyken, L.E. Cheng, A. Mohapatra, et al. 2013. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. The Journal of Experimental Medicine 210 (3): 535–549.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Qiu, Y., K.D. Nguyen, J.I. Odegaard, X. Cui, X. Tian, R.M. Locksley, et al. 2014. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157 (6): 1292–1308.PubMedPubMedCentralCrossRef Qiu, Y., K.D. Nguyen, J.I. Odegaard, X. Cui, X. Tian, R.M. Locksley, et al. 2014. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157 (6): 1292–1308.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Bolus, W.R., D.A. Gutierrez, A.J. Kennedy, E.K. Anderson-Baucum, and A.H. Hasty. 2015. CCR2 deficiency leads to increased eosinophils, alternative macrophage activation, and type 2 cytokine expression in adipose tissue. Journal of Leukocyte Biology 98 (4): 467–477.PubMedPubMedCentralCrossRef Bolus, W.R., D.A. Gutierrez, A.J. Kennedy, E.K. Anderson-Baucum, and A.H. Hasty. 2015. CCR2 deficiency leads to increased eosinophils, alternative macrophage activation, and type 2 cytokine expression in adipose tissue. Journal of Leukocyte Biology 98 (4): 467–477.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Wu, D., A.B. Molofsky, H.E. Liang, R.R. Ricardo-Gonzalez, H.A. Jouihan, J.K. Bando, et al. 2011. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332 (6026): 243–247.PubMedPubMedCentralCrossRef Wu, D., A.B. Molofsky, H.E. Liang, R.R. Ricardo-Gonzalez, H.A. Jouihan, J.K. Bando, et al. 2011. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332 (6026): 243–247.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Withers, S.B., R. Forman, S. Meza-Perez, D. Sorobetea, K. Sitnik, T. Hopwood, et al. 2017. Eosinophils are key regulators of perivascular adipose tissue and vascular functionality. Scientific Reports 7: 44571.PubMedPubMedCentralCrossRef Withers, S.B., R. Forman, S. Meza-Perez, D. Sorobetea, K. Sitnik, T. Hopwood, et al. 2017. Eosinophils are key regulators of perivascular adipose tissue and vascular functionality. Scientific Reports 7: 44571.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat O’Sullivan, T.E., M. Rapp, X. Fan, O.E. Weizman, P. Bhardwaj, N.M. Adams, et al. 2016. Adipose-Resident Group 1 Innate Lymphoid Cells Promote Obesity-Associated Insulin Resistance. Immunity 45 (2): 428–441.PubMedPubMedCentralCrossRef O’Sullivan, T.E., M. Rapp, X. Fan, O.E. Weizman, P. Bhardwaj, N.M. Adams, et al. 2016. Adipose-Resident Group 1 Innate Lymphoid Cells Promote Obesity-Associated Insulin Resistance. Immunity 45 (2): 428–441.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Artis, D., and H. Spits. 2015. The biology of innate lymphoid cells. Nature 517 (7534): 293–301.PubMedCrossRef Artis, D., and H. Spits. 2015. The biology of innate lymphoid cells. Nature 517 (7534): 293–301.PubMedCrossRef
105.
Zurück zum Zitat Boulenouar, S., X. Michelet, D. Duquette, D. Alvarez, A.E. Hogan, C. Dold, et al. 2017. Adipose Type One Innate Lymphoid Cells Regulate Macrophage Homeostasis through Targeted Cytotoxicity. Immunity 46 (2): 273–286.PubMedCrossRef Boulenouar, S., X. Michelet, D. Duquette, D. Alvarez, A.E. Hogan, C. Dold, et al. 2017. Adipose Type One Innate Lymphoid Cells Regulate Macrophage Homeostasis through Targeted Cytotoxicity. Immunity 46 (2): 273–286.PubMedCrossRef
106.
Zurück zum Zitat Newland, S.A., S. Mohanta, M. Clément, S. Taleb, J.A. Walker, M. Nus, et al. 2017. Type-2 innate lymphoid cells control the development of atherosclerosis in mice. Nature Communications 8: 15781.PubMedPubMedCentralCrossRef Newland, S.A., S. Mohanta, M. Clément, S. Taleb, J.A. Walker, M. Nus, et al. 2017. Type-2 innate lymphoid cells control the development of atherosclerosis in mice. Nature Communications 8: 15781.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Hashiguchi, M., Y. Kashiwakura, H. Kojima, A. Kobayashi, Y. Kanno, and T. Kobata. 2015. IL-33 activates eosinophils of visceral adipose tissue both directly and via innate lymphoid cells. European Journal of Immunology 45 (3): 876–885.PubMedCrossRef Hashiguchi, M., Y. Kashiwakura, H. Kojima, A. Kobayashi, Y. Kanno, and T. Kobata. 2015. IL-33 activates eosinophils of visceral adipose tissue both directly and via innate lymphoid cells. European Journal of Immunology 45 (3): 876–885.PubMedCrossRef
108.
