Skip to main content
Erschienen in: Journal of Inherited Metabolic Disease 2/2011

01.04.2011 | Mitochondrial Medicine

Mouse models for nuclear DNA-encoded mitochondrial complex I deficiency

verfasst von: Saskia Koene, Peter H. G. M. Willems, Peggy Roestenberg, Werner J. H. Koopman, Jan A. M. Smeitink

Erschienen in: Journal of Inherited Metabolic Disease | Ausgabe 2/2011

Einloggen, um Zugang zu erhalten

Abstract

Mitochondrial diseases are a group of heterogeneous pathologies with decreased cellular energy production as a common denominator. Defects in the oxidative phosphorylation (OXPHOS) system, the most frequent one in humans being isolated complex I deficiency (OMIM 252010), underlie this disturbed-energy generation. As biogenesis of OXPHOS complexes is under dual genetic control, with complex II being the sole exception, mutations in both nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) are found. Increasing knowledge is becoming available with respect to the pathophysiology and cellular consequences of OXPHOS dysfunction. This aids the rational design of new treatment strategies. Recently, the first successful treatment trials were carried out in patient-derived cell lines. In these studies chemical compounds were used that target cellular aberrations induced by complex I dysfunction. Before the field of human clinical trials is entered, it is necessary to study the effects of these compounds with respect to toxicity, pharmacokinetics and therapeutic potential in suitable animal models. Here, we discuss two recent mouse models for nDNA-encoded complex I deficiency and their tissue-specific knock-outs.
Literatur
Zurück zum Zitat Benit P, Steffann J, Lebon S et al (2003) Genotyping microsatellite DNA markers at putative disease loci in inbred/multiplex families with respiratory chain complex I deficiency allows rapid identification of a novel nonsense mutation (IVS1nt -1) in the NDUFS4 gene in Leigh syndrome. Hum Genet 112:563–566PubMed Benit P, Steffann J, Lebon S et al (2003) Genotyping microsatellite DNA markers at putative disease loci in inbred/multiplex families with respiratory chain complex I deficiency allows rapid identification of a novel nonsense mutation (IVS1nt -1) in the NDUFS4 gene in Leigh syndrome. Hum Genet 112:563–566PubMed
Zurück zum Zitat Benit P, Goncalves S, Dassa EP et al (2008) The variability of the harlequin mouse phenotype resembles that of human mitochondrial-complex I-deficiency syndromes. PLoS ONE 3:e3208PubMedCrossRef Benit P, Goncalves S, Dassa EP et al (2008) The variability of the harlequin mouse phenotype resembles that of human mitochondrial-complex I-deficiency syndromes. PLoS ONE 3:e3208PubMedCrossRef
Zurück zum Zitat Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529PubMedCrossRef Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529PubMedCrossRef
Zurück zum Zitat Betts J, Lightowlers RN, Turnbull DM (2004) Neuropathological aspects of mitochondrial DNA disease. Neurochem Res 29:505–511PubMedCrossRef Betts J, Lightowlers RN, Turnbull DM (2004) Neuropathological aspects of mitochondrial DNA disease. Neurochem Res 29:505–511PubMedCrossRef
Zurück zum Zitat Brandt U (2006) Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem 75:69–92PubMedCrossRef Brandt U (2006) Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem 75:69–92PubMedCrossRef
Zurück zum Zitat Brini M, Pinton P, King MP et al (1999) A calcium signaling defect in the pathogenesis of a mitochondrial DNA inherited oxidative phosphorylation deficiency. Nat Med 5:951–954PubMedCrossRef Brini M, Pinton P, King MP et al (1999) A calcium signaling defect in the pathogenesis of a mitochondrial DNA inherited oxidative phosphorylation deficiency. Nat Med 5:951–954PubMedCrossRef
Zurück zum Zitat Brown MD, Starikovskaya E, Derbeneva O et al (2002) The role of mtDNA background in disease expression: a new primary LHON mutation associated with Western Eurasian haplogroup J. Hum Genet 110:130–138PubMedCrossRef Brown MD, Starikovskaya E, Derbeneva O et al (2002) The role of mtDNA background in disease expression: a new primary LHON mutation associated with Western Eurasian haplogroup J. Hum Genet 110:130–138PubMedCrossRef
Zurück zum Zitat Budde SM, van den Heuvel LP, Smeitink JA (2002) The human complex I NDUFS4 subunit: from gene structure to function and pathology. Mitochondrion 1–2:109–115CrossRef Budde SM, van den Heuvel LP, Smeitink JA (2002) The human complex I NDUFS4 subunit: from gene structure to function and pathology. Mitochondrion 1–2:109–115CrossRef
