Skip to main content
Erschienen in: Sports Medicine 9/2021

26.04.2021 | Review Article

Muscle Glycogen Metabolism and High-Intensity Exercise Performance: A Narrative Review

verfasst von: Jeppe F. Vigh-Larsen, Niels Ørtenblad, Lawrence L. Spriet, Kristian Overgaard, Magni Mohr

Erschienen in: Sports Medicine | Ausgabe 9/2021

Einloggen, um Zugang zu erhalten

Abstract

Muscle glycogen is the main substrate during high-intensity exercise and large reductions can occur after relatively short durations. Moreover, muscle glycogen is stored heterogeneously and similarly displays a heterogeneous and fiber-type specific depletion pattern with utilization in both fast- and slow-twitch fibers during high-intensity exercise, with a higher degradation rate in the former. Thus, depletion of individual fast- and slow-twitch fibers has been demonstrated despite muscle glycogen at the whole-muscle level only being moderately lowered. In addition, muscle glycogen is stored in specific subcellular compartments, which have been demonstrated to be important for muscle function and should be considered as well as global muscle glycogen availability. In the present review, we discuss the importance of glycogen metabolism for single and intermittent bouts of high-intensity exercise and outline possible underlying mechanisms for a relationship between muscle glycogen and fatigue during these types of exercise. Traditionally this relationship has been attributed to a decreased ATP resynthesis rate due to inadequate substrate availability at the whole-muscle level, but emerging evidence points to a direct coupling between muscle glycogen and steps in the excitation–contraction coupling including altered muscle excitability and calcium kinetics.
Literatur
1.
Zurück zum Zitat Christensen EH, Hansen O. Arbeitsfähigkeit und ernärung (Physical performance and nutrition). Skandinavishes Archiv für Physiolgie. 1939;81:160–71.CrossRef Christensen EH, Hansen O. Arbeitsfähigkeit und ernärung (Physical performance and nutrition). Skandinavishes Archiv für Physiolgie. 1939;81:160–71.CrossRef
2.
Zurück zum Zitat Hargreaves M, Hawley JA, Jeukendrup A. Pre-exercise carbohydrate and fat ingestion: effects on metabolism and performance. J Sports Sci. 2004;22(1):31–8.PubMedCrossRef Hargreaves M, Hawley JA, Jeukendrup A. Pre-exercise carbohydrate and fat ingestion: effects on metabolism and performance. J Sports Sci. 2004;22(1):31–8.PubMedCrossRef
3.
Zurück zum Zitat Bergstrom J, Hermansen L, Hultman E, Saltin B. Diet, muscle glycogen and physical performance. Acta Physiol Scand. 1967;71(2):140–50.PubMedCrossRef Bergstrom J, Hermansen L, Hultman E, Saltin B. Diet, muscle glycogen and physical performance. Acta Physiol Scand. 1967;71(2):140–50.PubMedCrossRef
4.
Zurück zum Zitat Hermansen L, Hultman E, Saltin B. Muscle glycogen during prolonged severe exercise. Acta Physiol Scand. 1967;71(2):129–39.PubMedCrossRef Hermansen L, Hultman E, Saltin B. Muscle glycogen during prolonged severe exercise. Acta Physiol Scand. 1967;71(2):129–39.PubMedCrossRef
5.
Zurück zum Zitat Karlsson J, Saltin B. Diet, muscle glycogen, and endurance performance. J Appl Physiol. 1971;31(2):203–6.PubMedCrossRef Karlsson J, Saltin B. Diet, muscle glycogen, and endurance performance. J Appl Physiol. 1971;31(2):203–6.PubMedCrossRef
6.
Zurück zum Zitat Gollnick PD, Piehl K, Saubert CW, Armstrong RB, Saltin B. Diet, exercise, and glycogen changes in human muscle fibers. J Appl Physiol. 1972;33(4):421–5.PubMedCrossRef Gollnick PD, Piehl K, Saubert CW, Armstrong RB, Saltin B. Diet, exercise, and glycogen changes in human muscle fibers. J Appl Physiol. 1972;33(4):421–5.PubMedCrossRef
7.