Zurück zum Zitat Brestoff, J.R., B.S. Kim, S.A. Saenz, R.R. Stine, L.A. Monticelli, G.F. Sonnenberg, et al. 2015. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519 (7542): 242–246.PubMedCrossRef Brestoff, J.R., B.S. Kim, S.A. Saenz, R.R. Stine, L.A. Monticelli, G.F. Sonnenberg, et al. 2015. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519 (7542): 242–246.PubMedCrossRef
109.
Zurück zum Zitat Larosa, D.F., and J.S. Orange. 2008. 1. Lymphocytes. Journal of Allergy and Clinical Immunology 121 (2 Suppl): S364–S369.PubMedCrossRef Larosa, D.F., and J.S. Orange. 2008. 1. Lymphocytes. Journal of Allergy and Clinical Immunology 121 (2 Suppl): S364–S369.PubMedCrossRef
110.
Zurück zum Zitat Zhou, L., M.M. Chong, and D.R. Littman. 2009. Plasticity of CD4+ T cell lineage differentiation. Immunity 30 (5): 646–655.PubMedCrossRef Zhou, L., M.M. Chong, and D.R. Littman. 2009. Plasticity of CD4+ T cell lineage differentiation. Immunity 30 (5): 646–655.PubMedCrossRef
111.
Zurück zum Zitat Oestreich, K.J., and A.S. Weinmann. 2012. Master regulators or lineage-specifying? Changing views on CD4+ T cell transcription factors. Nature Reviews Immunology 12 (11): 799–804.PubMedPubMedCentralCrossRef Oestreich, K.J., and A.S. Weinmann. 2012. Master regulators or lineage-specifying? Changing views on CD4+ T cell transcription factors. Nature Reviews Immunology 12 (11): 799–804.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Mraz, M., and M. Haluzik. 2014. The role of adipose tissue immune cells in obesity and low-grade inflammation. Journal of Endocrinology 222 (3): R113–R127.PubMedCrossRef Mraz, M., and M. Haluzik. 2014. The role of adipose tissue immune cells in obesity and low-grade inflammation. Journal of Endocrinology 222 (3): R113–R127.PubMedCrossRef
113.
Zurück zum Zitat Zeyda, M., J. Huber, G. Prager, and T.M. Stulnig. 2011. Inflammation correlates with markers of T-cell subsets including regulatory T cells in adipose tissue from obese patients. Obesity (Silver Spring) 19 (4): 743–748.CrossRef Zeyda, M., J. Huber, G. Prager, and T.M. Stulnig. 2011. Inflammation correlates with markers of T-cell subsets including regulatory T cells in adipose tissue from obese patients. Obesity (Silver Spring) 19 (4): 743–748.CrossRef
114.
Zurück zum Zitat Fabbrini, E., M. Cella, S.A. McCartney, A. Fuchs, N.A. Abumrad, T.A. Pietka, et al. 2013. Association between specific adipose tissue CD4+ T-cell populations and insulin resistance in obese individuals. Gastroenterology 145 (2): 366–374.PubMedCrossRef Fabbrini, E., M. Cella, S.A. McCartney, A. Fuchs, N.A. Abumrad, T.A. Pietka, et al. 2013. Association between specific adipose tissue CD4+ T-cell populations and insulin resistance in obese individuals. Gastroenterology 145 (2): 366–374.PubMedCrossRef
115.
Zurück zum Zitat Wu, H., S. Ghosh, X.D. Perrard, L. Feng, G.E. Garcia, J.L. Perrard, et al. 2007. T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation 115 (8): 1029–1038.PubMedCrossRef Wu, H., S. Ghosh, X.D. Perrard, L. Feng, G.E. Garcia, J.L. Perrard, et al. 2007. T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation 115 (8): 1029–1038.PubMedCrossRef
116.
