Skip to main content
Erschienen in: Heart Failure Reviews 5/2016

03.03.2016

Mitochondrial DNA repair: a novel therapeutic target for heart failure

verfasst von: José Marín-García

Erschienen in: Heart Failure Reviews | Ausgabe 5/2016

Einloggen, um Zugang zu erhalten

Abstract

Mitochondria play a crucial role in a variety of cellular processes ranging from energy metabolism, generation of reactive oxygen species (ROS) and Ca2+ handling to stress responses, cell survival and death. Malfunction of the organelle may contribute to the pathogenesis of neuromuscular, cancer, premature aging and cardiovascular diseases (CVD), including myocardial ischemia, cardiomyopathy and heart failure (HF). Mitochondria contain their own genome organized into DNA–protein complexes, called “mitochondrial nucleoids,” along with multiprotein machineries, which promote mitochondrial DNA (mtDNA) replication, transcription and repair. Although the mammalian organelle possesses almost all known nuclear DNA repair pathways, including base excision repair, mismatch repair and recombinational repair, the proximity of mtDNA to the main sites of ROS production and the lack of protective histones may result in increased susceptibility to various types of mtDNA damage. These include accumulation of mtDNA point mutations and/or deletions and decreased mtDNA copy number, which will impair mitochondrial function and finally, may lead to CVD including HF.
Literatur
1.
Zurück zum Zitat Kucej M, Butow RA (2007) Evolutionary tinkering with mitochondrial nucleoids. Trends Cell Biol 17:586–592PubMedCrossRef Kucej M, Butow RA (2007) Evolutionary tinkering with mitochondrial nucleoids. Trends Cell Biol 17:586–592PubMedCrossRef
2.
Zurück zum Zitat Spelbrink JN (2010) Functional organization of mammalian mitochondrial DNA in nucleoids: history, recent developments, and future challenges. IUBMB Life 62:19–32PubMed Spelbrink JN (2010) Functional organization of mammalian mitochondrial DNA in nucleoids: history, recent developments, and future challenges. IUBMB Life 62:19–32PubMed
3.
Zurück zum Zitat Bogenhagen DF (2012) Mitochondrial DNA nucleoid structure. Biochim Biophys Acta 1819:914–920PubMedCrossRef Bogenhagen DF (2012) Mitochondrial DNA nucleoid structure. Biochim Biophys Acta 1819:914–920PubMedCrossRef
4.
Zurück zum Zitat Hensen F, Cansiz S, Gerhold JM, Spelbrink JN (2014) To be or not to be a nucleoid protein: a comparison of mass-spectrometry based approaches in the identification of potential mtDNA–nucleoid associated proteins. Biochimie 100:219–226PubMedCrossRef Hensen F, Cansiz S, Gerhold JM, Spelbrink JN (2014) To be or not to be a nucleoid protein: a comparison of mass-spectrometry based approaches in the identification of potential mtDNA–nucleoid associated proteins. Biochimie 100:219–226PubMedCrossRef
5.
Zurück zum Zitat Wanrooij S, Falkenberg M (2010) The human mitochondrial replication fork in health and disease. Biochim Biophys Acta 1797:1378–1388PubMedCrossRef Wanrooij S, Falkenberg M (2010) The human mitochondrial replication fork in health and disease. Biochim Biophys Acta 1797:1378–1388PubMedCrossRef
7.
Zurück zum Zitat Korhonen JA, Gaspari M, Falkenberg M (2003) TWINKLE Has 5′– >3′ DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein. J Biol Chem 278:48627–48632PubMedCrossRef Korhonen JA, Gaspari M, Falkenberg M (2003) TWINKLE Has 5′– >3′ DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein. J Biol Chem 278:48627–48632PubMedCrossRef
8.
Zurück zum Zitat Alam TI, Kanki T, Muta T, Ukaji K, Abe Y et al (2003) Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Res 31:1640–1645PubMedCrossRef Alam TI, Kanki T, Muta T, Ukaji K, Abe Y et al (2003) Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Res 31:1640–1645PubMedCrossRef
9.
Zurück zum Zitat Ekstrand MI, Falkenberg M, Rantanen A, Park CB, Gaspari M et al (2004) Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet 13:935–944PubMedCrossRef Ekstrand MI, Falkenberg M, Rantanen A, Park CB, Gaspari M et al (2004) Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet 13:935–944PubMedCrossRef
10.
Zurück zum Zitat Maniura-Weber K, Goffart S, Garstka HL, Montoya J, Wiesner RJ (2004) Transient overexpression of mitochondrial transcription factor A (TFAM) is sufficient to stimulate mitochondrial DNA transcription, but not sufficient to increase mtDNA copy number in cultured cells. Nucleic Acids Res 32:6015–6027PubMedPubMedCentralCrossRef Maniura-Weber K, Goffart S, Garstka HL, Montoya J, Wiesner RJ (2004) Transient overexpression of mitochondrial transcription factor A (TFAM) is sufficient to stimulate mitochondrial DNA transcription, but not sufficient to increase mtDNA copy number in cultured cells. Nucleic Acids Res 32:6015–6027PubMedPubMedCentralCrossRef
11.
12.
Zurück zum Zitat Copeland WC, Longley MJ (2014) Mitochondrial genome maintenance in health and disease. DNA Repair (Amst) 19:190–198CrossRef Copeland WC, Longley MJ (2014) Mitochondrial genome maintenance in health and disease. DNA Repair (Amst) 19:190–198CrossRef
13.
Zurück zum Zitat Kasiviswanathan R, Collins TR, Copeland WC (2012) The interface of transcription and DNA replication in the mitochondria. Biochim Biophys Acta 1819:970–978PubMedCrossRef Kasiviswanathan R, Collins TR, Copeland WC (2012) The interface of transcription and DNA replication in the mitochondria. Biochim Biophys Acta 1819:970–978PubMedCrossRef
14.
