Skip to main content
Erschienen in: BMC Neurology 1/2014

Open Access 01.12.2014 | Debate

Moving beyond anti-amyloid therapy for the prevention and treatment of Alzheimer’s disease

verfasst von: Michael A Castello, John David Jeppson, Salvador Soriano

Erschienen in: BMC Neurology | Ausgabe 1/2014

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

High-profile Phase 3 clinical trials of bapineuzumab and solanezumab, antibodies targeted at amyloid-beta (Aβ) removal, have failed to meet their primary endpoints. Neither drug improves clinical outcomes in patients with late onset AD, joining a long list of unsuccessful attempts to treat AD with anti-amyloid therapies.

Discussion

These therapies are based on the assumption that Aβ accumulation is the primary pathogenic trigger of AD. Current evidence suggests that Aβ may actually accumulate as part of an adaptive response to long-term chronic brain stress stimuli that would make more suitable candidates for therapeutic intervention.

Summary

At this juncture it is no longer unreasonable to suggest that further iterations of anti-Aβ therapies should be halted. Clinicians and researchers should instead direct their attention toward greater understanding of the biological function of Aβ both in healthy and demented brains, as well as the involvement of long-term chronic exposure to stress in the etiology of AD.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s12883-014-0169-0) contains supplementary material, which is available to authorized users.

Competing interests

The authors have no competing interests to disclose.

Authors’ contributions

MAC, JDJ, and SS each contributed to the writing, editing, and revision of the manuscript. All authors read and approved the final manuscript.
Abkürzungen
AD
Alzheimer’s disease
FAD
Familial AD
Amyloid beta
NC
Normal cognition
NC-Aβ
Normal cognition with Aβ
NDF-AD
Neurodegeneration-first AD
AF-AD
Aβ-first AD

Background

According to reports published in the New England Journal of Medicine, the phase 3 clinical trials of two high-profile Alzheimer’s disease (AD) antibodies against the aggregation-prone peptide amyloid beta (Aβ), bapineuzumab and solanezumab, have failed to improve clinical outcomes in patients with late onset AD [1]-[3]. Along with their predecessors, these treatments have been informed by the long-standing amyloid hypothesis, and are the latest examples in a long list of unsuccessful attempts to treat AD with anti-amyloid therapies. Along with a chorus of others, we have previously argued against the assumption that Aβ accumulation is the primary early pathogenic trigger of AD [4]-[8]. An unintended consequence of that assumption, which contributes to the continued failure of anti-amyloid clinical trials, is that affirmative diagnosis of AD-type dementia can only occur when the presence of Aβ accumulation in the brain is confirmed. However, recent imaging studies confirm previous observations of Aβ accumulation in a significant proportion of non-demented individuals [4],[9],[10]. Conversely, a sizable proportion of patients clinically diagnosed with AD do not display Aβ accumulation-even though neurodegeneration is in progress [4],[11]. Remarkably, rather than concluding that Aβ status is not a reliable marker for the early stages of clinical AD, a consensus has been reached in which clinically diagnosed AD patients without Aβ are classified as not suffering from AD. This line of thought is not scientifically warranted, as there is no evidence to assume that clinical AD cases with and without Aβ accumulation are etiologically different. Nevertheless, it has been used, in the EXPEDITION 3 phase of the ongoing solanezumab trial, to justify the exclusion of approximately 25% of patients in the study-all of whom were clinically diagnosed with mild AD, but whose imaging data showed no Aβ accumulation [1],[3].

