Skip to main content
Erschienen in: Tumor Biology 10/2016

28.07.2016 | Review

miRNA-regulated cancer stem cells: understanding the property and the role of miRNA in carcinogenesis

verfasst von: Chiranjib Chakraborty, Kok-Yong Chin, Srijit Das

Erschienen in: Tumor Biology | Ausgabe 10/2016

Einloggen, um Zugang zu erhalten

Abstract

Over the last few years, microRNAs (miRNA)-controlled cancer stem cells have drawn enormous attention. Cancer stem cells are a small population of tumor cells that possess the stem cell property of self-renewal. Recent data shows that miRNA regulates this small population of stem cells. In the present review, we explained different characteristics of cancer stem cells as well as miRNA regulation of self-renewal and differentiation in cancer stem cells. We also described the migration and tumor formation. Finally, we described the different miRNAs that regulate various types of cancer stem cells, such as prostate cancer stem cells, head and neck cancer stem cells, breast cancer stem cells, colorectal cancer stem cells, lung cancer stem cells, gastric cancer stem cells, pancreatic cancer stem cells, etc. Extensive research is needed in order to employ miRNA-based therapeutics to control cancer stem cell population in various cancers in the future.
Literatur
1.
Zurück zum Zitat Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM. Cancer stem cells—perspectives on current status and future directions: ACCR workshop on cancer stem cells. Cancer Res. 2006;66(19):9339–44.CrossRefPubMed Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM. Cancer stem cells—perspectives on current status and future directions: ACCR workshop on cancer stem cells. Cancer Res. 2006;66(19):9339–44.CrossRefPubMed
3.
Zurück zum Zitat Sell S, Pierce GB. Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Investig. 1994;70(1):6–22.PubMed Sell S, Pierce GB. Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Investig. 1994;70(1):6–22.PubMed
4.
Zurück zum Zitat Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003;3(12):895–902.CrossRefPubMed Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003;3(12):895–902.CrossRefPubMed
6.
Zurück zum Zitat Han L, Shi S, Gong T, Zhang Z, Sun X. Cancer stem cells: therapeutic implications and perspectives in cancer therapy. Acta Pharm Sin B. 2013;3(2):65–75.CrossRef Han L, Shi S, Gong T, Zhang Z, Sun X. Cancer stem cells: therapeutic implications and perspectives in cancer therapy. Acta Pharm Sin B. 2013;3(2):65–75.CrossRef
7.
8.
Zurück zum Zitat Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.CrossRefPubMed Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.CrossRefPubMed
9.
Zurück zum Zitat Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med. 2012;4(3):143–59.CrossRefPubMedPubMedCentral Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med. 2012;4(3):143–59.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Chakraborty C, George Priya Doss C, Bandyopadhyay S. miRNAs in insulin resistance and diabetes-associated pancreatic cancer: the ‘minute and miracle’ molecule moving as a monitor in the ‘genomic galaxy’. Curr Drug Targets. 2013;14(10):1110–7.CrossRefPubMed Chakraborty C, George Priya Doss C, Bandyopadhyay S. miRNAs in insulin resistance and diabetes-associated pancreatic cancer: the ‘minute and miracle’ molecule moving as a monitor in the ‘genomic galaxy’. Curr Drug Targets. 2013;14(10):1110–7.CrossRefPubMed
11.
Zurück zum Zitat Carè A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Høydal M, Autore C, Russo MA, Dorn GW 2nd, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13(5):613–8.CrossRefPubMed Carè A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Høydal M, Autore C, Russo MA, Dorn GW 2nd, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13(5):613–8.CrossRefPubMed
12.
Zurück zum Zitat Mishima Y, Stahlhut C, Giraldez AJ. miR-1-2 gets to the heart of the matter. Cell. 2007;129(2):247–9.CrossRefPubMed Mishima Y, Stahlhut C, Giraldez AJ. miR-1-2 gets to the heart of the matter. Cell. 2007;129(2):247–9.CrossRefPubMed
13.