Zurück zum Zitat Yin H, Xu L, Porter NA (2011) Free radical lipid peroxidation: mechanisms and analysis. Chem Rev 111:5944–5972PubMedCrossRef Yin H, Xu L, Porter NA (2011) Free radical lipid peroxidation: mechanisms and analysis. Chem Rev 111:5944–5972PubMedCrossRef
15.
Zurück zum Zitat Yakes FM, Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 94:514–519PubMedPubMedCentralCrossRef Yakes FM, Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 94:514–519PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Stumpf JD, Saneto RP, Copeland WC (2013) Clinical and molecular features of POLG-related mitochondrial disease. Cold Spring Harb Perspect Biol 5:a011395PubMedPubMedCentralCrossRef Stumpf JD, Saneto RP, Copeland WC (2013) Clinical and molecular features of POLG-related mitochondrial disease. Cold Spring Harb Perspect Biol 5:a011395PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Longley MJ, Nguyen D, Kunkel TA, Copeland WC (2001) The fidelity of human DNA polymerase gamma with and without exonucleolytic proofreading and the p55 accessory subunit. J Biol Chem 276:38555–38562PubMedCrossRef Longley MJ, Nguyen D, Kunkel TA, Copeland WC (2001) The fidelity of human DNA polymerase gamma with and without exonucleolytic proofreading and the p55 accessory subunit. J Biol Chem 276:38555–38562PubMedCrossRef
18.
Zurück zum Zitat Vermulst M, Bielas JH, Kujoth GC, Ladiges WC, Rabinovitch PS et al (2007) Mitochondrial point mutations do not limit the natural lifespan of mice. Nat Genet 39:540–543PubMedCrossRef Vermulst M, Bielas JH, Kujoth GC, Ladiges WC, Rabinovitch PS et al (2007) Mitochondrial point mutations do not limit the natural lifespan of mice. Nat Genet 39:540–543PubMedCrossRef
19.
Zurück zum Zitat Williams SL, Huang J, Edwards YJ, Ulloa RH, Dillon LM et al (2010) The mtDNA mutation spectrum of the progeroid Polg mutator mouse includes abundant control region multimers. Cell Metab 12:675–682PubMedPubMedCentralCrossRef Williams SL, Huang J, Edwards YJ, Ulloa RH, Dillon LM et al (2010) The mtDNA mutation spectrum of the progeroid Polg mutator mouse includes abundant control region multimers. Cell Metab 12:675–682PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Singer TP, Ramsay RR (1990) Mechanism of the neurotoxicity of MPTP: an update. FEBS Lett 274:1–8PubMedCrossRef Singer TP, Ramsay RR (1990) Mechanism of the neurotoxicity of MPTP: an update. FEBS Lett 274:1–8PubMedCrossRef
23.
Zurück zum Zitat Bandy B, Davison AJ (1990) Mitochondrial mutations may increase oxidative stress: implications for carcinogenesis and aging? Free Radic Biol Med 8:523–539PubMedCrossRef Bandy B, Davison AJ (1990) Mitochondrial mutations may increase oxidative stress: implications for carcinogenesis and aging? Free Radic Biol Med 8:523–539PubMedCrossRef
24.
Zurück zum Zitat Garcia CC, Freitas FP, Di Mascio P, Medeiros MH (2010) Ultrasensitive simultaneous quantification of 1, N2-etheno-2′-deoxyguanosine and 1, N2-propano-2′-deoxyguanosine in DNA by an online liquid chromatography-electrospray tandem mass spectrometry assay. Chem Res Toxicol 23:1245–1255PubMedCrossRef Garcia CC, Freitas FP, Di Mascio P, Medeiros MH (2010) Ultrasensitive simultaneous quantification of 1, N2-etheno-2′-deoxyguanosine and 1, N2-propano-2′-deoxyguanosine in DNA by an online liquid chromatography-electrospray tandem mass spectrometry assay. Chem Res Toxicol 23:1245–1255PubMedCrossRef
25.
Zurück zum Zitat Hunter SE, Jung D, Di Giulio RT, Meyer JN (2010) The QPCR assay for analysis of mitochondrial DNA damage, repair, and relative copy number. Methods 51:444–451PubMedPubMedCentralCrossRef Hunter SE, Jung D, Di Giulio RT, Meyer JN (2010) The QPCR assay for analysis of mitochondrial DNA damage, repair, and relative copy number. Methods 51:444–451PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214PubMedCrossRef Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214PubMedCrossRef
27.
28.
Zurück zum Zitat Nakamura J, Swenberg JA (1999) Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues. Cancer Res 59:2522–2526PubMed Nakamura J, Swenberg JA (1999) Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues. Cancer Res 59:2522–2526PubMed
29.
Zurück zum Zitat Shokolenko I, Venediktova N, Bochkareva A, Wilson GL, Alexeyev MF (2009) Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res 37:2539–2548PubMedPubMedCentralCrossRef Shokolenko I, Venediktova N, Bochkareva A, Wilson GL, Alexeyev MF (2009) Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res 37:2539–2548PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Caldecott KW (2008) Single-strand break repair and genetic disease. Nat Rev Genet 9:619–631PubMed Caldecott KW (2008) Single-strand break repair and genetic disease. Nat Rev Genet 9:619–631PubMed
31.
Zurück zum Zitat McKinnon PJ, Caldecott KW (2007) DNA strand break repair and human genetic disease. Annu Rev Genomics Hum Genet 8:37–55PubMedCrossRef McKinnon PJ, Caldecott KW (2007) DNA strand break repair and human genetic disease. Annu Rev Genomics Hum Genet 8:37–55PubMedCrossRef
32.
Zurück zum Zitat Furda AM, Marrangoni AM, Lokshin A, Van Houten B (2012) Oxidants and not alkylating agents induce rapid mtDNA loss and mitochondrial dysfunction. DNA Repair (Amst) 11:684–692CrossRef Furda AM, Marrangoni AM, Lokshin A, Van Houten B (2012) Oxidants and not alkylating agents induce rapid mtDNA loss and mitochondrial dysfunction. DNA Repair (Amst) 11:684–692CrossRef
33.
