Skip to main content
Erschienen in: Journal of Bone and Mineral Metabolism 3/2020

05.12.2019 | Original Article

Mineralization of cortical bone during maturation and growth in rabbits

verfasst von: Elin Törnquist, Hanna Isaksson, Mikael J. Turunen

Erschienen in: Journal of Bone and Mineral Metabolism | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Abstract

Introduction

The composite nature of bone as a material governs its structure and mechanical behavior. How the collagenous matrix mineralizes, in terms of both mineral deposition and structure of the mineral crystals, is highly interesting when trying to elucidate the complex structural changes that occur during bone growth and maturation. We have previously looked at mineral deposition and structural evolution of the collagenous matrix, linking both to changes in mechanics. The purpose of this study was to provide specific information on changes in crystal size and organization as a function of growth and maturation.

Materials and Methods

Using micro-computed tomography (µCT) and micro-focused scanning small-angle X-ray scattering (SAXS) we investigated cortical bone in two orthogonal directions relative to the long axis of the humeri of New Zealand White rabbits spanning from new-born to 6-months of age. We also investigated the changes with tissue age by looking at radial profiles of osteonal structures in the 6-months old rabbits. The findings were compared to our previous compositional, structural and mechanical data on the same sample cohort.

Results

µCT showed a continuous mineral deposition up until 3-months of age, whilst the SAXS data showed an increase in both crystal thickness and degree of orientation up until 6-months of age. The osteonal profiles showed no statistically significant changes in crystal thickness.