Zurück zum Zitat Costill DL, Gollnick PD, Jansson ED, Saltin B, Stein EM. Glycogen depletion pattern in human muscle fibres during distance running. Acta Physiol Scand. 1973;89(3):374–83.PubMedCrossRef Costill DL, Gollnick PD, Jansson ED, Saltin B, Stein EM. Glycogen depletion pattern in human muscle fibres during distance running. Acta Physiol Scand. 1973;89(3):374–83.PubMedCrossRef
8.
Zurück zum Zitat Hargreaves M. Skeletal muscle metabolism during exercise in humans. Clin Exp Pharmacol Physiol. 2000;27(3):225–8.PubMedCrossRef Hargreaves M. Skeletal muscle metabolism during exercise in humans. Clin Exp Pharmacol Physiol. 2000;27(3):225–8.PubMedCrossRef
9.
Zurück zum Zitat Gaitanos GC, Williams C, Boobis LH, Brooks S. Human muscle metabolism during intermittent maximal exercise. J Appl Physiol (1985). 1993;75(2):712–9.CrossRef Gaitanos GC, Williams C, Boobis LH, Brooks S. Human muscle metabolism during intermittent maximal exercise. J Appl Physiol (1985). 1993;75(2):712–9.CrossRef
10.
Zurück zum Zitat Jensen TE, Richter EA. Regulation of glucose and glycogen metabolism during and after exercise. J Physiol. 2012;590(5):1069–76.PubMedCrossRef Jensen TE, Richter EA. Regulation of glucose and glycogen metabolism during and after exercise. J Physiol. 2012;590(5):1069–76.PubMedCrossRef
11.
Zurück zum Zitat Parolin ML, Chesley A, Matsos MP, Spriet LL, Jones NL, Heigenhauser GJ. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am J Physiol. 1999;277(5):E890-900.PubMed Parolin ML, Chesley A, Matsos MP, Spriet LL, Jones NL, Heigenhauser GJ. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am J Physiol. 1999;277(5):E890-900.PubMed
12.
Zurück zum Zitat Hultman E, Greenhaff PL. Skeletal muscle energy metabolism and fatigue during intense exercise in man. Sci Prog. 1991;75(298 Pt 3–4):361–70.PubMed Hultman E, Greenhaff PL. Skeletal muscle energy metabolism and fatigue during intense exercise in man. Sci Prog. 1991;75(298 Pt 3–4):361–70.PubMed
13.
Zurück zum Zitat Clausen T, Nielsen OB. The Na+, K(+)-pump and muscle contractility. Acta Physiol Scand. 1994;152(4):365–73.PubMedCrossRef Clausen T, Nielsen OB. The Na+, K(+)-pump and muscle contractility. Acta Physiol Scand. 1994;152(4):365–73.PubMedCrossRef
14.
Zurück zum Zitat Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88(1):287–332.PubMedCrossRef Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88(1):287–332.PubMedCrossRef
15.
Zurück zum Zitat Fitts RH. The role of acidosis in fatigue: pro perspective. Med Sci Sports Exerc. 2016;48(11):2335–8.PubMedCrossRef Fitts RH. The role of acidosis in fatigue: pro perspective. Med Sci Sports Exerc. 2016;48(11):2335–8.PubMedCrossRef
16.
Zurück zum Zitat Cheng AJ, Place N, Westerblad H. Molecular basis for exercise-induced fatigue: the importance of strictly controlled cellular Ca(2+) handling. Cold Spring Harb Perspect Med. 2018;8(2):a029710.PubMedPubMedCentralCrossRef Cheng AJ, Place N, Westerblad H. Molecular basis for exercise-induced fatigue: the importance of strictly controlled cellular Ca(2+) handling. Cold Spring Harb Perspect Med. 2018;8(2):a029710.PubMedPubMedCentralCrossRef
17.