Zurück zum Zitat Liu P, Demple B (2010) DNA repair in mammalian mitochondria: Much more than we thought? Environ Mol Mutagen 51:417–426PubMed Liu P, Demple B (2010) DNA repair in mammalian mitochondria: Much more than we thought? Environ Mol Mutagen 51:417–426PubMed
34.
Zurück zum Zitat Sykora P, Wilson DM 3rd, Bohr VA (2012) Repair of persistent strand breaks in the mitochondrial genome. Mech Ageing Dev 133:169–175PubMedCrossRef Sykora P, Wilson DM 3rd, Bohr VA (2012) Repair of persistent strand breaks in the mitochondrial genome. Mech Ageing Dev 133:169–175PubMedCrossRef
35.
Zurück zum Zitat Alexeyev M, Shokolenko I, Wilson G, LeDoux S (2013) The maintenance of mitochondrial DNA integrity–critical analysis and update. Cold Spring Harb Perspect Biol 5:a012641PubMedPubMedCentralCrossRef Alexeyev M, Shokolenko I, Wilson G, LeDoux S (2013) The maintenance of mitochondrial DNA integrity–critical analysis and update. Cold Spring Harb Perspect Biol 5:a012641PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Pascucci B, Versteegh A, van Hoffen A, van Zeeland AA, Mullenders LH et al (1997) DNA repair of UV photoproducts and mutagenesis in human mitochondrial DNA. J Mol Biol 273:417–427PubMedCrossRef Pascucci B, Versteegh A, van Hoffen A, van Zeeland AA, Mullenders LH et al (1997) DNA repair of UV photoproducts and mutagenesis in human mitochondrial DNA. J Mol Biol 273:417–427PubMedCrossRef
37.
Zurück zum Zitat Olivero OA, Chang PK, Lopez-Larraza DM, Semino-Mora MC, Poirier MC (1997) Preferential formation and decreased removal of cisplatin-DNA adducts in Chinese hamster ovary cell mitochondrial DNA as compared to nuclear DNA. Mutat Res 391:79–86PubMedCrossRef Olivero OA, Chang PK, Lopez-Larraza DM, Semino-Mora MC, Poirier MC (1997) Preferential formation and decreased removal of cisplatin-DNA adducts in Chinese hamster ovary cell mitochondrial DNA as compared to nuclear DNA. Mutat Res 391:79–86PubMedCrossRef
38.
Zurück zum Zitat Larsen NB, Rasmussen M, Rasmussen LJ (2005) Nuclear and mitochondrial DNA repair: Similar pathways? Mitochondrion 5:89–108PubMedCrossRef Larsen NB, Rasmussen M, Rasmussen LJ (2005) Nuclear and mitochondrial DNA repair: Similar pathways? Mitochondrion 5:89–108PubMedCrossRef
39.
Zurück zum Zitat Stuart JA, Brown MF (2006) Mitochondrial DNA maintenance and bioenergetics. Biochim Biophys Acta 1757:79–89PubMedCrossRef Stuart JA, Brown MF (2006) Mitochondrial DNA maintenance and bioenergetics. Biochim Biophys Acta 1757:79–89PubMedCrossRef
41.
Zurück zum Zitat Alexeyev M, Shokolenko I, Wilson G, LeDoux S (2013) The maintenance of mitochondrial DNA integrity–critical analysis and update. Cold Spring Harb Perspect Biol 5:a012641PubMedPubMedCentralCrossRef Alexeyev M, Shokolenko I, Wilson G, LeDoux S (2013) The maintenance of mitochondrial DNA integrity–critical analysis and update. Cold Spring Harb Perspect Biol 5:a012641PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Kazak L, Reyes A, Holt IJ (2012) Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nat Rev Mol Cell Biol 13:659–671PubMedCrossRef Kazak L, Reyes A, Holt IJ (2012) Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nat Rev Mol Cell Biol 13:659–671PubMedCrossRef
43.
Zurück zum Zitat LeDoux SP, Driggers WJ, Hollensworth BS, Wilson GL (1999) Repair of alkylation and oxidative damage in mitochondrial DNA. Mutat Res 434:149–159PubMedCrossRef LeDoux SP, Driggers WJ, Hollensworth BS, Wilson GL (1999) Repair of alkylation and oxidative damage in mitochondrial DNA. Mutat Res 434:149–159PubMedCrossRef
44.
Zurück zum Zitat Svilar D, Goellner EM, Almeida KH, Sobol RW (2011) Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage. Antioxid Redox Signal 14:2491–2507PubMedPubMedCentralCrossRef Svilar D, Goellner EM, Almeida KH, Sobol RW (2011) Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage. Antioxid Redox Signal 14:2491–2507PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Wang J, Wang Q, Watson LJ, Jones SP, Epstein PN (2011) Cardiac overexpression of 8-oxoguanine DNA glycosylase 1 protects mitochondrial DNA and reduces cardiac fibrosis following transaortic constriction. Am J Physiol Heart Circ Physiol 301:H2073–H2080PubMedPubMedCentralCrossRef Wang J, Wang Q, Watson LJ, Jones SP, Epstein PN (2011) Cardiac overexpression of 8-oxoguanine DNA glycosylase 1 protects mitochondrial DNA and reduces cardiac fibrosis following transaortic constriction. Am J Physiol Heart Circ Physiol 301:H2073–H2080PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Thorslund T, Sunesen M, Bohr VA, Stevnsner T (2002) Repair of 8-oxoG is slower in endogenous nuclear genes than in mitochondrial DNA and is without strand bias. DNA Repair (Amst) 1:261–273CrossRef Thorslund T, Sunesen M, Bohr VA, Stevnsner T (2002) Repair of 8-oxoG is slower in endogenous nuclear genes than in mitochondrial DNA and is without strand bias. DNA Repair (Amst) 1:261–273CrossRef
47.