Conclusions

Comparison to previously collected mechanical data suggests that changes are not only explained by amount of mineral in the tissue but also by the crystal dimensions.
Literatur
1.
Zurück zum Zitat Stock SR (2015) The mineral–collagen interface in bone. Calcif Tissue Int 97:262–280CrossRef Stock SR (2015) The mineral–collagen interface in bone. Calcif Tissue Int 97:262–280CrossRef
2.
Zurück zum Zitat Bala Y, Farlay D, Boivin G (2013) Bone mineralization: from tissue to crystal in normal and pathological contexts. Osteoporos Int 24:2153–2166CrossRef Bala Y, Farlay D, Boivin G (2013) Bone mineralization: from tissue to crystal in normal and pathological contexts. Osteoporos Int 24:2153–2166CrossRef
3.
Zurück zum Zitat Fratzl P, Schreiber S, Boyde A (1996) Characterization of bone mineral crystals in horse radius by small-angle X-ray scattering. Calcif Tissue Int 58:341–346CrossRef Fratzl P, Schreiber S, Boyde A (1996) Characterization of bone mineral crystals in horse radius by small-angle X-ray scattering. Calcif Tissue Int 58:341–346CrossRef
4.
Zurück zum Zitat Reznikov N, Bilton M, Lari L, Stevens MM, Kröger R (2018) Fractal-like hierarchical organization of bone begins at the nanoscale. Science 360:6388CrossRef Reznikov N, Bilton M, Lari L, Stevens MM, Kröger R (2018) Fractal-like hierarchical organization of bone begins at the nanoscale. Science 360:6388CrossRef
5.
Zurück zum Zitat Burger C et al (2008) Lateral packing of mineral crystals in bone collagen fibrils. Biophys J 95:1985–1992CrossRef Burger C et al (2008) Lateral packing of mineral crystals in bone collagen fibrils. Biophys J 95:1985–1992CrossRef
6.
Zurück zum Zitat Døvling Kaspersen J et al (2016) Small-angle X-ray scattering demonstrates similar nanostructure in cortical bone from young adult animals of different species. Calcif Tissue Int 99:76–87CrossRef Døvling Kaspersen J et al (2016) Small-angle X-ray scattering demonstrates similar nanostructure in cortical bone from young adult animals of different species. Calcif Tissue Int 99:76–87CrossRef
7.
Zurück zum Zitat Lees S (1979) A model for the distribution of HAP crystallites in bone-an hypothesis. Calcif Tissue Int 27:53–56CrossRef Lees S (1979) A model for the distribution of HAP crystallites in bone-an hypothesis. Calcif Tissue Int 27:53–56CrossRef
8.
Zurück zum Zitat Danilchenko S, Kalinkevich A, Zhovner M, Kuznetsov V, Li H, Wang J (2019) Anisotropic aspects of solubility behavior in the demineralization of cortical bone revealed by XRD analysis. J Biol Phys 45:77–88CrossRef Danilchenko S, Kalinkevich A, Zhovner M, Kuznetsov V, Li H, Wang J (2019) Anisotropic aspects of solubility behavior in the demineralization of cortical bone revealed by XRD analysis. J Biol Phys 45:77–88CrossRef
9.
Zurück zum Zitat Rindby A, Voglis P, Engström P (1998) Microdiffraction studies of bone tissues using synchrotron radiation. Biomaterials 19:2083–2090CrossRef Rindby A, Voglis P, Engström P (1998) Microdiffraction studies of bone tissues using synchrotron radiation. Biomaterials 19:2083–2090CrossRef
10.
Zurück zum Zitat Fuchs RK et al (2008) In situ examination of the time-course for secondary mineralization of Haversian bone using synchrotron Fourier transform infrared microspectroscopy. Matrix Biol 27:34–41CrossRef Fuchs RK et al (2008) In situ examination of the time-course for secondary mineralization of Haversian bone using synchrotron Fourier transform infrared microspectroscopy. Matrix Biol 27:34–41CrossRef
11.
Zurück zum Zitat Reznikov N, Shahar R, Weiner S (2014) Bone hierarchical structure in three dimensions. Acta Biomater 10:3815–3826CrossRef Reznikov N, Shahar R, Weiner S (2014) Bone hierarchical structure in three dimensions. Acta Biomater 10:3815–3826CrossRef
12.
Zurück zum Zitat Amprino R, Engstrom A (1952) Studies on X-ray absorption and diffraction of bone tissue. Acta Anat. (Basel) 15:1–22CrossRef Amprino R, Engstrom A (1952) Studies on X-ray absorption and diffraction of bone tissue. Acta Anat. (Basel) 15:1–22CrossRef
13.
Zurück zum Zitat Turunen MJ, Saarakkala S, Rieppo L, Helminen HJ, Jurvelin JS, Isaksson H (2011) Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone. Appl Spectrosc 65:595–603CrossRef Turunen MJ, Saarakkala S, Rieppo L, Helminen HJ, Jurvelin JS, Isaksson H (2011) Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone. Appl Spectrosc 65:595–603CrossRef
14.
Zurück zum Zitat Turunen MJ, Saarakkala S, Helminen HJ, Jurvelin JS, Isaksson H (2011) Age-related changes in organization and content of the collagen matrix in rabbit cortical bone. J Orthop Res 30:435–442CrossRef Turunen MJ, Saarakkala S, Helminen HJ, Jurvelin JS, Isaksson H (2011) Age-related changes in organization and content of the collagen matrix in rabbit cortical bone. J Orthop Res 30:435–442CrossRef
15.
Zurück zum Zitat Fratzl P, Fratzl-Zelman N, Klaushofer K, Vogl G, Koller K (1991) Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering. Calcif Tissue Int 48:407–413CrossRef Fratzl P, Fratzl-Zelman N, Klaushofer K, Vogl G, Koller K (1991) Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering. Calcif Tissue Int 48:407–413CrossRef
16.
Zurück zum Zitat Legros R, Balmain N, Bonel G (1987) Age-related changes in mineral of rat and bovine cortical bone. Calcif Tissue Int 41:137–144CrossRef Legros R, Balmain N, Bonel G (1987) Age-related changes in mineral of rat and bovine cortical bone. Calcif Tissue Int 41:137–144CrossRef
17.