18.
Zurück zum Zitat McKenna MJ, Bangsbo J, Renaud JM. Muscle K+, Na+, and Cl disturbances and Na+-K+ pump inactivation: implications for fatigue. J Appl Physiol (1985). 2008;104(1):288–95.CrossRef McKenna MJ, Bangsbo J, Renaud JM. Muscle K+, Na+, and Cl disturbances and Na+-K+ pump inactivation: implications for fatigue. J Appl Physiol (1985). 2008;104(1):288–95.CrossRef
19.
Zurück zum Zitat Vigh-Larsen JF, Ermidis G, Rago V, Randers MB, Fransson D, Nielsen JL, et al. Muscle metabolism and fatigue during simulated ice hockey match-play in elite players. Med Sci Sports Exerc. 2020;52(10):2162–71.PubMedCrossRef Vigh-Larsen JF, Ermidis G, Rago V, Randers MB, Fransson D, Nielsen JL, et al. Muscle metabolism and fatigue during simulated ice hockey match-play in elite players. Med Sci Sports Exerc. 2020;52(10):2162–71.PubMedCrossRef
20.
Zurück zum Zitat Gollnick PD, Armstrong RB, Sembrowich WL, Shepherd RE, Saltin B. Glycogen depletion pattern in human skeletal muscle fibers after heavy exercise. J Appl Physiol. 1973;34(5):615–8.PubMedCrossRef Gollnick PD, Armstrong RB, Sembrowich WL, Shepherd RE, Saltin B. Glycogen depletion pattern in human skeletal muscle fibers after heavy exercise. J Appl Physiol. 1973;34(5):615–8.PubMedCrossRef
21.
Zurück zum Zitat Nielsen J, Ørtenblad N. Physiological aspects of the subcellular localization of glycogen in skeletal muscle. Appl Physiol Nutr Metab. 2013;38(2):91–9.PubMedCrossRef Nielsen J, Ørtenblad N. Physiological aspects of the subcellular localization of glycogen in skeletal muscle. Appl Physiol Nutr Metab. 2013;38(2):91–9.PubMedCrossRef
23.
Zurück zum Zitat Marchand I, Chorneyko K, Tarnopolsky M, Hamilton S, Shearer J, Potvin J, et al. Quantification of subcellular glycogen in resting human muscle: granule size, number, and location. J Appl Physiol (1985). 2002;93(5):1598–607.CrossRef Marchand I, Chorneyko K, Tarnopolsky M, Hamilton S, Shearer J, Potvin J, et al. Quantification of subcellular glycogen in resting human muscle: granule size, number, and location. J Appl Physiol (1985). 2002;93(5):1598–607.CrossRef
24.
Zurück zum Zitat Friden J, Seger J, Ekblom B. Topographical localization of muscle glycogen: an ultrahistochemical study in the human vastus lateralis. Acta Physiol Scand. 1989;135(3):381–91.PubMedCrossRef Friden J, Seger J, Ekblom B. Topographical localization of muscle glycogen: an ultrahistochemical study in the human vastus lateralis. Acta Physiol Scand. 1989;135(3):381–91.PubMedCrossRef
25.
Zurück zum Zitat Friden J, Seger J, Ekblom B. Implementation of periodic acid-thiosemicarbazide-silver proteinate staining for ultrastructural assessment of muscle glycogen utilization during exercise. Cell Tissue Res. 1985;242(1):229–32.PubMedCrossRef Friden J, Seger J, Ekblom B. Implementation of periodic acid-thiosemicarbazide-silver proteinate staining for ultrastructural assessment of muscle glycogen utilization during exercise. Cell Tissue Res. 1985;242(1):229–32.PubMedCrossRef
26.
Zurück zum Zitat Sjostrom M, Friden J, Ekblom B. Fine structural details of human muscle fibres after fibre type specific glycogen depletion. Histochemistry. 1982;76(4):425–38.PubMedCrossRef Sjostrom M, Friden J, Ekblom B. Fine structural details of human muscle fibres after fibre type specific glycogen depletion. Histochemistry. 1982;76(4):425–38.PubMedCrossRef
27.