Discussion

We submit that such course of action is logically flawed on two different fronts. Firstly, current imaging methods cannot detect the soluble Aβ oligomers that solanezumab is thought to remove but that are, according to the amyloid hypothesis itself, the bona fide pathogenic trigger of the disease [12]-[14]. Thus, by eliminating all patients diagnosed with clinical AD but lacking Aβ plaques, all the subjects that would potentially benefit from the trial are effectively removed. Secondly, there is no obvious rationale for following patients in whom Aβ plaques are already detectable, since the presence of those plaques occurs, according to the amyloid hypothesis itself, too late in the disease for treatment to be effective and does not necessarily correlate with neurodegeneration [3],[12]-[18]. In effect, the current course of action helps to perpetuate a tautological argument: the a priori assumption that Aβ is the cause of AD is used to reject any clinical case in which no Aβ increase is apparent.
Figure 1 further illustrates what we believe is the flawed rationale on which anti-amyloid clinical trials are based. Cognitive status assessment and Aβ imaging data lead, according to the amyloid hypothesis, to a division of the population into four distinct groups (Figure 1A), which are: patients who are cognitively healthy (normal cognition, NC; Figure 1A, 4), patients who are cognitively healthy but accumulate Aβ (normal cognition with Aβ, NC-Aβ; Figure 1A, 2), patients with neurodegeneration who have clinical AD symptoms but no Aβ accumulation (neurodegeneration-first AD, NDF-AD; Figure 1A, 3), and finally, patients who have neurodegeneration, clinical AD symptoms, and Aβ accumulation (Aβ-first AD, AF-AD; Figure 1A, 5) [3],[4],[11]. According to the amyloid hypothesis, of all the observed populations, only the latter can be considered, by definition, as suffering from dementia of the AD type, and only group 4 should be considered as appropriate normal cognition controls in clinical trials.
The ongoing insistence on failing anti-amyloid therapies is anchored on the belief that late onset AD primarily develops from aberrant Aβ biology that results in its accumulation. When the amyloid hypothesis was formed, strong evidence clearly supported that assumption: Not only do all familial cases of AD involve APP mutations that cause dysregulated Aβ production, cases of trisomy 21 (Down syndrome; DS) in which APP was overexpressed also exhibit Aβ plaque formation identical to that of AD patients [19]-[21]. Since both FAD and DS exhibit pathology clearly linked to Aβ production, late onset AD-which also has abnormal Aβ-must also begin with Aβ. Such a conclusion has subsequently been supported by innumerable animal and cell culture studies in which pathology is induced by Aβ and rescued by its removal [22]-[25]. Given these findings, the thinking currently guiding AD clinical trials concludes that Aβ-modifying therapies simply must be capable of preventing late-onset AD if administered correctly.
However, this line of reasoning does not account for numerous other current observations. For example, while all cases of FAD can be linked to a relatively small number of mutations directly affecting APP processing, this is never the case with late-onset AD [26],[27]. In fact, in the largest genetic analyses of late-onset AD to date, the polymorphisms commonly observed are nearly all associated with cholesterol metabolism, endocytosis (an essential part of cholesterol processing), and inflammation [28]-[30] This evidence, together with imaging studies showing that Aβ accumulation can be uncoupled from disease initiation, strongly argue against Aβ as an early pathogenic trigger of late onset AD and, therefore, as a suitable therapeutic target [9]-[11].
In our view, resolving the apparent contradictions in evidence begins with abandoning the assumption that FAD and late onset AD are etiologically comparable. Doing so will help create the right context for the study of the role of Aβ in health and disease, a role we do not currently understand. In that regard, note that virtually every experimental in vitro and in vivo model demonstrating Aβ harm and subsequent improvement upon its removal is, at best, a model of FAD. By definition, these models begin with the overexpression of Aβ itself, a pathogenic course that does not occur in late onset AD [22]-[25]. In contrast, if FAD were considered not as an accelerated version of late onset AD, but rather as a subset of AD presentations that is etiologically different, we could begin to explore the bona fide pathogenic triggers of late onset AD and design evidence-based therapies.
In that regard, several hypotheses that are not amyloid-centric have been proposed, although few have gained significant traction [6],[31]-[35]. Unlike in the past, however, numerous independent researchers have now gathered sufficient information to strongly support a reworked conceptualization of late onset AD. Our recently proposed Adaptive Response Hypothesis synthesizes this work, proposing that Aβ may accumulate as part of an adaptive response to chronic brain stress stimuli [6]. These stress stimuli constitute the bona fide pathogenic triggers of late onset AD and, therefore, would be suitable candidates for therapeutic intervention [5]-[7],[32],[36]. In this model, illustrated in Figure 1B, the total population (Figure 1B, 1) can be affected by chronic stress stimuli (Figure 1B, 2) which may include, but are not limited to, oxidative stress, metabolic dysregulation (cholesterol homeostasis, insulin resistance, etc.), genetic factors, and inflammatory response [7],[36]. Each of these stimuli is capable of eliciting a response in which Aβ is produced, and the nature of that response (not the total amount of Aβ that may accumulate in parallel) determines progression into clinical AD [5],[6]. Ultimately this leads to the observed division, shown in Figure 1B, into individuals with normal cognition (NC; Figure 1B, 3) and those clinically diagnosed with AD (AD; Figure 1B, 4), both of which may be further divided into Aβ positive and Aβ negative subpopulations [6],[32].
According to this view, therapeutic approaches must address the biology of the chronic stressors that initiate the disease, not the Aβ accumulation that (unlike in FAD) may, or may not, occur during the course of the disease. This offers numerous potential avenues to explore in the battle against AD. In fact, research into aging, cholesterol regulation, and metabolic disorders such as diabetes all can potentially be applied to AD. Conceiving of the disease in this open-ended, systemic fashion will allow clinicians and scientists to identify new patterns and possibilities for therapy. For example, early research has shown that metabolism in the AD brain is aberrant in ways that are not currently looked for in the periphery [37],[38]. Following this pathway, early treatment intranasal insulin has actually shown some promise in treating cognitive decline [38]. Similarly, might drugs enhancing neural plasticity empower the brain’s stress response in old age? [39].
Finally, it is worth noting that anti-amyloid therapies may not simply result in neutral outcomes. Our hypothesis predicts that Aβ removal will interfere with brain homeostasis, and mounting evidence suggests that well-regulated Aβ is important for healthy brain functions such as memory formation-a function that is critical to clinical outcome measurements [40]-[43]. At the same time, even the most recent bapineuzumab trial continues to be limited by edema formation, a symptom highly associated with cerebral amyloid angiopathy, the damaging vascular amyloid deposition that often co-occurs with AD [2],[3],[44]. Thus, the possibility must be considered that current therapies designed around the bulk removal of Aβ may not simply fail, but be actively harmful by hindering the very functionality they hope to preserve.
In summary, millions of research dollars, both private and public, are annually expended on anti-Aβ therapies that do not work and are based on a logically flawed hypothesis. At this point in time it is no longer unreasonable to suggest that further iterations of anti-Aβ therapies may not be in the best interest of late onset AD patients. Clinicians and researchers should instead direct their attention toward better understanding of the biological function of Aβ in the healthy brain, and the ways in which chronic stress over decades can negatively affect the brain.