Zurück zum Zitat Paschalis EP, DiCarlo E, Betts F, Sherman P, Mendelsohn R, Boskey AL (1996) FTIR microspectroscopic analysis of human osteonal bone. Calcif Tissue Int 61:480–486CrossRef Paschalis EP, DiCarlo E, Betts F, Sherman P, Mendelsohn R, Boskey AL (1996) FTIR microspectroscopic analysis of human osteonal bone. Calcif Tissue Int 61:480–486CrossRef
18.
Zurück zum Zitat Mendelsohn R, Paschalis EP, Boskey AL (1999) Infrared spectroscopy, microscopy, and microscopic imaging of mineralizing tissues: spectra-structure correlations from human iliac crest biopsies. J Biomed Opt 4:14–21CrossRef Mendelsohn R, Paschalis EP, Boskey AL (1999) Infrared spectroscopy, microscopy, and microscopic imaging of mineralizing tissues: spectra-structure correlations from human iliac crest biopsies. J Biomed Opt 4:14–21CrossRef
19.
Zurück zum Zitat Gourion-Arsiquaud S et al (2009) Spatial variation in osteonal bone properties relative to tissue and animal age. J Bone Miner Res 24:1271–1281CrossRef Gourion-Arsiquaud S et al (2009) Spatial variation in osteonal bone properties relative to tissue and animal age. J Bone Miner Res 24:1271–1281CrossRef
20.
Zurück zum Zitat Crofts RD, Boyce TM, Bloebaum RD (1994) Aging changes in osteon mineralization in the human femoral neck. Bone 15:147–152CrossRef Crofts RD, Boyce TM, Bloebaum RD (1994) Aging changes in osteon mineralization in the human femoral neck. Bone 15:147–152CrossRef
21.
Zurück zum Zitat Burket J, Gourion-Arsiquaud S, Havill LM, Baker SP, Boskey AL, van der Meulen MCH (2011) Microstructure and nanomechanical properties in osteons relate to tissue and animal age. J Biomech 44:277–284CrossRef Burket J, Gourion-Arsiquaud S, Havill LM, Baker SP, Boskey AL, van der Meulen MCH (2011) Microstructure and nanomechanical properties in osteons relate to tissue and animal age. J Biomech 44:277–284CrossRef
22.
Zurück zum Zitat Turunen MJ et al (2016) Bone mineral crystal size and organization vary across mature rat bone cortex. J Struct Biol 195:337–344CrossRef Turunen MJ et al (2016) Bone mineral crystal size and organization vary across mature rat bone cortex. J Struct Biol 195:337–344CrossRef
23.
Zurück zum Zitat Isaksson H et al (2010) Collagen and mineral deposition in rabbit cortical bone during maturation and growth: effects on tissue properties. J Orthop Res 28:1626–1633CrossRef Isaksson H et al (2010) Collagen and mineral deposition in rabbit cortical bone during maturation and growth: effects on tissue properties. J Orthop Res 28:1626–1633CrossRef
24.
Zurück zum Zitat Isaksson H, Malkiewicz M, Nowak R, Helminen HJ, Jurvelin JS (2010) Rabbit cortical bone tissue increases its elastic stiffness but becomes less viscoelastic with age. Bone 47:1030–1038CrossRef Isaksson H, Malkiewicz M, Nowak R, Helminen HJ, Jurvelin JS (2010) Rabbit cortical bone tissue increases its elastic stiffness but becomes less viscoelastic with age. Bone 47:1030–1038CrossRef
25.
Zurück zum Zitat Bunk O et al (2009) Multimodal X-ray scatter imaging. New J Phys 11:123016CrossRef Bunk O et al (2009) Multimodal X-ray scatter imaging. New J Phys 11:123016CrossRef
26.
Zurück zum Zitat Henrich B et al (2009) PILATUS: a single photon counting pixel detector for X-ray applications. Nucl Instruments Methods Phys Res Sect A 607:247–249CrossRef Henrich B et al (2009) PILATUS: a single photon counting pixel detector for X-ray applications. Nucl Instruments Methods Phys Res Sect A 607:247–249CrossRef
27.
Zurück zum Zitat Turunen MJ et al (2014) Evaluation of composition and mineral structure of callus tissue in rat femoral fracture. J Biomed Opt 19:25003CrossRef Turunen MJ et al (2014) Evaluation of composition and mineral structure of callus tissue in rat femoral fracture. J Biomed Opt 19:25003CrossRef
28.
Zurück zum Zitat Bünger MH et al (2010) Strontium and bone nanostructure in normal and ovariectomized rats investigated by scanning small-angle X-ray scattering. Calcif Tissue Int 86:294–306CrossRef Bünger MH et al (2010) Strontium and bone nanostructure in normal and ovariectomized rats investigated by scanning small-angle X-ray scattering. Calcif Tissue Int 86:294–306CrossRef
29.
Zurück zum Zitat Donnelly E, Boskey AL, Baker SP, Van Der Meulen MCH (2010) Effects of tissue age on bone tissue material composition and nanomechanical properties in the rat cortex. J Biomed Mater Res Part A 92:1048–1056 Donnelly E, Boskey AL, Baker SP, Van Der Meulen MCH (2010) Effects of tissue age on bone tissue material composition and nanomechanical properties in the rat cortex. J Biomed Mater Res Part A 92:1048–1056
30.
Zurück zum Zitat Pauw BR (2013) Everything SAXS: small-angle scattering pattern collection and correction. J Phys Condens Matter 25:239501CrossRef Pauw BR (2013) Everything SAXS: small-angle scattering pattern collection and correction. J Phys Condens Matter 25:239501CrossRef
31.
Zurück zum Zitat Fratzl P, Schreiber S, Klaushofer K (1996) Bone mineralization as studied by small-angle X-ray scattering. Connect Tissue Res 34:247–254CrossRef Fratzl P, Schreiber S, Klaushofer K (1996) Bone mineralization as studied by small-angle X-ray scattering. Connect Tissue Res 34:247–254CrossRef
Metadaten
Titel
Mineralization of cortical bone during maturation and growth in rabbits
verfasst von
Elin Törnquist
Hanna Isaksson
Mikael J. Turunen
Publikationsdatum
05.12.2019
Verlag
Springer Singapore
Erschienen in
Journal of Bone and Mineral Metabolism / Ausgabe 3/2020
Print ISSN: 0914-8779
Elektronische ISSN: 1435-5604
DOI
https://doi.org/10.1007/s00774-019-01068-y

Weitere Artikel der Ausgabe 3/2020

Journal of Bone and Mineral Metabolism 3/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.