Zurück zum Zitat Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med. 2007;13(4):486–91.CrossRefPubMed Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med. 2007;13(4):486–91.CrossRefPubMed
14.
Zurück zum Zitat Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ, Srivastava D. Dysregulation of cardiogenesis, cardiac conduction, and in mice lacking miRNA-1-2. Cell. 2007;129(2):303–17.CrossRefPubMed Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ, Srivastava D. Dysregulation of cardiogenesis, cardiac conduction, and in mice lacking miRNA-1-2. Cell. 2007;129(2):303–17.CrossRefPubMed
15.
Zurück zum Zitat Naraba H, Iwai N. Assessment of the microRNA system in salt sensitive hypertension. Hypertens Res. 2005;28(10):819–26.CrossRefPubMed Naraba H, Iwai N. Assessment of the microRNA system in salt sensitive hypertension. Hypertens Res. 2005;28(10):819–26.CrossRefPubMed
16.
Zurück zum Zitat Chakraborty C, Doss CG, Bandyopadhyay S, Agoramoorthy G. Influence of miRNA in insulin signaling pathway and insulin resistance: micro-molecules with a major role in type-2 diabetes. Wiley Interdiscip Rev RNA. 2014;5(5):697–712.PubMed Chakraborty C, Doss CG, Bandyopadhyay S, Agoramoorthy G. Influence of miRNA in insulin signaling pathway and insulin resistance: micro-molecules with a major role in type-2 diabetes. Wiley Interdiscip Rev RNA. 2014;5(5):697–712.PubMed
17.
Zurück zum Zitat Huang J, Wang F, Argyris E, Chen K, Liang Z, Tian H, Huang W, Squires K, Verlinghieri G, Zhang H. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4 T lymphocytes. Nat Med. 2007;13(10):1241–7.CrossRefPubMed Huang J, Wang F, Argyris E, Chen K, Liang Z, Tian H, Huang W, Squires K, Verlinghieri G, Zhang H. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4 T lymphocytes. Nat Med. 2007;13(10):1241–7.CrossRefPubMed
18.
Zurück zum Zitat Knudson Jr AG, Strong LC, Anderson DE. Heredity and cancer in man. Prog Med Genet. 1973;9:113–58.PubMed Knudson Jr AG, Strong LC, Anderson DE. Heredity and cancer in man. Prog Med Genet. 1973;9:113–58.PubMed
19.
Zurück zum Zitat Bhatia M, Wang JC, Kapp U, Bonnet D, Dick JE. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci U S A. 1997;94:5320–5.CrossRefPubMedPubMedCentral Bhatia M, Wang JC, Kapp U, Bonnet D, Dick JE. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci U S A. 1997;94:5320–5.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Morrison SJ, Qian D, Jerebek L, Thiel BA, Park I-K, Ford PS, Kiel MJ, Schork NJ, Weissman IL, Clarke MF. A genetic determinant that specifically regulates the frequency of hematopoietic stem cells. J Immunol. 2002;168:635–42.CrossRefPubMed Morrison SJ, Qian D, Jerebek L, Thiel BA, Park I-K, Ford PS, Kiel MJ, Schork NJ, Weissman IL, Clarke MF. A genetic determinant that specifically regulates the frequency of hematopoietic stem cells. J Immunol. 2002;168:635–42.CrossRefPubMed
21.
Zurück zum Zitat Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet. 2006;7:21–33.CrossRefPubMed Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet. 2006;7:21–33.CrossRefPubMed
22.
Zurück zum Zitat Nowell PC. The clonal nature of neoplasia. Cancer Cells. 1989;1:29–30.PubMed Nowell PC. The clonal nature of neoplasia. Cancer Cells. 1989;1:29–30.PubMed
23.
Zurück zum Zitat Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.CrossRefPubMed Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.CrossRefPubMed
24.
Zurück zum Zitat Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science. 1977;197:461–3.CrossRefPubMed Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science. 1977;197:461–3.CrossRefPubMed
25.