Summary

  • The authors contend that the amyloid cascade hypothesis is no longer supported by the majority of experimental evidence
  • Proposed elimination of patients from EXPEDITION 3 of the solanezumab Phase III trial based on Aβ imaging is fundamentally flawed
  • Aβ-centric therapeutic studies promote a tautological definition of Alzheimer’s disease in which the a priori assumption that Aβ is the primary causative factor is used to exclude patients exhibiting contrary symptoms
  • An adaptive response hypothesis summarizes a diverse body of experimental evidence and is able to account for all AD-related presentations
  • Such a hypothesis provides new opportunities for research and potential therapies that the amyloid cascade hypothesis does not

Acknowledgements

The authors are grateful to Kristy D. Howard for her support.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The Creative Commons Public Domain Dedication waiver (https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Competing interests

The authors have no competing interests to disclose.

Authors’ contributions

MAC, JDJ, and SS each contributed to the writing, editing, and revision of the manuscript. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S, Kieburtz K, Raman R, Sun X, Aisen PS, Siemers E, Liu-Seifert H, Mohs R: Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014, 370: 311-321. 10.1056/NEJMoa1312889.CrossRefPubMed Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S, Kieburtz K, Raman R, Sun X, Aisen PS, Siemers E, Liu-Seifert H, Mohs R: Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014, 370: 311-321. 10.1056/NEJMoa1312889.CrossRefPubMed
2.
Zurück zum Zitat Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, Sabbagh M, Honig LS, Porsteinsson AP, Ferris S, Reichert M, Ketter N, Nejadnik B, Guenzler V, Miloslavsky M, Wang D, Lu Y, Lull J, Tudor IC, Liu E, Grundman M, Yuen E, Black R, Brashear HR: Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014, 370: 322-333. 10.1056/NEJMoa1304839.CrossRefPubMedPubMedCentral Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, Sabbagh M, Honig LS, Porsteinsson AP, Ferris S, Reichert M, Ketter N, Nejadnik B, Guenzler V, Miloslavsky M, Wang D, Lu Y, Lull J, Tudor IC, Liu E, Grundman M, Yuen E, Black R, Brashear HR: Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014, 370: 322-333. 10.1056/NEJMoa1304839.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Karran E, Hardy J: Antiamyloid therapy for Alzheimer’s disease-Are we on the right road?. N Engl J Med. 2014, 370: 377-378. 10.1056/NEJMe1313943.CrossRefPubMed Karran E, Hardy J: Antiamyloid therapy for Alzheimer’s disease-Are we on the right road?. N Engl J Med. 2014, 370: 377-378. 10.1056/NEJMe1313943.CrossRefPubMed
4.
Zurück zum Zitat Jack CR, Wiste HJ, Weigand SD, Knopman DS, Lowe V, Vemuri P, Mielke MM, Jones DT, Senjem ML, Gunter JL, Gregg BE, Pankratz VS, Petersen RC: Amyloid-first and neurodegeneration-first profiles characterize incident amyloid PET positivity. Neurology. 2013, 81: 1732-1740. 10.1212/01.wnl.0000435556.21319.e4.CrossRefPubMedPubMedCentral Jack CR, Wiste HJ, Weigand SD, Knopman DS, Lowe V, Vemuri P, Mielke MM, Jones DT, Senjem ML, Gunter JL, Gregg BE, Pankratz VS, Petersen RC: Amyloid-first and neurodegeneration-first profiles characterize incident amyloid PET positivity. Neurology. 2013, 81: 1732-1740. 10.1212/01.wnl.0000435556.21319.e4.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Castello MA, Soriano S: Rational heterodoxy: cholesterol reformation of the amyloid doctrine. Ageing Res Rev. 2013, 12: 282-288. 10.1016/j.arr.2012.06.007.CrossRefPubMed Castello MA, Soriano S: Rational heterodoxy: cholesterol reformation of the amyloid doctrine. Ageing Res Rev. 2013, 12: 282-288. 10.1016/j.arr.2012.06.007.CrossRefPubMed