Zurück zum Zitat Bohr VA (2002) Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells. Free Radic Biol Med 32:804–812PubMedCrossRef Bohr VA (2002) Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells. Free Radic Biol Med 32:804–812PubMedCrossRef
48.
Zurück zum Zitat Akbari M, Visnes T, Krokan HE, Otterlei M (2008) Mitochondrial base excision repair of uracil and AP sites takes place by single-nucleotide insertion and long-patch DNA synthesis. DNA Repair 7:605–616PubMedCrossRef Akbari M, Visnes T, Krokan HE, Otterlei M (2008) Mitochondrial base excision repair of uracil and AP sites takes place by single-nucleotide insertion and long-patch DNA synthesis. DNA Repair 7:605–616PubMedCrossRef
49.
Zurück zum Zitat Szczesny B, Tann AW, Longley MJ, Copeland WC, Mitra S (2008) Long patch base excision repair in mammalian mitochondrial genomes. J Biol Chem 283:26349–26356PubMedPubMedCentralCrossRef Szczesny B, Tann AW, Longley MJ, Copeland WC, Mitra S (2008) Long patch base excision repair in mammalian mitochondrial genomes. J Biol Chem 283:26349–26356PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Svilar D, Goellner EM, Almeida KH, Sobol RW (2011) Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage. Antioxid Redox Signal 14:2491–2507PubMedPubMedCentralCrossRef Svilar D, Goellner EM, Almeida KH, Sobol RW (2011) Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage. Antioxid Redox Signal 14:2491–2507PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Almeida KH, Sobol RW (2007) A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification. DNA Repair 6:695–711PubMedPubMedCentralCrossRef Almeida KH, Sobol RW (2007) A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification. DNA Repair 6:695–711PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Dizdaroglu M (2005) Base-excision repair of oxidative DNA damage by DNA glycosylases. Mutat Res 591:45–59PubMedCrossRef Dizdaroglu M (2005) Base-excision repair of oxidative DNA damage by DNA glycosylases. Mutat Res 591:45–59PubMedCrossRef
53.
Zurück zum Zitat Huffman JL, Sundheim O, Tainer JA (2005) DNA base damage recognition and removal: new twists and grooves. Mutat Res 577:55–76PubMedCrossRef Huffman JL, Sundheim O, Tainer JA (2005) DNA base damage recognition and removal: new twists and grooves. Mutat Res 577:55–76PubMedCrossRef
54.
Zurück zum Zitat Dodson ML, Lloyd RS (2002) Mechanistic comparisons among base excision repair glycosylases. Free Radic Biol Med 32:678–682PubMedCrossRef Dodson ML, Lloyd RS (2002) Mechanistic comparisons among base excision repair glycosylases. Free Radic Biol Med 32:678–682PubMedCrossRef
55.
Zurück zum Zitat Szczesny B, Tann AW, Longley MJ, Copeland WC, Mitra S (2008) Long patch base excision repair in mammalian mitochondrial genomes. J Biol Chem 283:26349–26356PubMedPubMedCentralCrossRef Szczesny B, Tann AW, Longley MJ, Copeland WC, Mitra S (2008) Long patch base excision repair in mammalian mitochondrial genomes. J Biol Chem 283:26349–26356PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Akbari M, Visnes T, Krokan HE, Otterlei M (2008) Mitochondrial base excision repair of uracil and AP sites takes place by single-nucleotide insertion and long-patch DNA synthesis. DNA Repair (Amst) 7:605–616CrossRef Akbari M, Visnes T, Krokan HE, Otterlei M (2008) Mitochondrial base excision repair of uracil and AP sites takes place by single-nucleotide insertion and long-patch DNA synthesis. DNA Repair (Amst) 7:605–616CrossRef
57.
Zurück zum Zitat Liu P, Qian L, Sung JS, de Souza-Pinto NC, Zheng L et al (2008) Removal of oxidative DNA damage via FEN1-dependent long-patch base excision repair in human cell mitochondria. Mol Cell Biol 28:4975–4987PubMedPubMedCentralCrossRef Liu P, Qian L, Sung JS, de Souza-Pinto NC, Zheng L et al (2008) Removal of oxidative DNA damage via FEN1-dependent long-patch base excision repair in human cell mitochondria. Mol Cell Biol 28:4975–4987PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Hegde ML, Hazra TK, Mitra S (2008) Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res 18:27–47PubMedPubMedCentralCrossRef Hegde ML, Hazra TK, Mitra S (2008) Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res 18:27–47PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Kazak L, Reyes A, Holt IJ (2012) Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nat Rev Mol Cell Biol 13:659–671PubMedCrossRef Kazak L, Reyes A, Holt IJ (2012) Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nat Rev Mol Cell Biol 13:659–671PubMedCrossRef
60.
Zurück zum Zitat Zheng L, Zhou M, Guo Z, Lu H, Qian L et al (2008) Human DNA2 is a mitochondrial nuclease/helicase for efficient processing of DNA replication and repair intermediates. Mol Cell 32:325–336PubMedPubMedCentralCrossRef Zheng L, Zhou M, Guo Z, Lu H, Qian L et al (2008) Human DNA2 is a mitochondrial nuclease/helicase for efficient processing of DNA replication and repair intermediates. Mol Cell 32:325–336PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Tann AW, Boldogh I, Meiss G, Qian W, Van Houten B et al (2011) Apoptosis induced by persistent single-strand breaks in mitochondrial genome: critical role of EXOG (5′-EXO/endonuclease) in their repair. J Biol Chem 286:31975–31983PubMedPubMedCentralCrossRef Tann AW, Boldogh I, Meiss G, Qian W, Van Houten B et al (2011) Apoptosis induced by persistent single-strand breaks in mitochondrial genome: critical role of EXOG (5′-EXO/endonuclease) in their repair. J Biol Chem 286:31975–31983PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Croteau DL, Rossi ML, Canugovi C, Tian J, Sykora P et al (2012) RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity. Aging Cell 11:456–466PubMedPubMedCentralCrossRef Croteau DL, Rossi ML, Canugovi C, Tian J, Sykora P et al (2012) RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity. Aging Cell 11:456–466PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat De S, Kumari J, Mudgal R, Modi P, Gupta S et al (2012) RECQL4 is essential for the transport of p53 to mitochondria in normal human cells in the absence of exogenous stress. J Cell Sci 125:2509–2522PubMedCrossRef De S, Kumari J, Mudgal R, Modi P, Gupta S et al (2012) RECQL4 is essential for the transport of p53 to mitochondria in normal human cells in the absence of exogenous stress. J Cell Sci 125:2509–2522PubMedCrossRef
64.