Zurück zum Zitat Feuerer, M., L. Herrero, D. Cipolletta, A. Naaz, J. Wong, A. Nayer, et al. 2009. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nature Medicine 15 (8): 930–939.PubMedPubMedCentralCrossRef Feuerer, M., L. Herrero, D. Cipolletta, A. Naaz, J. Wong, A. Nayer, et al. 2009. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nature Medicine 15 (8): 930–939.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Winer, S., Y. Chan, G. Paltser, D. Truong, H. Tsui, J. Bahrami, et al. 2009. Normalization of Obesity-Associated Insulin Resistance through Immunotherapy: CD4+ T Cells Control Glucose Homeostasis. Nature Medicine 15 (8): 921–929.PubMedPubMedCentralCrossRef Winer, S., Y. Chan, G. Paltser, D. Truong, H. Tsui, J. Bahrami, et al. 2009. Normalization of Obesity-Associated Insulin Resistance through Immunotherapy: CD4+ T Cells Control Glucose Homeostasis. Nature Medicine 15 (8): 921–929.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Kintscher, U., M. Hartge, K. Hess, A. Foryst-Ludwig, M. Clemenz, M. Wabitsch, et al. 2008. T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arteriosclerosis, Thrombosis, and Vascular Biology 28 (7): 1304–1310.PubMedCrossRef Kintscher, U., M. Hartge, K. Hess, A. Foryst-Ludwig, M. Clemenz, M. Wabitsch, et al. 2008. T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arteriosclerosis, Thrombosis, and Vascular Biology 28 (7): 1304–1310.PubMedCrossRef
119.
Zurück zum Zitat Duffaut, C., A. Zakaroff-Girard, V. Bourlier, P. Decaunes, M. Maumus, P. Chiotasso, et al. 2009. Interplay between human adipocytes and T lymphocytes in obesity: CCL20 as an adipochemokine and T lymphocytes as lipogenic modulators. Arteriosclerosis, Thrombosis, and Vascular Biology 29 (10): 1608–1614.PubMedCrossRef Duffaut, C., A. Zakaroff-Girard, V. Bourlier, P. Decaunes, M. Maumus, P. Chiotasso, et al. 2009. Interplay between human adipocytes and T lymphocytes in obesity: CCL20 as an adipochemokine and T lymphocytes as lipogenic modulators. Arteriosclerosis, Thrombosis, and Vascular Biology 29 (10): 1608–1614.PubMedCrossRef
120.
Zurück zum Zitat Rocha, V.Z., E.J. Folco, G. Sukhova, K. Shimizu, I. Gotsman, A.H. Vernon, et al. 2008. Interferon-gamma, a Th1 cytokine, regulates fat inflammation: a role for adaptive immunity in obesity. Circulation Research 103 (5): 467–476.PubMedPubMedCentralCrossRef Rocha, V.Z., E.J. Folco, G. Sukhova, K. Shimizu, I. Gotsman, A.H. Vernon, et al. 2008. Interferon-gamma, a Th1 cytokine, regulates fat inflammation: a role for adaptive immunity in obesity. Circulation Research 103 (5): 467–476.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Nishimura, S., I. Manabe, M. Nagasaki, K. Eto, H. Yamashita, M. Ohsugi, et al. 2009. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nature Medicine 15 (8): 914–920.PubMedCrossRef Nishimura, S., I. Manabe, M. Nagasaki, K. Eto, H. Yamashita, M. Ohsugi, et al. 2009. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nature Medicine 15 (8): 914–920.PubMedCrossRef
122.
Zurück zum Zitat Wolf, D., F. Jehle, N.A. Michel, E.N. Bukosza, J. Rivera, Y.C. Chen, et al. 2014. Coinhibitory suppression of T cell activation by CD40 protects against obesity and adipose tissue inflammation in mice. Circulation 129 (23): 2414–2425.PubMedCrossRef Wolf, D., F. Jehle, N.A. Michel, E.N. Bukosza, J. Rivera, Y.C. Chen, et al. 2014. Coinhibitory suppression of T cell activation by CD40 protects against obesity and adipose tissue inflammation in mice. Circulation 129 (23): 2414–2425.PubMedCrossRef
124.
Zurück zum Zitat McLaughlin, T., L.F. Liu, C. Lamendola, L. Shen, J. Morton, H. Rivas, et al. 2014. T-cell profile in adipose tissue is associated with insulin resistance and systemic inflammation in humans. Arteriosclerosis, Thrombosis, and Vascular Biology 34 (12): 2637–2643.PubMedPubMedCentralCrossRef McLaughlin, T., L.F. Liu, C. Lamendola, L. Shen, J. Morton, H. Rivas, et al. 2014. T-cell profile in adipose tissue is associated with insulin resistance and systemic inflammation in humans. Arteriosclerosis, Thrombosis, and Vascular Biology 34 (12): 2637–2643.PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Shin, J.H., D.W. Shin, and M. Noh. 2009. Interleukin-17A inhibits adipocyte differentiation in human mesenchymal stem cells and regulates pro-inflammatory responses in adipocytes. Biochemical Pharmacology 77 (12): 1835–1844.PubMedCrossRef Shin, J.H., D.W. Shin, and M. Noh. 2009. Interleukin-17A inhibits adipocyte differentiation in human mesenchymal stem cells and regulates pro-inflammatory responses in adipocytes. Biochemical Pharmacology 77 (12): 1835–1844.PubMedCrossRef
126.