Zurück zum Zitat Schmid M, Haaf T, Grunert D. 5-Azacytidineinduced undercondensations in human chromosomes. Hum Genet. 1984;67:257–63.CrossRefPubMed Schmid M, Haaf T, Grunert D. 5-Azacytidineinduced undercondensations in human chromosomes. Hum Genet. 1984;67:257–63.CrossRefPubMed
26.
Zurück zum Zitat Pereira DS et al. Retroviral transduction of TLS-ERG initiates a leukemogenic program in normal human hematopoietic cells. Proc Natl Acad Sci U S A. 1998;95:8239–44.CrossRefPubMedPubMedCentral Pereira DS et al. Retroviral transduction of TLS-ERG initiates a leukemogenic program in normal human hematopoietic cells. Proc Natl Acad Sci U S A. 1998;95:8239–44.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Kelly LM, Gilliland DG. Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet. 2002;3:179–98.CrossRefPubMed Kelly LM, Gilliland DG. Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet. 2002;3:179–98.CrossRefPubMed
28.
Zurück zum Zitat Blair A, Hogge DE, Ailles LE, Lansdorp PM, Sutherland HJ. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood. 1997;89:3104–12.PubMed Blair A, Hogge DE, Ailles LE, Lansdorp PM, Sutherland HJ. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood. 1997;89:3104–12.PubMed
29.
Zurück zum Zitat Jordan CT, Upchurch D, Szilvassy SJ, et al. The interleukin-3 receptor α chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia. 2000;14:1777–84.CrossRefPubMed Jordan CT, Upchurch D, Szilvassy SJ, et al. The interleukin-3 receptor α chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia. 2000;14:1777–84.CrossRefPubMed
30.
Zurück zum Zitat Dittmar T, Nagler C, Schwitalla S, Reith G, Niggemann B, Zänker KS. Recurrence cancer stem cells—made by cell fusion? Med Hypotheses. 2009;73:542–7.CrossRefPubMed Dittmar T, Nagler C, Schwitalla S, Reith G, Niggemann B, Zänker KS. Recurrence cancer stem cells—made by cell fusion? Med Hypotheses. 2009;73:542–7.CrossRefPubMed
31.
Zurück zum Zitat Lauffenburger DA, Horwitz AF. Cell migration: a physically integrated molecular process. Cell. 1996;84:359–69.CrossRefPubMed Lauffenburger DA, Horwitz AF. Cell migration: a physically integrated molecular process. Cell. 1996;84:359–69.CrossRefPubMed
32.
Zurück zum Zitat Kanellopoulou C, Muljo SA, Kung ALT, et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 2005;19:489–501.CrossRefPubMedPubMedCentral Kanellopoulou C, Muljo SA, Kung ALT, et al. Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 2005;19:489–501.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet. 2007;39:380–5.CrossRefPubMedPubMedCentral Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet. 2007;39:380–5.CrossRefPubMedPubMedCentral
34.
35.
Zurück zum Zitat Chakraborty C, Roy SS, Hsu JM, Agoramoorthy G. Network analysis of transcription factors for nuclear reprogramming into induced pluripotent stem cell using bioinformatics. Cell J. 2014;15(4):332–9.PubMed Chakraborty C, Roy SS, Hsu JM, Agoramoorthy G. Network analysis of transcription factors for nuclear reprogramming into induced pluripotent stem cell using bioinformatics. Cell J. 2014;15(4):332–9.PubMed
36.
Zurück zum Zitat Roy SS, Hsu CH, Wen ZH, Lin CS, Chakraborty C. A hypothetical relationship between the nuclear reprogramming factors for induced pluripotent stem (iPS) cells generation—bioinformatic and algorithmic approach. Med Hypotheses. 2011;76(4):507–11.CrossRefPubMed Roy SS, Hsu CH, Wen ZH, Lin CS, Chakraborty C. A hypothetical relationship between the nuclear reprogramming factors for induced pluripotent stem (iPS) cells generation—bioinformatic and algorithmic approach. Med Hypotheses. 2011;76(4):507–11.CrossRefPubMed
37.