Zurück zum Zitat Khidr L, Wu G, Davila A, Procaccio V, Wallace D et al (2008) Role of SUV3 helicase in maintaining mitochondrial homeostasis in human cells. J Biol Chem 283:27064–27073PubMedPubMedCentralCrossRef Khidr L, Wu G, Davila A, Procaccio V, Wallace D et al (2008) Role of SUV3 helicase in maintaining mitochondrial homeostasis in human cells. J Biol Chem 283:27064–27073PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Chen PL, Chen CF, Chen Y, Guo XE, Huang CK et al (2013) Mitochondrial genome instability resulting from SUV3 haploinsufficiency leads to tumorigenesis and shortened lifespan. Oncogene 32:1193–1201PubMedCrossRef Chen PL, Chen CF, Chen Y, Guo XE, Huang CK et al (2013) Mitochondrial genome instability resulting from SUV3 haploinsufficiency leads to tumorigenesis and shortened lifespan. Oncogene 32:1193–1201PubMedCrossRef
66.
Zurück zum Zitat Chen XJ (2013) Mechanism of homologous recombination and implications for aging-related deletions in mitochondrial DNA. Microbiol Mol Biol Rev MMBR 77:476–496PubMedCrossRef Chen XJ (2013) Mechanism of homologous recombination and implications for aging-related deletions in mitochondrial DNA. Microbiol Mol Biol Rev MMBR 77:476–496PubMedCrossRef
67.
Zurück zum Zitat Thyagarajan B, Padua RA, Campbell C (1996) Mammalian mitochondria possess homologous DNA recombination activity. J Biol Chem 271:27536–27543PubMedCrossRef Thyagarajan B, Padua RA, Campbell C (1996) Mammalian mitochondria possess homologous DNA recombination activity. J Biol Chem 271:27536–27543PubMedCrossRef
68.
Zurück zum Zitat Bacman SR, Williams SL, Moraes CT (2009) Intra- and inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks. Nucleic Acids Res 37:4218–4226PubMedPubMedCentralCrossRef Bacman SR, Williams SL, Moraes CT (2009) Intra- and inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks. Nucleic Acids Res 37:4218–4226PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Pohjoismaki JL, Goffart S, Tyynismaa H, Willcox S, Ide T et al (2009) Human heart mitochondrial DNA is organized in complex catenated networks containing abundant four-way junctions and replication forks. J Biol Chem 284:21446–21457PubMedPubMedCentralCrossRef Pohjoismaki JL, Goffart S, Tyynismaa H, Willcox S, Ide T et al (2009) Human heart mitochondrial DNA is organized in complex catenated networks containing abundant four-way junctions and replication forks. J Biol Chem 284:21446–21457PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Kajander OA, Karhunen PJ, Holt IJ, Jacobs HT (2001) Prominent mitochondrial DNA recombination intermediates in human heart muscle. EMBO Rep 2:1007–1012PubMedPubMedCentralCrossRef Kajander OA, Karhunen PJ, Holt IJ, Jacobs HT (2001) Prominent mitochondrial DNA recombination intermediates in human heart muscle. EMBO Rep 2:1007–1012PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Pohjoismaki JL, Goffart S, Taylor RW, Turnbull DM, Suomalainen A et al (2010) Developmental and pathological changes in the human cardiac muscle mitochondrial DNA organization, replication and copy number. PLoS ONE 5:e10426PubMedPubMedCentralCrossRef Pohjoismaki JL, Goffart S, Taylor RW, Turnbull DM, Suomalainen A et al (2010) Developmental and pathological changes in the human cardiac muscle mitochondrial DNA organization, replication and copy number. PLoS ONE 5:e10426PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Suomalainen A, Majander A, Wallin M, Setala K, Kontula K et al (1997) Autosomal dominant progressive external ophthalmoplegia with multiple deletions of mtDNA: clinical, biochemical, and molecular genetic features of the 10q-linked disease. Neurology 48:1244–1253PubMedCrossRef Suomalainen A, Majander A, Wallin M, Setala K, Kontula K et al (1997) Autosomal dominant progressive external ophthalmoplegia with multiple deletions of mtDNA: clinical, biochemical, and molecular genetic features of the 10q-linked disease. Neurology 48:1244–1253PubMedCrossRef
73.
Zurück zum Zitat Esposito LA, Melov S, Panov A, Cottrell BA, Wallace DC (1999) Mitochondrial disease in mouse results in increased oxidative stress. Proc Natl Acad Sci USA 96:4820–4825PubMedPubMedCentralCrossRef Esposito LA, Melov S, Panov A, Cottrell BA, Wallace DC (1999) Mitochondrial disease in mouse results in increased oxidative stress. Proc Natl Acad Sci USA 96:4820–4825PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Graham BH, Waymire KG, Cottrell B, Trounce IA, MacGregor GR et al (1997) A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet 16:226–234PubMedCrossRef Graham BH, Waymire KG, Cottrell B, Trounce IA, MacGregor GR et al (1997) A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet 16:226–234PubMedCrossRef
75.
Zurück zum Zitat Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P et al (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 18:231–236PubMedCrossRef Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P et al (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 18:231–236PubMedCrossRef
76.