Zurück zum Zitat Chin ER, Allen DG. Effects of reduced muscle glycogen concentration on force, Ca2+ release and contractile protein function in intact mouse skeletal muscle. J Physiol. 1997;498(Pt 1):17–29.PubMedPubMedCentralCrossRef Chin ER, Allen DG. Effects of reduced muscle glycogen concentration on force, Ca2+ release and contractile protein function in intact mouse skeletal muscle. J Physiol. 1997;498(Pt 1):17–29.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Ørtenblad N, Nielsen J, Saltin B, Holmberg HC. Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle. J Physiol. 2011;589(Pt 3):711–25.PubMedCrossRef Ørtenblad N, Nielsen J, Saltin B, Holmberg HC. Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle. J Physiol. 2011;589(Pt 3):711–25.PubMedCrossRef
29.
Zurück zum Zitat Bangsbo J, Graham TE, Kiens B, Saltin B. Elevated muscle glycogen and anaerobic energy production during exhaustive exercise in man. J Physiol. 1992;451:205–27.PubMedPubMedCentralCrossRef Bangsbo J, Graham TE, Kiens B, Saltin B. Elevated muscle glycogen and anaerobic energy production during exhaustive exercise in man. J Physiol. 1992;451:205–27.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Hargreaves M, Finn JP, Withers RT, Halbert JA, Scroop GC, Mackay M, et al. Effect of muscle glycogen availability on maximal exercise performance. Eur J Appl Physiol Occup Physiol. 1997;75(2):188–92.PubMedCrossRef Hargreaves M, Finn JP, Withers RT, Halbert JA, Scroop GC, Mackay M, et al. Effect of muscle glycogen availability on maximal exercise performance. Eur J Appl Physiol Occup Physiol. 1997;75(2):188–92.PubMedCrossRef
31.
Zurück zum Zitat Balsom PD, Gaitanos GC, Soderlund K, Ekblom B. High-intensity exercise and muscle glycogen availability in humans. Acta Physiol Scand. 1999;165(4):337–45.PubMedCrossRef Balsom PD, Gaitanos GC, Soderlund K, Ekblom B. High-intensity exercise and muscle glycogen availability in humans. Acta Physiol Scand. 1999;165(4):337–45.PubMedCrossRef
32.
Zurück zum Zitat Sahlin K, Tonkonogi M, Soderlund K. Energy supply and muscle fatigue in humans. Acta Physiol Scand. 1998;162(3):261–6.PubMedCrossRef Sahlin K, Tonkonogi M, Soderlund K. Energy supply and muscle fatigue in humans. Acta Physiol Scand. 1998;162(3):261–6.PubMedCrossRef
33.
Zurück zum Zitat Green HJ. How important is endogenous muscle glycogen to fatigue in prolonged exercise? Can J Physiol Pharmacol. 1991;69(2):290–7.PubMedCrossRef Green HJ. How important is endogenous muscle glycogen to fatigue in prolonged exercise? Can J Physiol Pharmacol. 1991;69(2):290–7.PubMedCrossRef
34.
Zurück zum Zitat Jensen R, Nielsen J, Ørtenblad N. Inhibition of glycogenolysis prolongs action potential repriming period and impairs muscle function in rat skeletal muscle. J Physiol. 2020;598(4):789–803.PubMedCrossRef Jensen R, Nielsen J, Ørtenblad N. Inhibition of glycogenolysis prolongs action potential repriming period and impairs muscle function in rat skeletal muscle. J Physiol. 2020;598(4):789–803.PubMedCrossRef
35.
Zurück zum Zitat Watanabe D, Wada M. Effects of reduced muscle glycogen on excitation-contraction coupling in rat fast-twitch muscle: a glycogen removal study. J Muscle Res Cell Motil. 2019;40(3–4):353–64.PubMedCrossRef Watanabe D, Wada M. Effects of reduced muscle glycogen on excitation-contraction coupling in rat fast-twitch muscle: a glycogen removal study. J Muscle Res Cell Motil. 2019;40(3–4):353–64.PubMedCrossRef
36.