Zurück zum Zitat Chakraborty C, Shah KD, Cao WG, Hsu CH, Wen ZH, Lin CS. Potentialities of induced pluripotent stem (iPS) cells for treatment of diseases. Curr Mol Med. 2010;10(8):756–62.CrossRefPubMed Chakraborty C, Shah KD, Cao WG, Hsu CH, Wen ZH, Lin CS. Potentialities of induced pluripotent stem (iPS) cells for treatment of diseases. Curr Mol Med. 2010;10(8):756–62.CrossRefPubMed
38.
Zurück zum Zitat Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature. 2008;455:1124–8.CrossRefPubMed Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature. 2008;455:1124–8.CrossRefPubMed
39.
Zurück zum Zitat Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell. 2009;137:647–58.CrossRefPubMed Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell. 2009;137:647–58.CrossRefPubMed
41.
Zurück zum Zitat Lin CH, Jackson AL, Guo J, Linsley PS, Eisenman RN. Myc-regulated microRNAs attenuate embryonic stem cell differentiation. EMBO J. 2009;28:3157–70.CrossRefPubMedPubMedCentral Lin CH, Jackson AL, Guo J, Linsley PS, Eisenman RN. Myc-regulated microRNAs attenuate embryonic stem cell differentiation. EMBO J. 2009;28:3157–70.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Yu F, Yao H, Zhu P, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007;131(6):1109–23.CrossRefPubMed Yu F, Yao H, Zhu P, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007;131(6):1109–23.CrossRefPubMed
45.
Zurück zum Zitat Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T. Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat Rev Cancer. 2005;5:744–9.CrossRefPubMed Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T. Opinion: migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat Rev Cancer. 2005;5:744–9.CrossRefPubMed
46.
Zurück zum Zitat Thiery JP. Epithelial–mesenchymal transitions in development and pathologies. Curr Opin Cell Biol. 2003;15:740–6.CrossRefPubMed Thiery JP. Epithelial–mesenchymal transitions in development and pathologies. Curr Opin Cell Biol. 2003;15:740–6.CrossRefPubMed
47.
Zurück zum Zitat Ueno H, Murphy J, Jass JR, Mochizuki H, Talbot IC. Tumour ‘budding’ as an index to estimate the potential of aggressiveness in rectal cancer. Histopathology. 2002;40:127–32.CrossRefPubMed Ueno H, Murphy J, Jass JR, Mochizuki H, Talbot IC. Tumour ‘budding’ as an index to estimate the potential of aggressiveness in rectal cancer. Histopathology. 2002;40:127–32.CrossRefPubMed
48.
51.
Zurück zum Zitat Shackleton M, Vaillant F, Simpson KJ, et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439:84–8.CrossRefPubMed Shackleton M, Vaillant F, Simpson KJ, et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439:84–8.CrossRefPubMed
52.
Zurück zum Zitat Farnie G, Clarke RB. Breast stem cells and cancer. In: Wiestler OD, Haendler B, Mumberg D, editors. Cancer stem cells: novel concepts and prospects for tumor therapy. Berlin Heidelberg: Springer; 2007. p. 141–54.CrossRef Farnie G, Clarke RB. Breast stem cells and cancer. In: Wiestler OD, Haendler B, Mumberg D, editors. Cancer stem cells: novel concepts and prospects for tumor therapy. Berlin Heidelberg: Springer; 2007. p. 141–54.CrossRef
53.
Zurück zum Zitat Ward RJ, Dirks PB. Cancer stem cells: at the headwaters of tumor development. Annu Rev Pathol. 2007;2:175–89.CrossRefPubMed Ward RJ, Dirks PB. Cancer stem cells: at the headwaters of tumor development. Annu Rev Pathol. 2007;2:175–89.CrossRefPubMed
54.
55.