Zurück zum Zitat Wang J, Wilhelmsson H, Graff C, Li H, Oldfors A et al (1999) Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet 21:133–137PubMedCrossRef Wang J, Wilhelmsson H, Graff C, Li H, Oldfors A et al (1999) Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet 21:133–137PubMedCrossRef
77.
Zurück zum Zitat Wang J, Silva JP, Gustafsson CM, Rustin P, Larsson NG (2001) Increased in vivo apoptosis in cells lacking mitochondrial DNA gene expression. Proc Natl Acad Sci USA 98:4038–4043PubMedPubMedCentralCrossRef Wang J, Silva JP, Gustafsson CM, Rustin P, Larsson NG (2001) Increased in vivo apoptosis in cells lacking mitochondrial DNA gene expression. Proc Natl Acad Sci USA 98:4038–4043PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Hansson A, Hance N, Dufour E, Rantanen A, Hultenby K et al (2004) A switch in metabolism precedes increased mitochondrial biogenesis in respiratory chain-deficient mouse hearts. Proc Natl Acad Sci USA 101:3136–3141PubMedPubMedCentralCrossRef Hansson A, Hance N, Dufour E, Rantanen A, Hultenby K et al (2004) A switch in metabolism precedes increased mitochondrial biogenesis in respiratory chain-deficient mouse hearts. Proc Natl Acad Sci USA 101:3136–3141PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Ikeuchi M, Matsusaka H, Kang D, Matsushima S, Ide T et al (2005) Overexpression of mitochondrial transcription factor a ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction. Circulation 112:683–690PubMedCrossRef Ikeuchi M, Matsusaka H, Kang D, Matsushima S, Ide T et al (2005) Overexpression of mitochondrial transcription factor a ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction. Circulation 112:683–690PubMedCrossRef
80.
Zurück zum Zitat Zhang D, Mott JL, Farrar P, Ryerse JS, Chang SW et al (2003) Mitochondrial DNA mutations activate the mitochondrial apoptotic pathway and cause dilated cardiomyopathy. Cardiovasc Res 57:147–157PubMedCrossRef Zhang D, Mott JL, Farrar P, Ryerse JS, Chang SW et al (2003) Mitochondrial DNA mutations activate the mitochondrial apoptotic pathway and cause dilated cardiomyopathy. Cardiovasc Res 57:147–157PubMedCrossRef
81.
Zurück zum Zitat Mott JL, Zhang D, Stevens M, Chang S, Denniger G et al (2001) Oxidative stress is not an obligate mediator of disease provoked by mitochondrial DNA mutations. Mutat Res 474:35–45PubMedCrossRef Mott JL, Zhang D, Stevens M, Chang S, Denniger G et al (2001) Oxidative stress is not an obligate mediator of disease provoked by mitochondrial DNA mutations. Mutat Res 474:35–45PubMedCrossRef
82.
Zurück zum Zitat Zhang D, Mott JL, Chang SW, Stevens M, Mikolajczak P et al (2005) Mitochondrial DNA mutations activate programmed cell survival in the mouse heart. Am J Physiol Heart Circ Physiol 288:H2476–H2483PubMedCrossRef Zhang D, Mott JL, Chang SW, Stevens M, Mikolajczak P et al (2005) Mitochondrial DNA mutations activate programmed cell survival in the mouse heart. Am J Physiol Heart Circ Physiol 288:H2476–H2483PubMedCrossRef
83.
Zurück zum Zitat Lewis W, Day BJ, Kohler JJ, Hosseini SH, Chan SS et al (2007) Decreased mtDNA, oxidative stress, cardiomyopathy, and death from transgenic cardiac targeted human mutant polymerase gamma. Lab Invest 87:326–335PubMed Lewis W, Day BJ, Kohler JJ, Hosseini SH, Chan SS et al (2007) Decreased mtDNA, oxidative stress, cardiomyopathy, and death from transgenic cardiac targeted human mutant polymerase gamma. Lab Invest 87:326–335PubMed
84.
Zurück zum Zitat Tyynismaa H, Sembongi H, Bokori-Brown M, Granycome C, Ashley N et al (2004) Twinkle helicase is essential for mtDNA maintenance and regulates mtDNA copy number. Hum Mol Genet 13:3219–3227PubMedCrossRef Tyynismaa H, Sembongi H, Bokori-Brown M, Granycome C, Ashley N et al (2004) Twinkle helicase is essential for mtDNA maintenance and regulates mtDNA copy number. Hum Mol Genet 13:3219–3227PubMedCrossRef
85.
Zurück zum Zitat Milenkovic D, Matic S, Kuhl I, Ruzzenente B, Freyer C et al (2013) TWINKLE is an essential mitochondrial helicase required for synthesis of nascent D-loop strands and complete mtDNA replication. Hum Mol Genet 22:1983–1993PubMedPubMedCentralCrossRef Milenkovic D, Matic S, Kuhl I, Ruzzenente B, Freyer C et al (2013) TWINKLE is an essential mitochondrial helicase required for synthesis of nascent D-loop strands and complete mtDNA replication. Hum Mol Genet 22:1983–1993PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Sen D, Nandakumar D, Tang GQ, Patel SS (2012) Human mitochondrial DNA helicase TWINKLE is both an unwinding and annealing helicase. J Biol Chem 287:14545–14556PubMedPubMedCentralCrossRef Sen D, Nandakumar D, Tang GQ, Patel SS (2012) Human mitochondrial DNA helicase TWINKLE is both an unwinding and annealing helicase. J Biol Chem 287:14545–14556PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Pohjoismaki JL, Goffart S (2011) Of circles, forks and humanity: topological organisation and replication of mammalian mitochondrial DNA. BioEssays 33:290–299PubMedCrossRef Pohjoismaki JL, Goffart S (2011) Of circles, forks and humanity: topological organisation and replication of mammalian mitochondrial DNA. BioEssays 33:290–299PubMedCrossRef
88.