Zurück zum Zitat Budde SM, van den Heuvel LP, Smeets RJ et al (2003) Clinical heterogeneity in patients with mutations in the NDUFS4 gene of mitochondrial complex I. J Inherit Metab Dis 26:813–815PubMedCrossRef Budde SM, van den Heuvel LP, Smeets RJ et al (2003) Clinical heterogeneity in patients with mutations in the NDUFS4 gene of mitochondrial complex I. J Inherit Metab Dis 26:813–815PubMedCrossRef
Zurück zum Zitat Caboni P, Sherer TB, Zhang N (2004) Rotenone, deguelin, their metabolites, and the rat model of Parkinson’s disease. Chem Res Toxicol 17:1540–1548PubMedCrossRef Caboni P, Sherer TB, Zhang N (2004) Rotenone, deguelin, their metabolites, and the rat model of Parkinson’s disease. Chem Res Toxicol 17:1540–1548PubMedCrossRef
Zurück zum Zitat Cande C, Vahsen N, Kouranti I et al (2004) AIF and cyclophilin A cooperate in apoptosis-associated chromatinolysis. Oncogene 23:1514–1521PubMedCrossRef Cande C, Vahsen N, Kouranti I et al (2004) AIF and cyclophilin A cooperate in apoptosis-associated chromatinolysis. Oncogene 23:1514–1521PubMedCrossRef
Zurück zum Zitat Carroll J, Shannon RJ, Fearnley IM et al (2002) Definition of the nuclear encoded protein composition of bovine heart mitochondrial complex I. Identification of two new subunits. J Biol Chem 277:50311–50317PubMedCrossRef Carroll J, Shannon RJ, Fearnley IM et al (2002) Definition of the nuclear encoded protein composition of bovine heart mitochondrial complex I. Identification of two new subunits. J Biol Chem 277:50311–50317PubMedCrossRef
Zurück zum Zitat Cheung EC, Joza N, Steenaart NA et al (2006) Dissociating the dual roles of apoptosis-inducing factor in maintaining mitochondrial structure and apoptosis. EMBO J 25:4061–4073PubMedCrossRef Cheung EC, Joza N, Steenaart NA et al (2006) Dissociating the dual roles of apoptosis-inducing factor in maintaining mitochondrial structure and apoptosis. EMBO J 25:4061–4073PubMedCrossRef
Zurück zum Zitat Choi WS, Kruse SE, Palmiter RD et al (2008) Mitochondrial complex I inhibition is not required for dopaminergic neuron death induced by rotenone, MPP+, or paraquat. Proc Natl Acad Sci U S A 105:15136–15141PubMedCrossRef Choi WS, Kruse SE, Palmiter RD et al (2008) Mitochondrial complex I inhibition is not required for dopaminergic neuron death induced by rotenone, MPP+, or paraquat. Proc Natl Acad Sci U S A 105:15136–15141PubMedCrossRef
Zurück zum Zitat Ciafaloni E, Santorelli FM, Shanske S et al (1993) Maternally inherited Leigh syndrome. J Pediatr 122:419–422PubMedCrossRef Ciafaloni E, Santorelli FM, Shanske S et al (1993) Maternally inherited Leigh syndrome. J Pediatr 122:419–422PubMedCrossRef
Zurück zum Zitat Debray FG, Lambert M, Chevalier I et al (2007) Long-term outcome and clinical spectrum of 73 pediatric patients with mitochondrial diseases. Pediatrics 119:722–733PubMedCrossRef Debray FG, Lambert M, Chevalier I et al (2007) Long-term outcome and clinical spectrum of 73 pediatric patients with mitochondrial diseases. Pediatrics 119:722–733PubMedCrossRef
Zurück zum Zitat DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. N Engl J Med 348:2656–2668PubMedCrossRef DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. N Engl J Med 348:2656–2668PubMedCrossRef
Zurück zum Zitat Distelmaier F, Koopman WJ, van den Heuvel LP (2009a) Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. Brain 132(Pt 4):833–842PubMed Distelmaier F, Koopman WJ, van den Heuvel LP (2009a) Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. Brain 132(Pt 4):833–842PubMed
Zurück zum Zitat Distelmaier F, Visch HJ, Smeitink JA (2009b) The antioxidant Trolox restores mitochondrial membrane potential and Ca2+ -stimulated ATP production in human complex I deficiency. J Mol Med 87:515–522PubMedCrossRef Distelmaier F, Visch HJ, Smeitink JA (2009b) The antioxidant Trolox restores mitochondrial membrane potential and Ca2+ -stimulated ATP production in human complex I deficiency. J Mol Med 87:515–522PubMedCrossRef