Zurück zum Zitat Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL. CD44+ CD24(−) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer. 2008;98:756–65.CrossRefPubMedPubMedCentral Hurt EM, Kawasaki BT, Klarmann GJ, Thomas SB, Farrar WL. CD44+ CD24(−) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer. 2008;98:756–65.CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Donnenberg VS, Luketich JD, Landreneau RJ, et al. Tumorigenic epithelial stem cells and their normal counterparts. In: Wiestler OD, Haendler B, Mumberg D, editors. Cancer stem cells: novel concepts and prospects for tumor therapy. Berlin Heidelberg: Springer; 2007. p. 245–63.CrossRef Donnenberg VS, Luketich JD, Landreneau RJ, et al. Tumorigenic epithelial stem cells and their normal counterparts. In: Wiestler OD, Haendler B, Mumberg D, editors. Cancer stem cells: novel concepts and prospects for tumor therapy. Berlin Heidelberg: Springer; 2007. p. 245–63.CrossRef
57.
Zurück zum Zitat Zaidi HA, Kosztowski T, DiMeco F, Quiñones-Hinojosa A. Origins and clinical implications of the brain tumor stem cell hypothesis. J Neuro-Oncol. 2009;93:49–60.CrossRef Zaidi HA, Kosztowski T, DiMeco F, Quiñones-Hinojosa A. Origins and clinical implications of the brain tumor stem cell hypothesis. J Neuro-Oncol. 2009;93:49–60.CrossRef
58.
Zurück zum Zitat Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–60.CrossRefPubMed Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–60.CrossRefPubMed
59.
Zurück zum Zitat Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia. 2002;39:193–206.CrossRefPubMed Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia. 2002;39:193–206.CrossRefPubMed
60.
Zurück zum Zitat Chaichana KL, McGirt MJ, Frazier J, Attenello F, Guerrero-Cazares H, Quinones-Hinojosa A. Relationship of glioblastoma multiforme to the lateral ventricles predicts survival following tumor resection. J Neuro-Oncol. 2008;89:219–24.CrossRef Chaichana KL, McGirt MJ, Frazier J, Attenello F, Guerrero-Cazares H, Quinones-Hinojosa A. Relationship of glioblastoma multiforme to the lateral ventricles predicts survival following tumor resection. J Neuro-Oncol. 2008;89:219–24.CrossRef
61.
Zurück zum Zitat Nakagawa M, Koyanagi M, Tanabe K, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008;26:101–6.CrossRefPubMed Nakagawa M, Koyanagi M, Tanabe K, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008;26:101–6.CrossRefPubMed
62.
Zurück zum Zitat Okita K, Ichisaka T, Yamanaka S. Generation of germ-line-competent induced pluripotent stem cells. Nature. 2007;448:313–7.CrossRefPubMed Okita K, Ichisaka T, Yamanaka S. Generation of germ-line-competent induced pluripotent stem cells. Nature. 2007;448:313–7.CrossRefPubMed
63.
Zurück zum Zitat Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.CrossRefPubMed Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.CrossRefPubMed
64.
Zurück zum Zitat Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 2007;448:318–24.CrossRefPubMed Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 2007;448:318–24.CrossRefPubMed
65.
Zurück zum Zitat Bachoo RM, Maher EA, Ligon KL, et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell. 2002;1:269–77.CrossRefPubMed Bachoo RM, Maher EA, Ligon KL, et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell. 2002;1:269–77.CrossRefPubMed
66.
Zurück zum Zitat Ding H, Roncari L, Shannon P, Wu X, Lau N, Karaskova J, Gutmann DH, Squire JA, Nagy A, Guha A. Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res. 2001;61:3826–36.PubMed Ding H, Roncari L, Shannon P, Wu X, Lau N, Karaskova J, Gutmann DH, Squire JA, Nagy A, Guha A. Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res. 2001;61:3826–36.PubMed
67.