Zurück zum Zitat Tanaka A, Ide T, Fujino T, Onitsuka K, Ikeda M, et al. (2013) The overexpression of Twinkle helicase ameliorates the progression of cardiac fibrosis and heart failure in pressure overload model in mice. PloS One 8:e67642 Tanaka A, Ide T, Fujino T, Onitsuka K, Ikeda M, et al. (2013) The overexpression of Twinkle helicase ameliorates the progression of cardiac fibrosis and heart failure in pressure overload model in mice. PloS One 8:e67642
89.
Zurück zum Zitat Pohjoismaki JL, Williams SL, Boettger T, Goffart S, Kim J et al (2013) Overexpression of Twinkle-helicase protects cardiomyocytes from genotoxic stress caused by reactive oxygen species. Proc Natl Acad Sci USA 110:19408–19413PubMedPubMedCentralCrossRef Pohjoismaki JL, Williams SL, Boettger T, Goffart S, Kim J et al (2013) Overexpression of Twinkle-helicase protects cardiomyocytes from genotoxic stress caused by reactive oxygen species. Proc Natl Acad Sci USA 110:19408–19413PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Goffart S, Cooper HM, Tyynismaa H, Wanrooij S, Suomalainen A et al (2009) Twinkle mutations associated with autosomal dominant progressive external ophthalmoplegia lead to impaired helicase function and in vivo mtDNA replication stalling. Hum Mol Genet 18:328–340PubMedCrossRef Goffart S, Cooper HM, Tyynismaa H, Wanrooij S, Suomalainen A et al (2009) Twinkle mutations associated with autosomal dominant progressive external ophthalmoplegia lead to impaired helicase function and in vivo mtDNA replication stalling. Hum Mol Genet 18:328–340PubMedCrossRef
91.
Zurück zum Zitat Tyynismaa H, Mjosund KP, Wanrooij S, Lappalainen I, Ylikallio E et al (2005) Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in mice. Proc Natl Acad Sci USA 102:17687–17692PubMedPubMedCentralCrossRef Tyynismaa H, Mjosund KP, Wanrooij S, Lappalainen I, Ylikallio E et al (2005) Mutant mitochondrial helicase Twinkle causes multiple mtDNA deletions and a late-onset mitochondrial disease in mice. Proc Natl Acad Sci USA 102:17687–17692PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Miller FJ, Rosenfeldt FL, Zhang C, Linnane AW, Nagley P (2003) Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res 31:e61PubMedPubMedCentralCrossRef Miller FJ, Rosenfeldt FL, Zhang C, Linnane AW, Nagley P (2003) Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res 31:e61PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Frahm T, Mohamed SA, Bruse P, Gemund C, Oehmichen M et al (2005) Lack of age-related increase of mitochondrial DNA amount in brain, skeletal muscle and human heart. Mech Ageing Dev 126:1192–1200PubMedCrossRef Frahm T, Mohamed SA, Bruse P, Gemund C, Oehmichen M et al (2005) Lack of age-related increase of mitochondrial DNA amount in brain, skeletal muscle and human heart. Mech Ageing Dev 126:1192–1200PubMedCrossRef
94.
Zurück zum Zitat Wang J, Wilhelmsson H, Graff C, Li H, Oldfors A et al (1999) Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet 21:133–137PubMedCrossRef Wang J, Wilhelmsson H, Graff C, Li H, Oldfors A et al (1999) Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nat Genet 21:133–137PubMedCrossRef
95.
Zurück zum Zitat Li H, Wang J, Wilhelmsson H, Hansson A, Thoren P et al (2000) Genetic modification of survival in tissue-specific knockout mice with mitochondrial cardiomyopathy. Proc Natl Acad Sci USA 97:3467–3472PubMedPubMedCentralCrossRef Li H, Wang J, Wilhelmsson H, Hansson A, Thoren P et al (2000) Genetic modification of survival in tissue-specific knockout mice with mitochondrial cardiomyopathy. Proc Natl Acad Sci USA 97:3467–3472PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Lewis W (2003) Defective mitochondrial DNA replication and NRTIs: pathophysiological implications in AIDS cardiomyopathy. Am J Physiol Heart Circ Physiol 284:H1–H9PubMedCrossRef Lewis W (2003) Defective mitochondrial DNA replication and NRTIs: pathophysiological implications in AIDS cardiomyopathy. Am J Physiol Heart Circ Physiol 284:H1–H9PubMedCrossRef
97.
Zurück zum Zitat L’Ecuyer T, Sanjeev S, Thomas R, Novak R, Das L et al (2006) DNA damage is an early event in doxorubicin-induced cardiac myocyte death. Am J Physiol Heart Circ Physiol 291:H1273–H1280PubMedCrossRef L’Ecuyer T, Sanjeev S, Thomas R, Novak R, Das L et al (2006) DNA damage is an early event in doxorubicin-induced cardiac myocyte death. Am J Physiol Heart Circ Physiol 291:H1273–H1280PubMedCrossRef
98.
Zurück zum Zitat Lebrecht D, Walker UA (2007) Role of mtDNA lesions in anthracycline cardiotoxicity. Cardiovasc Toxicol 7:108–113PubMedCrossRef Lebrecht D, Walker UA (2007) Role of mtDNA lesions in anthracycline cardiotoxicity. Cardiovasc Toxicol 7:108–113PubMedCrossRef
99.
Zurück zum Zitat Marin-Garcia J, Goldenthal MJ, Moe GW (2001) Mitochondrial pathology in cardiac failure. Cardiovasc Res 49:17–26PubMedCrossRef Marin-Garcia J, Goldenthal MJ, Moe GW (2001) Mitochondrial pathology in cardiac failure. Cardiovasc Res 49:17–26PubMedCrossRef
100.