7.
Zurück zum Zitat Castello MA, Soriano S: On the origin of Alzheimer’s disease. Trials and tribulations of the amyloid hypothesis. Ageing Res Rev. 2014, 13C: 10-12. 10.1016/j.arr.2013.10.001.CrossRef Castello MA, Soriano S: On the origin of Alzheimer’s disease. Trials and tribulations of the amyloid hypothesis. Ageing Res Rev. 2014, 13C: 10-12. 10.1016/j.arr.2013.10.001.CrossRef
8.
Zurück zum Zitat Drachman DA: The amyloid hypothesis, time to move on: amyloid is the downstream result, not cause, of Alzheimer’s disease. Alzheimers Dement J Alzheimers Assoc. 2014, 10: 372-380. 10.1016/j.jalz.2013.11.003.CrossRef Drachman DA: The amyloid hypothesis, time to move on: amyloid is the downstream result, not cause, of Alzheimer’s disease. Alzheimers Dement J Alzheimers Assoc. 2014, 10: 372-380. 10.1016/j.jalz.2013.11.003.CrossRef
9.
Zurück zum Zitat Hulette CM, Welsh-Bohmer KA, Murray MG, Saunders AM, Mash DC, McIntyre LM: Neuropathological and neuropsychological changes in “normal” aging: evidence for preclinical Alzheimer disease in cognitively normal individuals. J Neuropathol Exp Neurol. 1998, 57: 1168-1174. 10.1097/00005072-199812000-00009.CrossRefPubMed Hulette CM, Welsh-Bohmer KA, Murray MG, Saunders AM, Mash DC, McIntyre LM: Neuropathological and neuropsychological changes in “normal” aging: evidence for preclinical Alzheimer disease in cognitively normal individuals. J Neuropathol Exp Neurol. 1998, 57: 1168-1174. 10.1097/00005072-199812000-00009.CrossRefPubMed
10.
Zurück zum Zitat Aizenstein HJ, Nebes RD, Saxton JA, Price JC, Mathis CA, Tsopelas ND, Ziolko SK, James JA, Snitz BE, Houck PR, Bi W, Cohen AD, Lopresti BJ, DeKosky ST, Halligan EM, Klunk WE: Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol. 2008, 65: 1509-1517. 10.1001/archneur.65.11.1509.CrossRefPubMedPubMedCentral Aizenstein HJ, Nebes RD, Saxton JA, Price JC, Mathis CA, Tsopelas ND, Ziolko SK, James JA, Snitz BE, Houck PR, Bi W, Cohen AD, Lopresti BJ, DeKosky ST, Halligan EM, Klunk WE: Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol. 2008, 65: 1509-1517. 10.1001/archneur.65.11.1509.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, Dickson DW, Duyckaerts C, Frosch MP, Masliah E, Mirra SS, Nelson PT, Schneider JA, Thal DR, Thies B, Trojanowski JQ, Vinters HV, Montine TJ: National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement J Alzheimers Assoc. 2012, 8: 1-13. 10.1016/j.jalz.2011.10.007.CrossRef Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, Dickson DW, Duyckaerts C, Frosch MP, Masliah E, Mirra SS, Nelson PT, Schneider JA, Thal DR, Thies B, Trojanowski JQ, Vinters HV, Montine TJ: National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement J Alzheimers Assoc. 2012, 8: 1-13. 10.1016/j.jalz.2011.10.007.CrossRef
12.
Zurück zum Zitat Holland JP, Liang SH, Rotstein BH, Collier TL, Stephenson NA, Greguric I, Vasdev N: Alternative approaches for PET radiotracer development in Alzheimer’s disease: imaging beyond plaque. J Label Compd Radiopharm. 2014, 57: 323-331. 10.1002/jlcr.3158.CrossRef Holland JP, Liang SH, Rotstein BH, Collier TL, Stephenson NA, Greguric I, Vasdev N: Alternative approaches for PET radiotracer development in Alzheimer’s disease: imaging beyond plaque. J Label Compd Radiopharm. 2014, 57: 323-331. 10.1002/jlcr.3158.CrossRef
13.
Zurück zum Zitat Selkoe DJ: Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res. 2008, 192: 106-113. 10.1016/j.bbr.2008.02.016.CrossRefPubMedPubMedCentral Selkoe DJ: Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res. 2008, 192: 106-113. 10.1016/j.bbr.2008.02.016.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Esparza TJ, Zhao H, Cirrito JR, Cairns NJ, Bateman RJ, Holtzman DM, Brody DL: Amyloid-β oligomerization in Alzheimer dementia versus high-pathology controls. Ann Neurol. 2013, 73: 104-119. 10.1002/ana.23748.CrossRefPubMed Esparza TJ, Zhao H, Cirrito JR, Cairns NJ, Bateman RJ, Holtzman DM, Brody DL: Amyloid-β oligomerization in Alzheimer dementia versus high-pathology controls. Ann Neurol. 2013, 73: 104-119. 10.1002/ana.23748.CrossRefPubMed