Zurück zum Zitat Holland EC, Hively WP, DePinho RA, Varmus HE. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev. 1998;12:3675–85.CrossRefPubMedPubMedCentral Holland EC, Hively WP, DePinho RA, Varmus HE. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev. 1998;12:3675–85.CrossRefPubMedPubMedCentral
68.
Zurück zum Zitat Rich JN, Guo C, McLendon RE, Bigner DD, Wang XF, Counter CM. A genetically tractable model of human glioma formation. Cancer Res. 2001;61:3556–60.PubMed Rich JN, Guo C, McLendon RE, Bigner DD, Wang XF, Counter CM. A genetically tractable model of human glioma formation. Cancer Res. 2001;61:3556–60.PubMed
69.
Zurück zum Zitat Sonoda Y, Ozawa T, Aldape KD, Deen DF, Berger MS, Pieper RO. Akt pathway activation converts anaplastic astrocytoma to glioblastoma multiforme in a human astrocyte model of glioma. Cancer Res. 2001;61:6674–8.PubMed Sonoda Y, Ozawa T, Aldape KD, Deen DF, Berger MS, Pieper RO. Akt pathway activation converts anaplastic astrocytoma to glioblastoma multiforme in a human astrocyte model of glioma. Cancer Res. 2001;61:6674–8.PubMed
70.
Zurück zum Zitat Uhrbom L, Kastemar M, Johansson FK, Westermark B, Holland EC. Cell type-specific tumor suppression by Ink4a and Arf in Kras-induced mouse gliomagenesis. Cancer Res. 2005;65:2065–9.CrossRefPubMed Uhrbom L, Kastemar M, Johansson FK, Westermark B, Holland EC. Cell type-specific tumor suppression by Ink4a and Arf in Kras-induced mouse gliomagenesis. Cancer Res. 2005;65:2065–9.CrossRefPubMed
71.
Zurück zum Zitat Weiss WA, Burns MJ, Hackett C, Aldape K, Hill JR, Kuriyama H, Kuriyama N, Milshteyn N, Roberts T, Wendland MF, DePinho R, Israel MA. Genetic determinants of malignancy in a mouse model for oligodendroglioma. Cancer Res. 2003;63:1589–95.PubMed Weiss WA, Burns MJ, Hackett C, Aldape K, Hill JR, Kuriyama H, Kuriyama N, Milshteyn N, Roberts T, Wendland MF, DePinho R, Israel MA. Genetic determinants of malignancy in a mouse model for oligodendroglioma. Cancer Res. 2003;63:1589–95.PubMed
72.
Zurück zum Zitat Xiao A, Yin C, Yang C, Di Cristofano A, Pandolfi PP, Van Dyke T. Somatic induction of Pten loss in a preclinical astrocytoma model reveals major roles in disease progression and avenues for target discovery and validation. Cancer Res. 2005;65:5172–80.CrossRefPubMed Xiao A, Yin C, Yang C, Di Cristofano A, Pandolfi PP, Van Dyke T. Somatic induction of Pten loss in a preclinical astrocytoma model reveals major roles in disease progression and avenues for target discovery and validation. Cancer Res. 2005;65:5172–80.CrossRefPubMed
73.
Zurück zum Zitat Lassman AB, Dai C, Fuller GN, Vickers AJ, Holland EC. Overexpression of c-MYC promotes an undifferentiated phenotype in cultured astrocytes and allows elevated Ras and Akt signaling to induce gliomas from GFAP-expressing cells in mice. Neuron Glia Biol. 2004;1:157–63.CrossRefPubMedPubMedCentral Lassman AB, Dai C, Fuller GN, Vickers AJ, Holland EC. Overexpression of c-MYC promotes an undifferentiated phenotype in cultured astrocytes and allows elevated Ras and Akt signaling to induce gliomas from GFAP-expressing cells in mice. Neuron Glia Biol. 2004;1:157–63.CrossRefPubMedPubMedCentral
74.
Zurück zum Zitat Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev. 2001;15:1913–25.CrossRefPubMedPubMedCentral Dai C, Celestino JC, Okada Y, Louis DN, Fuller GN, Holland EC. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev. 2001;15:1913–25.CrossRefPubMedPubMedCentral
75.