Zurück zum Zitat Karamanlidis G, Nascimben L, Couper GS, Shekar PS, del Monte F et al (2010) Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circ Res 106:1541–1548PubMedPubMedCentralCrossRef Karamanlidis G, Nascimben L, Couper GS, Shekar PS, del Monte F et al (2010) Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circ Res 106:1541–1548PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Sebastiani M, Giordano C, Nediani C, Travaglini C, Borchi E et al (2007) Induction of mitochondrial biogenesis is a maladaptive mechanism in mitochondrial cardiomyopathies. J Am Coll Cardiol 50:1362–1369PubMedCrossRef Sebastiani M, Giordano C, Nediani C, Travaglini C, Borchi E et al (2007) Induction of mitochondrial biogenesis is a maladaptive mechanism in mitochondrial cardiomyopathies. J Am Coll Cardiol 50:1362–1369PubMedCrossRef
102.
Zurück zum Zitat Garnier A, Zoll J, Fortin D, N’Guessan B, Lefebvre F et al (2009) Control by circulating factors of mitochondrial function and transcription cascade in heart failure: a role for endothelin-1 and angiotensin II. Circ Heart Fail 2:342–350PubMedCrossRef Garnier A, Zoll J, Fortin D, N’Guessan B, Lefebvre F et al (2009) Control by circulating factors of mitochondrial function and transcription cascade in heart failure: a role for endothelin-1 and angiotensin II. Circ Heart Fail 2:342–350PubMedCrossRef
103.
Zurück zum Zitat Karamanlidis G, Nascimben L, Couper GS, Shekar PS, del Monte F et al (2010) Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circ Res 106:1541–1548PubMedPubMedCentralCrossRef Karamanlidis G, Nascimben L, Couper GS, Shekar PS, del Monte F et al (2010) Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circ Res 106:1541–1548PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Marin-Garcia J, Ananthakrishnan R, Goldenthal MJ, Filiano JJ, Perez-Atayde A (1997) Cardiac mitochondrial dysfunction and DNA depletion in children with hypertrophic cardiomyopathy. J Inherit Metab Dis 20:674–680PubMedCrossRef Marin-Garcia J, Ananthakrishnan R, Goldenthal MJ, Filiano JJ, Perez-Atayde A (1997) Cardiac mitochondrial dysfunction and DNA depletion in children with hypertrophic cardiomyopathy. J Inherit Metab Dis 20:674–680PubMedCrossRef
105.
Zurück zum Zitat Spelbrink JN, Li FY, Tiranti V, Nikali K, Yuan QP et al (2001) Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet 28:223–231PubMedCrossRef Spelbrink JN, Li FY, Tiranti V, Nikali K, Yuan QP et al (2001) Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet 28:223–231PubMedCrossRef
106.
Zurück zum Zitat Cohen BH, Naviaux RK (2010) The clinical diagnosis of POLG disease and other mitochondrial DNA depletion disorders. Methods 51:364–373PubMedCrossRef Cohen BH, Naviaux RK (2010) The clinical diagnosis of POLG disease and other mitochondrial DNA depletion disorders. Methods 51:364–373PubMedCrossRef
107.
Zurück zum Zitat Goffart S, Cooper HM, Tyynismaa H, Wanrooij S, Suomalainen A et al (2009) Twinkle mutations associated with autosomal dominant progressive external ophthalmoplegia lead to impaired helicase function and in vivo mtDNA replication stalling. Hum Mol Genet 18:328–340PubMedCrossRef Goffart S, Cooper HM, Tyynismaa H, Wanrooij S, Suomalainen A et al (2009) Twinkle mutations associated with autosomal dominant progressive external ophthalmoplegia lead to impaired helicase function and in vivo mtDNA replication stalling. Hum Mol Genet 18:328–340PubMedCrossRef
108.
Zurück zum Zitat Holmlund T, Farge G, Pande V, Korhonen J, Nilsson L et al (2009) Structure-function defects of the twinkle amino-terminal region in progressive external ophthalmoplegia. Biochim Biophys Acta 1792:132–139PubMedCrossRef Holmlund T, Farge G, Pande V, Korhonen J, Nilsson L et al (2009) Structure-function defects of the twinkle amino-terminal region in progressive external ophthalmoplegia. Biochim Biophys Acta 1792:132–139PubMedCrossRef
109.
Zurück zum Zitat Roberts NK, Perloff JK, Kark RA (1979) Cardiac conduction in the Kearns–Sayre syndrome (a neuromuscular disorder associated with progressive external ophthalmoplegia and pigmentary retinopathy). Report of 2 cases and review of 17 published cases. Am J Cardiol 44:1396–1400PubMedCrossRef Roberts NK, Perloff JK, Kark RA (1979) Cardiac conduction in the Kearns–Sayre syndrome (a neuromuscular disorder associated with progressive external ophthalmoplegia and pigmentary retinopathy). Report of 2 cases and review of 17 published cases. Am J Cardiol 44:1396–1400PubMedCrossRef
110.
Zurück zum Zitat Antozzi C, Zeviani M (1997) Cardiomyopathies in disorders of oxidative metabolism. Cardiovasc Res 35:184–199PubMedCrossRef Antozzi C, Zeviani M (1997) Cardiomyopathies in disorders of oxidative metabolism. Cardiovasc Res 35:184–199PubMedCrossRef
111.
Zurück zum Zitat Khambatta S, Nguyen DL, Beckman TJ, Wittich CM (2014) Kearns–Sayre syndrome: a case series of 35 adults and children. Int J Gen Med 7:325–332PubMedPubMedCentral Khambatta S, Nguyen DL, Beckman TJ, Wittich CM (2014) Kearns–Sayre syndrome: a case series of 35 adults and children. Int J Gen Med 7:325–332PubMedPubMedCentral
Metadaten
Titel
Mitochondrial DNA repair: a novel therapeutic target for heart failure
verfasst von
José Marín-García
Publikationsdatum
03.03.2016
Verlag
Springer US
Erschienen in
Heart Failure Reviews / Ausgabe 5/2016
Print ISSN: 1382-4147
Elektronische ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-016-9543-x

Weitere Artikel der Ausgabe 5/2016

Heart Failure Reviews 5/2016 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.