Zurück zum Zitat van Empel V, Bertrand AT, Van der NR (2005) Downregulation of apoptosis-inducing factor in harlequin mutant mice sensitizes the myocardium to oxidative stress-related cell death and pressure overload-induced decompensation. Circ Res 496:e92–e101CrossRef van Empel V, Bertrand AT, Van der NR (2005) Downregulation of apoptosis-inducing factor in harlequin mutant mice sensitizes the myocardium to oxidative stress-related cell death and pressure overload-induced decompensation. Circ Res 496:e92–e101CrossRef
Zurück zum Zitat van Empel V, Bertrand AT, van Oort RJ (2006) EUK-8, a superoxide dismutase and catalase mimetic, reduces cardiac oxidative stress and ameliorates pressure overload-induced heart failure in the harlequin mouse mutant. J Am Coll Cardiol 48:824–832PubMedCrossRef van Empel V, Bertrand AT, van Oort RJ (2006) EUK-8, a superoxide dismutase and catalase mimetic, reduces cardiac oxidative stress and ameliorates pressure overload-induced heart failure in the harlequin mouse mutant. J Am Coll Cardiol 48:824–832PubMedCrossRef
Zurück zum Zitat Fernandez-Moreira D, Ugalde C, Smeets R (2007) Arenas J. X-linked NDUFA1 gene mutations associated with mitochondrial encephalomyopathy. Ann Neurol 61:73–83PubMedCrossRef Fernandez-Moreira D, Ugalde C, Smeets R (2007) Arenas J. X-linked NDUFA1 gene mutations associated with mitochondrial encephalomyopathy. Ann Neurol 61:73–83PubMedCrossRef
Zurück zum Zitat Gattermann N, Dadak M, Hofhaus G (2004) Severe impairment of nucleotide synthesis through inhibition of mitochondrial respiration. Nucleosides Nucleotides Nucleic Acids 23:1275–1279PubMedCrossRef Gattermann N, Dadak M, Hofhaus G (2004) Severe impairment of nucleotide synthesis through inhibition of mitochondrial respiration. Nucleosides Nucleotides Nucleic Acids 23:1275–1279PubMedCrossRef
Zurück zum Zitat El Ghouzzi V, Csaba Z, Olivier P (2007) Apoptosis-inducing factor deficiency induces early mitochondrial degeneration in brain followed by progressive multifocal neuropathology. J Neuropathol Exp Neurol 66:838–847PubMedCrossRef El Ghouzzi V, Csaba Z, Olivier P (2007) Apoptosis-inducing factor deficiency induces early mitochondrial degeneration in brain followed by progressive multifocal neuropathology. J Neuropathol Exp Neurol 66:838–847PubMedCrossRef
Zurück zum Zitat van den Heuvel L, Ruitenbeek W, Smeets R et al (1998) Demonstration of a new pathogenic mutation in human complex I deficiency: a 5-bp duplication in the nuclear gene encoding the 18-kD (AQDQ) subunit. Am J Hum Genet 62:262–268PubMedCrossRef van den Heuvel L, Ruitenbeek W, Smeets R et al (1998) Demonstration of a new pathogenic mutation in human complex I deficiency: a 5-bp duplication in the nuclear gene encoding the 18-kD (AQDQ) subunit. Am J Hum Genet 62:262–268PubMedCrossRef
Zurück zum Zitat Hirst J, Carroll J, Fearnley IM (2003) The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochim Biophys Acta 1604:135–150PubMedCrossRef Hirst J, Carroll J, Fearnley IM (2003) The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochim Biophys Acta 1604:135–150PubMedCrossRef
Zurück zum Zitat Hoefs SJ, Dieteren CE, Distelmaier F (2008) NDUFA2 complex I mutation leads to Leigh disease. Am J Hum Genet 82:1306–1315PubMedCrossRef Hoefs SJ, Dieteren CE, Distelmaier F (2008) NDUFA2 complex I mutation leads to Leigh disease. Am J Hum Genet 82:1306–1315PubMedCrossRef
Zurück zum Zitat Iuso A, Scacco S, Piccoli C (2006) Dysfunctions of cellular oxidative metabolism in patients with mutations in the NDUFS1 and NDUFS4 genes of complex I. J Biol Chem 281:10374–10380PubMedCrossRef Iuso A, Scacco S, Piccoli C (2006) Dysfunctions of cellular oxidative metabolism in patients with mutations in the NDUFS1 and NDUFS4 genes of complex I. J Biol Chem 281:10374–10380PubMedCrossRef
Zurück zum Zitat Janssen R, Smeitink J, Smeets R (2002) CIA30 complex I assembly factor: a candidate for human complex I deficiency? Hum Genet 110:264–270PubMedCrossRef Janssen R, Smeitink J, Smeets R (2002) CIA30 complex I assembly factor: a candidate for human complex I deficiency? Hum Genet 110:264–270PubMedCrossRef
Zurück zum Zitat Janssen RJ, van den Heuvel LP, Smeitink JA (2004) Genetic defects in the oxidative phosphorylation (OXPHOS) system. Expert Rev Mol Diagn 4:143–156PubMedCrossRef Janssen RJ, van den Heuvel LP, Smeitink JA (2004) Genetic defects in the oxidative phosphorylation (OXPHOS) system. Expert Rev Mol Diagn 4:143–156PubMedCrossRef
Zurück zum Zitat Janssen RJ, Nijtmans LG, van den Heuvel LP (2006) Mitochondrial complex I: structure, function and pathology. J Inherit Metab Dis 29:499–515PubMedCrossRef Janssen RJ, Nijtmans LG, van den Heuvel LP (2006) Mitochondrial complex I: structure, function and pathology. J Inherit Metab Dis 29:499–515PubMedCrossRef