15.
Zurück zum Zitat Salloway S, Sperling R, Keren R, Porsteinsson AP, Van Dyck CH, Tariot PN, Gilman S, Arnold D, Abushakra S, Hernandez C, Crans G, Liang E, Quinn G, Bairu M, Pastrak A, Cedarbaum JM: A phase 2 randomized trial of ELND005, scyllo-inositol, in mild to moderate Alzheimer disease. Neurology. 2011, 77: 1253-1262. 10.1212/WNL.0b013e3182309fa5.CrossRefPubMedPubMedCentral Salloway S, Sperling R, Keren R, Porsteinsson AP, Van Dyck CH, Tariot PN, Gilman S, Arnold D, Abushakra S, Hernandez C, Crans G, Liang E, Quinn G, Bairu M, Pastrak A, Cedarbaum JM: A phase 2 randomized trial of ELND005, scyllo-inositol, in mild to moderate Alzheimer disease. Neurology. 2011, 77: 1253-1262. 10.1212/WNL.0b013e3182309fa5.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Golde TE, Schneider LS, Koo EH: Anti-aβ therapeutics in Alzheimer’s disease: the need for a paradigm shift. Neuron. 2011, 69: 203-213. 10.1016/j.neuron.2011.01.002.CrossRefPubMedPubMedCentral Golde TE, Schneider LS, Koo EH: Anti-aβ therapeutics in Alzheimer’s disease: the need for a paradigm shift. Neuron. 2011, 69: 203-213. 10.1016/j.neuron.2011.01.002.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Knopman DS, Parisi JE, Salviati A, Floriach-Robert M, Boeve BF, Ivnik RJ, Smith GE, Dickson DW, Johnson KA, Petersen LE, McDonald WC, Braak H, Petersen RC: Neuropathology of cognitively normal elderly. J Neuropathol Exp Neurol. 2003, 62: 1087-1095.CrossRefPubMed Knopman DS, Parisi JE, Salviati A, Floriach-Robert M, Boeve BF, Ivnik RJ, Smith GE, Dickson DW, Johnson KA, Petersen LE, McDonald WC, Braak H, Petersen RC: Neuropathology of cognitively normal elderly. J Neuropathol Exp Neurol. 2003, 62: 1087-1095.CrossRefPubMed
18.
Zurück zum Zitat Braak H, Thal DR, Ghebremedhin E, Del Tredici K: Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol. 2011, 70: 960-969. 10.1097/NEN.0b013e318232a379.CrossRefPubMed Braak H, Thal DR, Ghebremedhin E, Del Tredici K: Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol. 2011, 70: 960-969. 10.1097/NEN.0b013e318232a379.CrossRefPubMed
19.
Zurück zum Zitat Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K: Amyloid plaque core protein in Alzheimer disease and down syndrome. Proc Natl Acad Sci. 1985, 82: 4245-4249. 10.1073/pnas.82.12.4245.CrossRefPubMedPubMedCentral Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K: Amyloid plaque core protein in Alzheimer disease and down syndrome. Proc Natl Acad Sci. 1985, 82: 4245-4249. 10.1073/pnas.82.12.4245.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L: Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature. 1991, 349: 704-706. 10.1038/349704a0.CrossRefPubMed Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L: Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature. 1991, 349: 704-706. 10.1038/349704a0.CrossRefPubMed
21.
Zurück zum Zitat Mullan M, Crawford F, Axelman K, Houlden H, Lilius L, Winblad B, Lannfelt L: A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of β-amyloid. Nat Genet. 1992, 1: 345-347. 10.1038/ng0892-345.CrossRefPubMed Mullan M, Crawford F, Axelman K, Houlden H, Lilius L, Winblad B, Lannfelt L: A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of β-amyloid. Nat Genet. 1992, 1: 345-347. 10.1038/ng0892-345.CrossRefPubMed
22.