Zurück zum Zitat Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, Wiggins JF, Bader AG, Fagin R, Brown D, Tang DG. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17(2):211–5.CrossRefPubMedPubMedCentral Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, Wiggins JF, Bader AG, Fagin R, Brown D, Tang DG. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17(2):211–5.CrossRefPubMedPubMedCentral
77.
Zurück zum Zitat Chang YL, Zhou PJ, Wei L, Li W, Ji Z, Fang YX, Gao WQ. MicroRNA-7 inhibits the stemness of prostate cancer stem-like cells and tumorigenesis by repressing KLF4/PI3K/Akt/p21 pathway. Oncotarget. 2015;6(27):24017–31.CrossRefPubMedPubMedCentral Chang YL, Zhou PJ, Wei L, Li W, Ji Z, Fang YX, Gao WQ. MicroRNA-7 inhibits the stemness of prostate cancer stem-like cells and tumorigenesis by repressing KLF4/PI3K/Akt/p21 pathway. Oncotarget. 2015;6(27):24017–31.CrossRefPubMedPubMedCentral
78.
Zurück zum Zitat Zoni E, van der Horst G, van de Merbel AF, et al. miR-25 modulates invasiveness and dissemination of human prostate cancer cells via regulation of αv- and α6-integrin expression. Cancer Res. 2015;75:2326–36.CrossRefPubMed Zoni E, van der Horst G, van de Merbel AF, et al. miR-25 modulates invasiveness and dissemination of human prostate cancer cells via regulation of αv- and α6-integrin expression. Cancer Res. 2015;75:2326–36.CrossRefPubMed
80.
Zurück zum Zitat Sun Z, Hu W, Xu J, Kaufmann AM, Albers AE. MicroRNA-34a regulates epithelial-mesenchymal transition and cancer stem cell phenotype of head and neck squamous cell carcinoma in vitro. Int J Oncol. 2015. doi:10.3892/ijo.2015.3142. Sun Z, Hu W, Xu J, Kaufmann AM, Albers AE. MicroRNA-34a regulates epithelial-mesenchymal transition and cancer stem cell phenotype of head and neck squamous cell carcinoma in vitro. Int J Oncol. 2015. doi:10.​3892/​ijo.​2015.​3142.
82.
Zurück zum Zitat Feng ZM, Qiu J, Chen XW, et al. Essential role of miR-200c in regulating self-renewal of breast cancer stem cells and their counterparts of mammary epithelium. BMC Cancer. 2015;15:645.CrossRefPubMedPubMedCentral Feng ZM, Qiu J, Chen XW, et al. Essential role of miR-200c in regulating self-renewal of breast cancer stem cells and their counterparts of mammary epithelium. BMC Cancer. 2015;15:645.CrossRefPubMedPubMedCentral
83.
Zurück zum Zitat Hwang WL, Jiang JK, Yang SH, Huang TS, Lan HY, Teng HW, Yang CY, Tsai YP, Lin CH, Wang HW, Yang MH. MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat Cell Biol. 2014;16:268–80. doi:10.1038/ncb2910. CrossRefPubMed Hwang WL, Jiang JK, Yang SH, Huang TS, Lan HY, Teng HW, Yang CY, Tsai YP, Lin CH, Wang HW, Yang MH. MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat Cell Biol. 2014;16:268–80. doi:10.​1038/​ncb2910.​ CrossRefPubMed
85.
Zurück zum Zitat Bitarte N, Bandres E, Boni V, et al. MicroRNA-451 is involved in the self-renewal, tumorigenicity, and chemoresistance of colorectal cancer stem cells. Stem Cells. 2011;29:1661–71. doi:10.1002/stem.741. CrossRefPubMed Bitarte N, Bandres E, Boni V, et al. MicroRNA-451 is involved in the self-renewal, tumorigenicity, and chemoresistance of colorectal cancer stem cells. Stem Cells. 2011;29:1661–71. doi:10.​1002/​stem.​741.​ CrossRefPubMed
88.