Zurück zum Zitat Joza N, Oudit GY, Brown D et al (2005) Muscle-specific loss of apoptosis-inducing factor leads to mitochondrial dysfunction, skeletal muscle atrophy, and dilated cardiomyopathy. Mol Cell Biol 25:10261–10272PubMedCrossRef Joza N, Oudit GY, Brown D et al (2005) Muscle-specific loss of apoptosis-inducing factor leads to mitochondrial dysfunction, skeletal muscle atrophy, and dilated cardiomyopathy. Mol Cell Biol 25:10261–10272PubMedCrossRef
Zurück zum Zitat Klein JA, Longo-Guess CM, Rossmann MP et al (2002) The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 419:367–374PubMedCrossRef Klein JA, Longo-Guess CM, Rossmann MP et al (2002) The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 419:367–374PubMedCrossRef
Zurück zum Zitat Koene S, Smeitink J (2009) Mitochondrial medicine: entering the era of treatment. J Intern Med 265:193–209PubMedCrossRef Koene S, Smeitink J (2009) Mitochondrial medicine: entering the era of treatment. J Intern Med 265:193–209PubMedCrossRef
Zurück zum Zitat Koopman WJ, Verkaart S, Visch HJ et al (2005a) Inhibition of complex I of the electron transport chain causes O2−. -mediated mitochondrial outgrowth. Am J Physiol Cell Physiol 288:C1440–C1450PubMedCrossRef Koopman WJ, Verkaart S, Visch HJ et al (2005a) Inhibition of complex I of the electron transport chain causes O2−. -mediated mitochondrial outgrowth. Am J Physiol Cell Physiol 288:C1440–C1450PubMedCrossRef
Zurück zum Zitat Koopman WJ, Visch HJ, Verkaart S et al (2005b) Mitochondrial network complexity and pathological decrease in complex I activity are tightly correlated in isolated human complex I deficiency. Am J Physiol Cell Physiol 289:C881–C890PubMedCrossRef Koopman WJ, Visch HJ, Verkaart S et al (2005b) Mitochondrial network complexity and pathological decrease in complex I activity are tightly correlated in isolated human complex I deficiency. Am J Physiol Cell Physiol 289:C881–C890PubMedCrossRef
Zurück zum Zitat Koopman WJ, Visch HJ, Smeitink JA et al (2006) Simultaneous quantitative measurement and automated analysis of mitochondrial morphology, mass, potential, and motility in living human skin fibroblasts. Cytometry A 69:1–12PubMed Koopman WJ, Visch HJ, Smeitink JA et al (2006) Simultaneous quantitative measurement and automated analysis of mitochondrial morphology, mass, potential, and motility in living human skin fibroblasts. Cytometry A 69:1–12PubMed
Zurück zum Zitat Koopman WJ, Hink MA, Verkaart S et al (2007a) Partial complex I inhibition decreases mitochondrial motility and increases matrix protein diffusion as revealed by fluorescence correlation spectroscopy. Biochim Biophys Acta 1767:940–947PubMedCrossRef Koopman WJ, Hink MA, Verkaart S et al (2007a) Partial complex I inhibition decreases mitochondrial motility and increases matrix protein diffusion as revealed by fluorescence correlation spectroscopy. Biochim Biophys Acta 1767:940–947PubMedCrossRef
Zurück zum Zitat Koopman WJ, Verkaart S, Visch HJ (2007b) Human NADH:ubiquinone oxidoreductase deficiency: radical changes in mitochondrial morphology? Am J Physiol Cell Physiol 293:C22–C29PubMedCrossRef Koopman WJ, Verkaart S, Visch HJ (2007b) Human NADH:ubiquinone oxidoreductase deficiency: radical changes in mitochondrial morphology? Am J Physiol Cell Physiol 293:C22–C29PubMedCrossRef
Zurück zum Zitat Koopman WJ, Distelmaier F, Hink MA et al (2008a) Inherited complex I deficiency is associated with faster protein diffusion in the matrix of moving mitochondria. Am J Physiol Cell Physiol 294:C1124–C1132PubMedCrossRef Koopman WJ, Distelmaier F, Hink MA et al (2008a) Inherited complex I deficiency is associated with faster protein diffusion in the matrix of moving mitochondria. Am J Physiol Cell Physiol 294:C1124–C1132PubMedCrossRef
Zurück zum Zitat Koopman WJ, Verkaart S, van Emst-de Vries SE et al (2008b) Mitigation of NADH: ubiquinone oxidoreductase deficiency by chronic Trolox treatment. Biochim Biophys Acta 1777:853–859PubMedCrossRef Koopman WJ, Verkaart S, van Emst-de Vries SE et al (2008b) Mitigation of NADH: ubiquinone oxidoreductase deficiency by chronic Trolox treatment. Biochim Biophys Acta 1777:853–859PubMedCrossRef