Zurück zum Zitat Jin M, Shepardson N, Yang T, Chen G, Walsh D, Selkoe DJ: Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc Natl Acad Sci U S A. 2011, 108: 5819-5824. 10.1073/pnas.1017033108.CrossRefPubMedPubMedCentral Jin M, Shepardson N, Yang T, Chen G, Walsh D, Selkoe DJ: Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc Natl Acad Sci U S A. 2011, 108: 5819-5824. 10.1073/pnas.1017033108.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Li C, Ebrahimi A, Schluesener H: Drug pipeline in neurodegeneration based on transgenic mice models of Alzheimer’s disease. Ageing Res Rev. 2013, 12: 116-140. 10.1016/j.arr.2012.09.002.CrossRefPubMed Li C, Ebrahimi A, Schluesener H: Drug pipeline in neurodegeneration based on transgenic mice models of Alzheimer’s disease. Ageing Res Rev. 2013, 12: 116-140. 10.1016/j.arr.2012.09.002.CrossRefPubMed
24.
Zurück zum Zitat Bloom GS: Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014, 71: 505-508. 10.1001/jamaneurol.2013.5847.CrossRefPubMed Bloom GS: Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014, 71: 505-508. 10.1001/jamaneurol.2013.5847.CrossRefPubMed
25.
Zurück zum Zitat Bignante EA, Heredia F, Morfini G, Lorenzo A: Amyloid β precursor protein as a molecular target for amyloid β-induced neuronal degeneration in Alzheimer’s disease. Neurobiol Aging. 2013, 34: 2525-2537. 10.1016/j.neurobiolaging.2013.04.021.CrossRefPubMedPubMedCentral Bignante EA, Heredia F, Morfini G, Lorenzo A: Amyloid β precursor protein as a molecular target for amyloid β-induced neuronal degeneration in Alzheimer’s disease. Neurobiol Aging. 2013, 34: 2525-2537. 10.1016/j.neurobiolaging.2013.04.021.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Hardy JA, Higgins GA: Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992, 256: 184-185. 10.1126/science.1566067.CrossRefPubMed Hardy JA, Higgins GA: Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992, 256: 184-185. 10.1126/science.1566067.CrossRefPubMed
27.
Zurück zum Zitat Blennow K, De Leon MJ, Zetterberg H: Alzheimer’s disease. Lancet. 2006, 368: 387-403. 10.1016/S0140-6736(06)69113-7.CrossRefPubMed Blennow K, De Leon MJ, Zetterberg H: Alzheimer’s disease. Lancet. 2006, 368: 387-403. 10.1016/S0140-6736(06)69113-7.CrossRefPubMed
28.
Zurück zum Zitat Naj AC, Jun G, Beecham GW, Wang L-S, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP, Crane PK, Larson EB, Bird TD, Boeve BF, Graff-Radford NR, De Jager PL, Evans D, Schneider JA, Carrasquillo MM, Ertekin-Taner N, Younkin SG, Cruchaga C, Kauwe JSK, Nowotny P, Kramer P, Hardy J, Huentelman MJ, Myers AJ, Barmada MM, Demirci FY, Baldwin CT, et al: Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet. 2011, 43: 436-441. 10.1038/ng.801.CrossRefPubMedPubMedCentral Naj AC, Jun G, Beecham GW, Wang L-S, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP, Crane PK, Larson EB, Bird TD, Boeve BF, Graff-Radford NR, De Jager PL, Evans D, Schneider JA, Carrasquillo MM, Ertekin-Taner N, Younkin SG, Cruchaga C, Kauwe JSK, Nowotny P, Kramer P, Hardy J, Huentelman MJ, Myers AJ, Barmada MM, Demirci FY, Baldwin CT, et al: Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet. 2011, 43: 436-441. 10.1038/ng.801.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Hollingworth P, Harold D, Sims R, Gerrish A, Lambert J-C, Carrasquillo MM, Abraham R, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Jones N, Stretton A, Thomas C, Richards A, Ivanov D, Widdowson C, Chapman J, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Brown KS, Passmore PA, Craig D, et al: Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet. 2011, 43: 429-435. 10.1038/ng.803.CrossRefPubMedPubMedCentral Hollingworth P, Harold D, Sims R, Gerrish A, Lambert J-C, Carrasquillo MM, Abraham R, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Jones N, Stretton A, Thomas C, Richards A, Ivanov D, Widdowson C, Chapman J, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Brown KS, Passmore PA, Craig D, et al: Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet. 2011, 43: 429-435. 