Zurück zum Zitat Deiuliis, J., Z. Shah, N. Shah, B. Needleman, D. Mikami, V. Narula, et al. 2011. Visceral adipose inflammation in obesity is associated with critical alterations in tregulatory cell numbers. PLoS ONE 6 (1): e16376.PubMedPubMedCentralCrossRef Deiuliis, J., Z. Shah, N. Shah, B. Needleman, D. Mikami, V. Narula, et al. 2011. Visceral adipose inflammation in obesity is associated with critical alterations in tregulatory cell numbers. PLoS ONE 6 (1): e16376.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Pettersson, U.S., T.B. Waldén, P.O. Carlsson, L. Jansson, and M. Phillipson. 2012. Female mice are protected against high-fat diet induced metabolic syndrome and increase the regulatory T cell population in adipose tissue. PLoS ONE 7 (9): e46057.PubMedPubMedCentralCrossRef Pettersson, U.S., T.B. Waldén, P.O. Carlsson, L. Jansson, and M. Phillipson. 2012. Female mice are protected against high-fat diet induced metabolic syndrome and increase the regulatory T cell population in adipose tissue. PLoS ONE 7 (9): e46057.PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Hirata, Y., H. Kurobe, M. Akaike, F. Chikugo, T. Hori, Y. Bando, et al. 2011. Enhanced inflammation in epicardial fat in patients with coronary artery disease. International Heart Journal 52 (3): 139–142.PubMedCrossRef Hirata, Y., H. Kurobe, M. Akaike, F. Chikugo, T. Hori, Y. Bando, et al. 2011. Enhanced inflammation in epicardial fat in patients with coronary artery disease. International Heart Journal 52 (3): 139–142.PubMedCrossRef
129.
Zurück zum Zitat Miksztowicz, V., C. Morales, M. Barchuk, G. López, R. Póveda, R. Gelpi, et al. 2017. Metalloproteinase 2 and 9 Activity Increase in Epicardial Adipose Tissue of Patients with Coronary Artery Disease. Current Vascular Pharmacology 15 (2): 135–143.PubMedCrossRef Miksztowicz, V., C. Morales, M. Barchuk, G. López, R. Póveda, R. Gelpi, et al. 2017. Metalloproteinase 2 and 9 Activity Increase in Epicardial Adipose Tissue of Patients with Coronary Artery Disease. Current Vascular Pharmacology 15 (2): 135–143.PubMedCrossRef
130.
Zurück zum Zitat Winer, D.A., S. Winer, L. Shen, P.P. Wadia, J. Yantha, G. Paltser, et al. 2011. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nature Medicine 17 (5): 610–617.PubMedPubMedCentralCrossRef Winer, D.A., S. Winer, L. Shen, P.P. Wadia, J. Yantha, G. Paltser, et al. 2011. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nature Medicine 17 (5): 610–617.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Shen, L., M.H. Chng, M.N. Alonso, R. Yuan, D.A. Winer, and E.G. Engleman. 2015. B-1a lymphocytes attenuate insulin resistance. Diabetes 64 (2): 593–603.PubMedCrossRef Shen, L., M.H. Chng, M.N. Alonso, R. Yuan, D.A. Winer, and E.G. Engleman. 2015. B-1a lymphocytes attenuate insulin resistance. Diabetes 64 (2): 593–603.PubMedCrossRef
132.
Zurück zum Zitat Harmon, D.B., P. Srikakulapu, J.L. Kaplan, S.N. Oldham, C. McSkimming, J.C. Garmey, et al. 2016. Protective Role for B-1b B Cells and IgM in Obesity-Associated Inflammation, Glucose Intolerance. and Insulin Resistance. Arteriosclerosis, Thrombosis, and Vascular Biology 36 (4): 682–691.PubMedCrossRef Harmon, D.B., P. Srikakulapu, J.L. Kaplan, S.N. Oldham, C. McSkimming, J.C. Garmey, et al. 2016. Protective Role for B-1b B Cells and IgM in Obesity-Associated Inflammation, Glucose Intolerance. and Insulin Resistance. Arteriosclerosis, Thrombosis, and Vascular Biology 36 (4): 682–691.PubMedCrossRef
133.