Zurück zum Zitat Kruse SE, Watt WC, Marcinek DJ et al (2008) Mice with mitochondrial complex I deficiency develop a fatal encephalomyopathy. Cell Metab 7:312–320PubMedCrossRef Kruse SE, Watt WC, Marcinek DJ et al (2008) Mice with mitochondrial complex I deficiency develop a fatal encephalomyopathy. Cell Metab 7:312–320PubMedCrossRef
Zurück zum Zitat Larsson NG, Rustin P (2001) Animal models for respiratory chain disease. Trends Mol Med 7:578–581PubMedCrossRef Larsson NG, Rustin P (2001) Animal models for respiratory chain disease. Trends Mol Med 7:578–581PubMedCrossRef
Zurück zum Zitat Lash LH (2006) Mitochondrial glutathione transport: physiological, pathological and toxicological implications. Chem Biol Interact 163:54–67PubMedCrossRef Lash LH (2006) Mitochondrial glutathione transport: physiological, pathological and toxicological implications. Chem Biol Interact 163:54–67PubMedCrossRef
Zurück zum Zitat Lazarou M, McKenzie M, Ohtake A (2007) Analysis of the assembly profiles for mitochondrial- and nuclear-DNA-encoded subunits into complex I. Mol Cell Biol 27:4228–4237PubMedCrossRef Lazarou M, McKenzie M, Ohtake A (2007) Analysis of the assembly profiles for mitochondrial- and nuclear-DNA-encoded subunits into complex I. Mol Cell Biol 27:4228–4237PubMedCrossRef
Zurück zum Zitat Lazarou M, Thorburn DR, Ryan MT et al (2009) Assembly of mitochondrial complex I and defects in disease. Biochim Biophys Acta 1793:78–88PubMedCrossRef Lazarou M, Thorburn DR, Ryan MT et al (2009) Assembly of mitochondrial complex I and defects in disease. Biochim Biophys Acta 1793:78–88PubMedCrossRef
Zurück zum Zitat Leshinsky-Silver E, Lebre AS, Minai L (2009) NDUFS4 mutations cause Leigh syndrome with predominant brainstem involvement. Mol Genet Metab 3:185–189CrossRef Leshinsky-Silver E, Lebre AS, Minai L (2009) NDUFS4 mutations cause Leigh syndrome with predominant brainstem involvement. Mol Genet Metab 3:185–189CrossRef
Zurück zum Zitat Leigh D (1951) Subacute necrotizing encephalomyelopathy in an infant. J Neurol Neurosurg Psychiatry 14:216–221PubMedCrossRef Leigh D (1951) Subacute necrotizing encephalomyelopathy in an infant. J Neurol Neurosurg Psychiatry 14:216–221PubMedCrossRef
Zurück zum Zitat Leonard JV, Schapira AH (2000) Mitochondrial respiratory chain disorders I: mitochondrial DNA defects. Lancet 355:299–304PubMedCrossRef Leonard JV, Schapira AH (2000) Mitochondrial respiratory chain disorders I: mitochondrial DNA defects. Lancet 355:299–304PubMedCrossRef
Zurück zum Zitat Loeffen JL, Smeitink JA, Trijbels JM, Janssen AJ et al (2000) Isolated complex I deficiency in children: clinical, biochemical and genetic aspects. Hum Mutat 15:123–134PubMedCrossRef Loeffen JL, Smeitink JA, Trijbels JM, Janssen AJ et al (2000) Isolated complex I deficiency in children: clinical, biochemical and genetic aspects. Hum Mutat 15:123–134PubMedCrossRef
Zurück zum Zitat Melov S, Doctrow SR, Schneider JA et al (2001) Lifespan extension and rescue of spongiform encephalopathy in superoxide dismutase 2 nullizygous mice treated with superoxide dismutase-catalase mimetics. J Neurosci 21:8348–8353PubMed Melov S, Doctrow SR, Schneider JA et al (2001) Lifespan extension and rescue of spongiform encephalopathy in superoxide dismutase 2 nullizygous mice treated with superoxide dismutase-catalase mimetics. J Neurosci 21:8348–8353PubMed
Zurück zum Zitat Milne JC, Denu JM (2008) The Sirtuin family: therapeutic targets to treat diseases of aging. Curr Opin Chem Biol 12:11–17PubMedCrossRef Milne JC, Denu JM (2008) The Sirtuin family: therapeutic targets to treat diseases of aging. Curr Opin Chem Biol 12:11–17PubMedCrossRef
Zurück zum Zitat Morgan-Hughes JA, Darveniza P, Landon DN et al (1979) A mitochondrial myopathy with a deficiency of respiratory chain NADH-CoQ reductase activity. J Neurol Sci 43:27–46PubMedCrossRef Morgan-Hughes JA, Darveniza P, Landon DN et al (1979) A mitochondrial myopathy with a deficiency of respiratory chain NADH-CoQ reductase activity. J Neurol Sci 43:27–46PubMedCrossRef
Zurück zum Zitat Mortiboys H, Thomas KJ, Koopman WJ et al (2009) Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts. Ann Neurology 64:555–565CrossRef Mortiboys H, Thomas KJ, Koopman WJ et al (2009) Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts. Ann Neurology 64:555–565CrossRef
Zurück zum Zitat Murphy MP (2008) Targeting lipophilic cations to mitochondria. Biochim Biophys Acta 1777:1028–1031PubMedCrossRef Murphy MP (2008) Targeting lipophilic cations to mitochondria. Biochim Biophys Acta 1777:1028–1031PubMedCrossRef