10.1038/ng.803.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Bali J, Gheinani AH, Zurbriggen S, Rajendran L: Role of genes linked to sporadic Alzheimer’s disease risk in the production of β-amyloid peptides. Proc Natl Acad Sci U S A. 2012, 109: 15307-15311. 10.1073/pnas.1201632109.CrossRefPubMedPubMedCentral Bali J, Gheinani AH, Zurbriggen S, Rajendran L: Role of genes linked to sporadic Alzheimer’s disease risk in the production of β-amyloid peptides. Proc Natl Acad Sci U S A. 2012, 109: 15307-15311. 10.1073/pnas.1201632109.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Obrenovich ME, Joseph JA, Atwood CS, Perry G, Smith MA: Amyloid-β: a (life) preserver for the brain. Neurobiol Aging. 2002, 23: 1097-1099. 10.1016/S0197-4580(02)00038-6.CrossRefPubMed Obrenovich ME, Joseph JA, Atwood CS, Perry G, Smith MA: Amyloid-β: a (life) preserver for the brain. Neurobiol Aging. 2002, 23: 1097-1099. 10.1016/S0197-4580(02)00038-6.CrossRefPubMed
32.
Zurück zum Zitat Castellani RJ, Smith MA: Compounding artefacts with uncertainty, and an amyloid cascade hypothesis that is “too big to fail.”. J Pathol. 2011, 224: 147-152. 10.1002/path.2885.CrossRefPubMed Castellani RJ, Smith MA: Compounding artefacts with uncertainty, and an amyloid cascade hypothesis that is “too big to fail.”. J Pathol. 2011, 224: 147-152. 10.1002/path.2885.CrossRefPubMed
33.
Zurück zum Zitat Lee H, Zhu X, Castellani RJ, Nunomura A, Perry G, Smith MA: Amyloid-beta in Alzheimer disease: the null versus the alternate hypotheses. J Pharmacol Exp Ther. 2007, 321: 823-829. 10.1124/jpet.106.114009.CrossRefPubMed Lee H, Zhu X, Castellani RJ, Nunomura A, Perry G, Smith MA: Amyloid-beta in Alzheimer disease: the null versus the alternate hypotheses. J Pharmacol Exp Ther. 2007, 321: 823-829. 10.1124/jpet.106.114009.CrossRefPubMed
34.
Zurück zum Zitat Benilova I, Karran E, De Strooper B: The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci. 2012, 15: 349-357. 10.1038/nn.3028.CrossRefPubMed Benilova I, Karran E, De Strooper B: The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci. 2012, 15: 349-357. 10.1038/nn.3028.CrossRefPubMed
35.
Zurück zum Zitat Marchesi VT: Alzheimer’s dementia begins as a disease of small blood vessels, damaged by oxidative-induced inflammation and dysregulated amyloid metabolism: implications for early detection and therapy. FASEB J. 2011, 25: 5-13. 10.1096/fj.11-0102ufm.CrossRefPubMed Marchesi VT: Alzheimer’s dementia begins as a disease of small blood vessels, damaged by oxidative-induced inflammation and dysregulated amyloid metabolism: implications for early detection and therapy. FASEB J. 2011, 25: 5-13. 10.1096/fj.11-0102ufm.CrossRefPubMed
36.
Zurück zum Zitat Stranahan AM, Mattson MP: Recruiting adaptive cellular stress responses for successful brain ageing. Nat Rev Neurosci. 2012, 13: 209-216.PubMedPubMedCentral Stranahan AM, Mattson MP: Recruiting adaptive cellular stress responses for successful brain ageing. Nat Rev Neurosci. 2012, 13: 209-216.PubMedPubMedCentral
37.
Zurück zum Zitat Valdez CM, Phelix CF, Smith MA, Perry G, Santamaria F: Modeling cholesterol metabolism by gene expression profiling in the hippocampus. Mol Biosyst. 2011, 7: 1891-1901. 10.1039/c0mb00282h.CrossRefPubMedPubMedCentral Valdez CM, Phelix CF, Smith MA, Perry G, Santamaria F: Modeling cholesterol metabolism by gene expression profiling in the hippocampus. Mol Biosyst. 2011, 7: 1891-1901. 10.1039/c0mb00282h.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Freiherr J, Hallschmid M, Frey WH, Brünner YF, Chapman CD, Hölscher C, Craft S, De Felice FG, Benedict C: Intranasal insulin as a treatment for Alzheimer’s disease: a review of basic research and clinical evidence. CNS Drugs. 