Zurück zum Zitat Liu J, Ma L, Wang Z, Wang L, Liu C, Chen R, Zhang J. MicroRNA expression profile of gastric cancer stem cells in the MKN-45 cancer cell line. Acta Biochim Biophys Sin Shanghai. 2014;46(2):92–9. doi:10.1093/abbs/gmt135. CrossRefPubMed Liu J, Ma L, Wang Z, Wang L, Liu C, Chen R, Zhang J. MicroRNA expression profile of gastric cancer stem cells in the MKN-45 cancer cell line. Acta Biochim Biophys Sin Shanghai. 2014;46(2):92–9. doi:10.​1093/​abbs/​gmt135.​ CrossRefPubMed
89.
Zurück zum Zitat Ma C, Ding YC, Yu W, Wang Q, Meng B, Huang T. microRNA-200c overexpression plays an inhibitory role in human pancreatic cancer stem cells by regulating epithelial-mesenchymal transition. Minerva Med 2015;106(4):193–202. Ma C, Ding YC, Yu W, Wang Q, Meng B, Huang T. microRNA-200c overexpression plays an inhibitory role in human pancreatic cancer stem cells by regulating epithelial-mesenchymal transition. Minerva Med 2015;106(4):193–202.
90.
Zurück zum Zitat Ma C, Huang T, Ding YC, Yu W, Wang Q, Meng B, Luo SX. microRNA-200c overexpression inhibits chemoresistance, invasion and colony formation of human pancreatic cancer stem cells. Int J Clin Exp Pathol. 2015;8:6533–9 .eCollection 2015PubMedPubMedCentral Ma C, Huang T, Ding YC, Yu W, Wang Q, Meng B, Luo SX. microRNA-200c overexpression inhibits chemoresistance, invasion and colony formation of human pancreatic cancer stem cells. Int J Clin Exp Pathol. 2015;8:6533–9 .eCollection 2015PubMedPubMedCentral
91.
Zurück zum Zitat Babashah S, Sadeghizadeh M, Hajifathali A, Tavirani MR, Zomorod MS, Ghadiani M, Soleimani M. Targeting of the signal transducer Smo links microRNA-326 to the oncogenic Hedgehog pathway in CD34+ CML stem/progenitor cells. Int J Cancer. 2013;133:579–89. doi:10.1002/ijc.28043. CrossRefPubMed Babashah S, Sadeghizadeh M, Hajifathali A, Tavirani MR, Zomorod MS, Ghadiani M, Soleimani M. Targeting of the signal transducer Smo links microRNA-326 to the oncogenic Hedgehog pathway in CD34+ CML stem/progenitor cells. Int J Cancer. 2013;133:579–89. doi:10.​1002/​ijc.​28043.​ CrossRefPubMed
92.
Zurück zum Zitat Zhang J, Luo N, Luo Y, Peng Z, Zhang T, Li S. microRNA-150 inhibits human CD133-positive liver cancer stem cells through negative regulation of the transcription factor c-Myb. Int J Oncol. 2012;40(3):747–56. doi:10.3892/ijo.2011.1242. PubMed Zhang J, Luo N, Luo Y, Peng Z, Zhang T, Li S. microRNA-150 inhibits human CD133-positive liver cancer stem cells through negative regulation of the transcription factor c-Myb. Int J Oncol. 2012;40(3):747–56. doi:10.​3892/​ijo.​2011.​1242.​ PubMed
Metadaten
Titel
miRNA-regulated cancer stem cells: understanding the property and the role of miRNA in carcinogenesis
verfasst von
Chiranjib Chakraborty
Kok-Yong Chin
Srijit Das
Publikationsdatum
28.07.2016
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 10/2016
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-016-5156-1

Weitere Artikel der Ausgabe 10/2016

Tumor Biology 10/2016 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.