Zurück zum Zitat Murphy MP, Smith RA (2007) Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol 56:629–656CrossRef Murphy MP, Smith RA (2007) Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol 56:629–656CrossRef
Zurück zum Zitat Nguyen MH, Jafri MS (2005) Mitochondrial calcium signaling and energy metabolism. Ann N Y Acad Sci 1047:127–137PubMedCrossRef Nguyen MH, Jafri MS (2005) Mitochondrial calcium signaling and energy metabolism. Ann N Y Acad Sci 1047:127–137PubMedCrossRef
Zurück zum Zitat Palmieri L, Runswick MJ, Fiermonte G (2000) Yeast mitochondrial carriers: bacterial expression, biochemical identification and metabolic significance. J Bioenerg Biomembr 32:67–77PubMedCrossRef Palmieri L, Runswick MJ, Fiermonte G (2000) Yeast mitochondrial carriers: bacterial expression, biochemical identification and metabolic significance. J Bioenerg Biomembr 32:67–77PubMedCrossRef
Zurück zum Zitat Papa S, Scacco S, Sardanelli AM (2001) Mutation in the NDUFS4 gene of complex I abolishes cAMP-dependent activation of the complex in a child with fatal neurological syndrome. FEBS Lett 489:259–262PubMedCrossRef Papa S, Scacco S, Sardanelli AM (2001) Mutation in the NDUFS4 gene of complex I abolishes cAMP-dependent activation of the complex in a child with fatal neurological syndrome. FEBS Lett 489:259–262PubMedCrossRef
Zurück zum Zitat Petruzzella V, Papa S (2002) Mutations in human nuclear genes encoding for subunits of mitochondrial respiratory complex I: the NDUFS4 gene. Gene 286:149–154PubMedCrossRef Petruzzella V, Papa S (2002) Mutations in human nuclear genes encoding for subunits of mitochondrial respiratory complex I: the NDUFS4 gene. Gene 286:149–154PubMedCrossRef
Zurück zum Zitat Petruzzella V, Panelli D, Torraco A, Petruzzella V, Panelli D, Torraco A (2005) Mutations in the NDUFS4 gene of mitochondrial complex I alter stability of the splice variants. FEBS Lett 579:3770–3776PubMedCrossRef Petruzzella V, Panelli D, Torraco A, Petruzzella V, Panelli D, Torraco A (2005) Mutations in the NDUFS4 gene of mitochondrial complex I alter stability of the splice variants. FEBS Lett 579:3770–3776PubMedCrossRef
Zurück zum Zitat Pospisilik JA, Knauf C, Joza N et al (2007) Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes. Cell 131:476–491PubMedCrossRef Pospisilik JA, Knauf C, Joza N et al (2007) Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes. Cell 131:476–491PubMedCrossRef
Zurück zum Zitat Qi X, Lewin AS, Hauswirth WW et al (2003) Optic neuropathy induced by reductions in mitochondrial superoxide dismutase. Invest Ophthalmol Vis Sci 44:1088–1096PubMedCrossRef Qi X, Lewin AS, Hauswirth WW et al (2003) Optic neuropathy induced by reductions in mitochondrial superoxide dismutase. Invest Ophthalmol Vis Sci 44:1088–1096PubMedCrossRef
Zurück zum Zitat Qi X, Sun L, Hauswirth WW et al (2007) Use of mitochondrial antioxidant defenses for rescue of cells with a Leber hereditary optic neuropathy-causing mutation. Arch Ophthalmol 125:268–272PubMedCrossRef Qi X, Sun L, Hauswirth WW et al (2007) Use of mitochondrial antioxidant defenses for rescue of cells with a Leber hereditary optic neuropathy-causing mutation. Arch Ophthalmol 125:268–272PubMedCrossRef
Zurück zum Zitat Rahman S, Blok RB, Dahl HH et al (1996) Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann Neurol 39:343–351PubMedCrossRef Rahman S, Blok RB, Dahl HH et al (1996) Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann Neurol 39:343–351PubMedCrossRef
Zurück zum Zitat Saada A, Vogel RO, Hoefs SJ (2009) Mutations in NDUFAF3 (C3ORF60), encoding an NDUFAF4 (C6ORF66)-interacting complex I assembly protein, cause fatal neonatal mitochondrial disease. Am J Hum Genet 6:718–727CrossRef Saada A, Vogel RO, Hoefs SJ (2009) Mutations in NDUFAF3 (C3ORF60), encoding an NDUFAF4 (C6ORF66)-interacting complex I assembly protein, cause fatal neonatal mitochondrial disease. Am J Hum Genet 6:718–727CrossRef
Zurück zum Zitat Santorelli FM, Tanji K, Kulikova R et al (1997) Identification of a novel mutation in the mtDNA ND5 gene associated with MELAS. Biochem Biophys Res Commun 238:326–328PubMedCrossRef Santorelli FM, Tanji K, Kulikova R et al (1997) Identification of a novel mutation in the mtDNA ND5 gene associated with MELAS. Biochem Biophys Res Commun 238:326–328PubMedCrossRef