Zurück zum Zitat Nishimura, S., I. Manabe, S. Takaki, M. Nagasaki, M. Otsu, H. Yamashita, et al. 2013. Adipose Natural Regulatory B Cells Negatively Control Adipose Tissue Inflammation. Cell Metabolism 18 (5): 759–766.CrossRefPubMed Nishimura, S., I. Manabe, S. Takaki, M. Nagasaki, M. Otsu, H. Yamashita, et al. 2013. Adipose Natural Regulatory B Cells Negatively Control Adipose Tissue Inflammation. Cell Metabolism 18 (5): 759–766.CrossRefPubMed
134.
Zurück zum Zitat DeFuria, J., A.C. Belkina, M. Jagannathan-Bogdan, J. Snyder-Cappione, J.D. Carr, Y.R. Nersesova, et al. 2013. B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile. Proceedings of the National Academy of Sciences of the United States of America 110 (13): 5133–5138.PubMedPubMedCentralCrossRef DeFuria, J., A.C. Belkina, M. Jagannathan-Bogdan, J. Snyder-Cappione, J.D. Carr, Y.R. Nersesova, et al. 2013. B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile. Proceedings of the National Academy of Sciences of the United States of America 110 (13): 5133–5138.PubMedPubMedCentralCrossRef
135.
Zurück zum Zitat Winer, D.A., S. Winer, L. Shen, M.H. Chng, and E.G. Engleman. 2012. B lymphocytes as emerging mediators of insulin resistance. International Journal of Obesity Supplements 2 (Suppl 1): S4–S7.PubMedPubMedCentralCrossRef Winer, D.A., S. Winer, L. Shen, M.H. Chng, and E.G. Engleman. 2012. B lymphocytes as emerging mediators of insulin resistance. International Journal of Obesity Supplements 2 (Suppl 1): S4–S7.PubMedPubMedCentralCrossRef
136.
Zurück zum Zitat Frasca, D., A. Diaz, M. Romero, T. Vazquez, and B.B. Blomberg. 2017. Obesity induces pro-inflammatory B cells and impairs B cell function in old mice. Mechanisms of Ageing and Development 162: 91–99.PubMedPubMedCentralCrossRef Frasca, D., A. Diaz, M. Romero, T. Vazquez, and B.B. Blomberg. 2017. Obesity induces pro-inflammatory B cells and impairs B cell function in old mice. Mechanisms of Ageing and Development 162: 91–99.PubMedPubMedCentralCrossRef
137.
Zurück zum Zitat Srikakulapu, P., A. Upadhye, S.M. Rosenfeld, M.A. Marshall, C. McSkimming, A.W. Hickman, et al. 2017. Perivascular Adipose Tissue Harbors Atheroprotective IgM-Producing B Cells. Frontiers in Physiology 8: 719.PubMedPubMedCentralCrossRef Srikakulapu, P., A. Upadhye, S.M. Rosenfeld, M.A. Marshall, C. McSkimming, A.W. Hickman, et al. 2017. Perivascular Adipose Tissue Harbors Atheroprotective IgM-Producing B Cells. Frontiers in Physiology 8: 719.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Mazurek, T., L. Zhang, A. Zalewski, J.D. Mannion, J.T. Diehl, H. Arafat, et al. 2003. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 108 (20): 2460–2466.PubMedCrossRef Mazurek, T., L. Zhang, A. Zalewski, J.D. Mannion, J.T. Diehl, H. Arafat, et al. 2003. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 108 (20): 2460–2466.PubMedCrossRef
139.
Zurück zum Zitat Martyniak, K., and M.M. Masternak. 2017. Changes in adipose tissue cellular composition during obesity and aging as a cause of metabolic dysregulation. Experimental Gerontology 94: 59–63.PubMedCrossRef Martyniak, K., and M.M. Masternak. 2017. Changes in adipose tissue cellular composition during obesity and aging as a cause of metabolic dysregulation. Experimental Gerontology 94: 59–63.PubMedCrossRef
Metadaten
Titel
Microenvironment of Immune Cells Within the Visceral Adipose Tissue Sensu Lato vs. Epicardial Adipose Tissue: What Do We Know?
verfasst von
Martin Klein
Ivan Varga
Publikationsdatum
30.05.2018
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 4/2018
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-0798-3

Weitere Artikel der Ausgabe 4/2018

Inflammation 4/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.