2013, 27: 505-514. 10.1007/s40263-013-0076-8.CrossRefPubMedPubMedCentral Freiherr J, Hallschmid M, Frey WH, Brünner YF, Chapman CD, Hölscher C, Craft S, De Felice FG, Benedict C: Intranasal insulin as a treatment for Alzheimer’s disease: a review of basic research and clinical evidence. CNS Drugs. 2013, 27: 505-514. 10.1007/s40263-013-0076-8.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Gervain J, Vines BW, Chen LM, Seo RJ, Hensch TK, Werker JF, Young AH: Valproate reopens critical-period learning of absolute pitch. Front Syst Neurosci. 2013, 7: 102-10.3389/fnsys.2013.00102.CrossRefPubMedPubMedCentral Gervain J, Vines BW, Chen LM, Seo RJ, Hensch TK, Werker JF, Young AH: Valproate reopens critical-period learning of absolute pitch. Front Syst Neurosci. 2013, 7: 102-10.3389/fnsys.2013.00102.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Puzzo D, Privitera L, Leznik E, Fà M, Staniszewski A, Palmeri A, Arancio O: Picomolar amyloid-β positively modulates synaptic plasticity and memory in hippocampus. J Neurosci. 2008, 28: 14537-14545. 10.1523/JNEUROSCI.2692-08.2008.CrossRefPubMedPubMedCentral Puzzo D, Privitera L, Leznik E, Fà M, Staniszewski A, Palmeri A, Arancio O: Picomolar amyloid-β positively modulates synaptic plasticity and memory in hippocampus. J Neurosci. 2008, 28: 14537-14545. 10.1523/JNEUROSCI.2692-08.2008.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Morley JE, Farr SA: The role of amyloid-beta in the regulation of memory. Biochem Pharmacol. 2014, 88: 479-485. 10.1016/j.bcp.2013.12.018.CrossRefPubMed Morley JE, Farr SA: The role of amyloid-beta in the regulation of memory. Biochem Pharmacol. 2014, 88: 479-485. 10.1016/j.bcp.2013.12.018.CrossRefPubMed
43.
Zurück zum Zitat Wang W, Mutka A-L, Zmrzljak UP, Rozman D, Tanila H, Gylling H, Remes AM, Huttunen HJ, Ikonen E: Amyloid precursor protein α- and β-cleaved ectodomains exert opposing control of cholesterol homeostasis via SREBP2. FASEB J Off Publ Fed Am Soc Exp Biol. 2014, 28: 849-860. Wang W, Mutka A-L, Zmrzljak UP, Rozman D, Tanila H, Gylling H, Remes AM, Huttunen HJ, Ikonen E: Amyloid precursor protein α- and β-cleaved ectodomains exert opposing control of cholesterol homeostasis via SREBP2. FASEB J Off Publ Fed Am Soc Exp Biol. 2014, 28: 849-860.
44.
Zurück zum Zitat Sperling R, Salloway S, Brooks DJ, Tampieri D, Barakos J, Fox NC, Raskind M, Sabbagh M, Honig LS, Porsteinsson AP, Lieberburg I, Arrighi HM, Morris KA, Lu Y, Liu E, Gregg KM, Brashear HR, Kinney GG, Black R, Grundman M: Amyloid-related imaging abnormalities in patients with Alzheimer’s disease treated with bapineuzumab: a retrospective analysis. Lancet Neurol. 2012, 11: 241-249. 10.1016/S1474-4422(12)70015-7.CrossRefPubMedPubMedCentral Sperling R, Salloway S, Brooks DJ, Tampieri D, Barakos J, Fox NC, Raskind M, Sabbagh M, Honig LS, Porsteinsson AP, Lieberburg I, Arrighi HM, Morris KA, Lu Y, Liu E, Gregg KM, Brashear HR, Kinney GG, Black R, Grundman M: Amyloid-related imaging abnormalities in patients with Alzheimer’s disease treated with bapineuzumab: a retrospective analysis. Lancet Neurol. 2012, 11: 241-249. 10.1016/S1474-4422(12)70015-7.CrossRefPubMedPubMedCentral
Metadaten
Titel
Moving beyond anti-amyloid therapy for the prevention and treatment of Alzheimer’s disease
verfasst von
Michael A Castello
John David Jeppson
Salvador Soriano
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
BMC Neurology / Ausgabe 1/2014
Elektronische ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-014-0169-0

Weitere Artikel der Ausgabe 1/2014

BMC Neurology 1/2014 Zur Ausgabe

Reviewer acknowledgement

Reviewer Acknowledgement 2013

Neu in den Fachgebieten Neurologie und Psychiatrie

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.