Zurück zum Zitat Scacco S, Vergari R, Scarpulla RC et al (2000) cAMP-dependent phosphorylation of the nuclear encoded 18-kDa (IP) subunit of respiratory complex I and activation of the complex in serum-starved mouse fibroblast cultures. J Biol Chem 275:17578–17582PubMedCrossRef Scacco S, Vergari R, Scarpulla RC et al (2000) cAMP-dependent phosphorylation of the nuclear encoded 18-kDa (IP) subunit of respiratory complex I and activation of the complex in serum-starved mouse fibroblast cultures. J Biol Chem 275:17578–17582PubMedCrossRef
Zurück zum Zitat Schapira AH, Cock HR (1999) Mitochondrial myopathies and encephalomyopathies. Eur J Clin Invest 29:886–898PubMedCrossRef Schapira AH, Cock HR (1999) Mitochondrial myopathies and encephalomyopathies. Eur J Clin Invest 29:886–898PubMedCrossRef
Zurück zum Zitat Schon EA, Manfredi G (2003) Neuronal degeneration and mitochondrial dysfunction. J Clin Invest 111:303–312PubMed Schon EA, Manfredi G (2003) Neuronal degeneration and mitochondrial dysfunction. J Clin Invest 111:303–312PubMed
Zurück zum Zitat Smeitink J, van den Heuvel L, DiMauro S (2001) The genetics and pathology of oxidative phosphorylation. Nat Rev Genet 2:342–352PubMedCrossRef Smeitink J, van den Heuvel L, DiMauro S (2001) The genetics and pathology of oxidative phosphorylation. Nat Rev Genet 2:342–352PubMedCrossRef
Zurück zum Zitat Smeitink JA, Zeviani M, Turnbull DM et al (2006) Mitochondrial medicine: a metabolic perspective on the pathology of oxidative phosphorylation disorders. Cell Metab 3:9–13PubMedCrossRef Smeitink JA, Zeviani M, Turnbull DM et al (2006) Mitochondrial medicine: a metabolic perspective on the pathology of oxidative phosphorylation disorders. Cell Metab 3:9–13PubMedCrossRef
Zurück zum Zitat Susin SA, Lorenzo HK, Zamzami N et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397(6718):441–446 Susin SA, Lorenzo HK, Zamzami N et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397(6718):441–446
Zurück zum Zitat Szabò I, Bock J, Jekle A, Soddemann M (2005) A novel potassium channel in lymphocyte mitochondria. J Biol Chem 280:12790–12798PubMedCrossRef Szabò I, Bock J, Jekle A, Soddemann M (2005) A novel potassium channel in lymphocyte mitochondria. J Biol Chem 280:12790–12798PubMedCrossRef
Zurück zum Zitat Szeto HH (2006) Mitochondria-targeted peptide antioxidants: novel neuroprotective agents. AAPS J 8:E521–E531PubMedCrossRef Szeto HH (2006) Mitochondria-targeted peptide antioxidants: novel neuroprotective agents. AAPS J 8:E521–E531PubMedCrossRef
Zurück zum Zitat Tavi P, Hansson A, Zhang SJ et al (2005) Abnormal Ca(2+) release and catecholamine-induced arrhythmias in mitochondrial cardiomyopathy. Hum Mol Genet 14:1069–1076PubMedCrossRef Tavi P, Hansson A, Zhang SJ et al (2005) Abnormal Ca(2+) release and catecholamine-induced arrhythmias in mitochondrial cardiomyopathy. Hum Mol Genet 14:1069–1076PubMedCrossRef
Zurück zum Zitat Ugalde C, Janssen RJ, van den Heuvel LP et al (2004) Differences in assembly or stability of complex I and other mitochondrial OXPHOS complexes in inherited complex I deficiency. Hum Mol Genet 13:659–667PubMedCrossRef Ugalde C, Janssen RJ, van den Heuvel LP et al (2004) Differences in assembly or stability of complex I and other mitochondrial OXPHOS complexes in inherited complex I deficiency. Hum Mol Genet 13:659–667PubMedCrossRef
Zurück zum Zitat Vahsen N, Cande C, Briere JJ et al (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689PubMedCrossRef Vahsen N, Cande C, Briere JJ et al (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689PubMedCrossRef
Zurück zum Zitat Valsecchi F, Esseling JJ, Koopman WJ (2009) Calcium and ATP handling in human NADH:ubiquinone oxidoreductase deficiency. Biochim Biophys Acta 10 ePub Valsecchi F, Esseling JJ, Koopman WJ (2009) Calcium and ATP handling in human NADH:ubiquinone oxidoreductase deficiency. Biochim Biophys Acta 10 ePub
Zurück zum Zitat Verkaart S, Koopman WJ, Cheek J et al (2007a) Mitochondrial and cytosolic thiol redox state are not detectably altered in isolated human NADH:ubiquinone oxidoreductase deficiency. Biochim Biophys Acta 1772:1041–1051PubMed Verkaart S, Koopman WJ, Cheek J et al (2007a) Mitochondrial and cytosolic thiol redox state are not detectably altered in isolated human NADH:ubiquinone oxidoreductase deficiency. Biochim Biophys Acta 1772:1041–1051PubMed
Zurück zum Zitat Verkaart S, Koopman WJ, van Emst-de Vries SE (2007b) Superoxide production is inversely related to complex I activity in inherited complex I deficiency. Biochim Biophys Acta 1772:373–381PubMed Verkaart S, Koopman WJ, van Emst-de Vries SE (2007b) Superoxide production is inversely related to complex I activity in inherited complex I deficiency. Biochim Biophys Acta 1772:373–381PubMed
Zurück zum Zitat Visch HJ, Rutter GA, Koopman WJ et al (2004) Inhibition of mitochondrial Na+-Ca2+ exchange restores agonist-induced ATP production and Ca2+ handling in human complex I deficiency. J Biol Chem 279:40328–40336PubMedCrossRef Visch HJ, Rutter GA, Koopman WJ et al (2004) Inhibition of mitochondrial Na+-Ca2+ exchange restores agonist-induced ATP production and Ca2+ handling in human complex I deficiency. J Biol Chem 279:40328–40336PubMedCrossRef
Zurück zum Zitat Visch HJ, Koopman WJ, Leusink A et al (2006a) Decreased agonist-stimulated mitochondrial ATP production caused by a pathological reduction in endoplasmic reticulum calcium content in human complex I deficiency. Biochim Biophys Acta 1762:115–123PubMed Visch HJ, Koopman WJ, Leusink A et al (2006a) Decreased agonist-stimulated mitochondrial ATP production caused by a pathological reduction in endoplasmic reticulum calcium content in human complex I deficiency. Biochim Biophys Acta 1762:115–123PubMed
Zurück zum Zitat Visch HJ, Koopman WJ, Zeegers D (2006b) Ca2+-mobilizing agonists increase mitochondrial ATP production to accelerate cytosolic Ca2+ removal: aberrations in human complex I deficiency. Am J Physiol Cell Physiol 291:C308–C316PubMedCrossRef Visch HJ, Koopman WJ, Zeegers D (2006b) Ca2+-mobilizing agonists increase mitochondrial ATP production to accelerate cytosolic Ca2+ removal: aberrations in human complex I deficiency. Am J Physiol Cell Physiol 291:C308–C316PubMedCrossRef
Zurück zum Zitat Vogel R, Nijtmans L, Ugalde C et al (2004) Complex I assembly: a puzzling problem. Curr Opin Neurol 17:179–186PubMedCrossRef Vogel R, Nijtmans L, Ugalde C et al (2004) Complex I assembly: a puzzling problem. Curr Opin Neurol 17:179–186PubMedCrossRef
Zurück zum Zitat Willems PH, Valsecchi F, Distelmaier F et al (2008) Mitochondrial Ca2+ homeostasis in human NADH:ubiquinone oxidoreductase deficiency. Cell Calcium 44:123–133PubMedCrossRef Willems PH, Valsecchi F, Distelmaier F et al (2008) Mitochondrial Ca2+ homeostasis in human NADH:ubiquinone oxidoreductase deficiency. Cell Calcium 44:123–133PubMedCrossRef
Zurück zum Zitat Whishaw IQ, Kolb B (1983) Motor systems and regulatory systems In: Whishaw IQ, Kolb B (eds) The behavior of the laboratory rat. Oxford University Press, pp 121–245 Whishaw IQ, Kolb B (1983) Motor systems and regulatory systems In: Whishaw IQ, Kolb B (eds) The behavior of the laboratory rat. Oxford University Press, pp 121–245
Zurück zum Zitat Wispe JR, Warner BB, Clark JC et al (1992) Human Mn-superoxide dismutase in pulmonary epithelial cells of transgenic mice confers protection from oxygen injury. J Biol Chem 25267:23937–23941 Wispe JR, Warner BB, Clark JC et al (1992) Human Mn-superoxide dismutase in pulmonary epithelial cells of transgenic mice confers protection from oxygen injury. J Biol Chem 25267:23937–23941
Zurück zum Zitat Zeviani M, Spinazzola A, Carelli V (2003) Nuclear genes in mitochondrial disorders. Curr Opin Genet 13:262–270CrossRef Zeviani M, Spinazzola A, Carelli V (2003) Nuclear genes in mitochondrial disorders. Curr Opin Genet 13:262–270CrossRef
Zurück zum Zitat Zickermann V, Kerscher S, Zwicker K (2009) Architecture of complex I and its implications for electron transfer and proton pumping. Biochim Biophys Acta 6:574–583 Zickermann V, Kerscher S, Zwicker K (2009) Architecture of complex I and its implications for electron transfer and proton pumping. Biochim Biophys Acta 6:574–583
Metadaten
Titel
Mouse models for nuclear DNA-encoded mitochondrial complex I deficiency
verfasst von
Saskia Koene
Peter H. G. M. Willems
Peggy Roestenberg
Werner J. H. Koopman
Jan A. M. Smeitink
Publikationsdatum
01.04.2011
Verlag
Springer Netherlands
Erschienen in
Journal of Inherited Metabolic Disease / Ausgabe 2/2011
Print ISSN: 0141-8955
Elektronische ISSN: 1573-2665
DOI
https://doi.org/10.1007/s10545-009-9005-x

Weitere Artikel der Ausgabe 2/2011

Journal of Inherited Metabolic Disease 2/2011 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.