Zurück zum Zitat Dutka TL, Lamb GD. Na+-K+ pumps in the transverse tubular system of skeletal muscle fibers preferentially use ATP from glycolysis. Am J Physiol Cell Physiol. 2007;293(3):C967–77.PubMedCrossRef Dutka TL, Lamb GD. Na+-K+ pumps in the transverse tubular system of skeletal muscle fibers preferentially use ATP from glycolysis. Am J Physiol Cell Physiol. 2007;293(3):C967–77.PubMedCrossRef
37.
Zurück zum Zitat Helander I, Westerblad H, Katz A. Effects of glucose on contractile function, [Ca2+]i, and glycogen in isolated mouse skeletal muscle. Am J Physiol Cell Physiol. 2002;282(6):C1306–12.PubMedCrossRef Helander I, Westerblad H, Katz A. Effects of glucose on contractile function, [Ca2+]i, and glycogen in isolated mouse skeletal muscle. Am J Physiol Cell Physiol. 2002;282(6):C1306–12.PubMedCrossRef
38.
Zurück zum Zitat Kabbara AA, Nguyen LT, Stephenson GM, Allen DG. Intracellular calcium during fatigue of cane toad skeletal muscle in the absence of glucose. J Muscle Res Cell Motil. 2000;21(5):481–9.PubMedCrossRef Kabbara AA, Nguyen LT, Stephenson GM, Allen DG. Intracellular calcium during fatigue of cane toad skeletal muscle in the absence of glucose. J Muscle Res Cell Motil. 2000;21(5):481–9.PubMedCrossRef
39.
Zurück zum Zitat Nielsen J, Schroder HD, Rix CG, Ørtenblad N. Distinct effects of subcellular glycogen localization on tetanic relaxation time and endurance in mechanically skinned rat skeletal muscle fibres. J Physiol. 2009;587(Pt 14):3679–90.PubMedPubMedCentralCrossRef Nielsen J, Schroder HD, Rix CG, Ørtenblad N. Distinct effects of subcellular glycogen localization on tetanic relaxation time and endurance in mechanically skinned rat skeletal muscle fibres. J Physiol. 2009;587(Pt 14):3679–90.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Hearris MA, Hammond KM, Fell JM, Morton JP. Regulation of muscle glycogen metabolism during exercise: implications for endurance performance and training adaptations. Nutrients. 2018;10(3):298.PubMedCentralCrossRef Hearris MA, Hammond KM, Fell JM, Morton JP. Regulation of muscle glycogen metabolism during exercise: implications for endurance performance and training adaptations. Nutrients. 2018;10(3):298.PubMedCentralCrossRef
42.
Zurück zum Zitat Areta JL, Hopkins WG. Skeletal muscle glycogen content at rest and during endurance exercise in humans: a meta-analysis. Sports Med. 2018;48(9):2091–102.PubMedCrossRef Areta JL, Hopkins WG. Skeletal muscle glycogen content at rest and during endurance exercise in humans: a meta-analysis. Sports Med. 2018;48(9):2091–102.PubMedCrossRef
43.
Zurück zum Zitat Saltin B. Metabolic fundamentals in exercise. Med Sci Sports. 1973;5(3):137–46.PubMed Saltin B. Metabolic fundamentals in exercise. Med Sci Sports. 1973;5(3):137–46.PubMed
44.
Zurück zum Zitat Saltin B, Karlsson J. Muscle glycogen utilization during work of different intensities. In: Pernow B, Saltin B, editors. Muscle metabolism during exercise. New York: Plenum pub; 1971. p. 289–99.CrossRef Saltin B, Karlsson J. Muscle glycogen utilization during work of different intensities. In: Pernow B, Saltin B, editors. Muscle metabolism during exercise. New York: Plenum pub; 1971. p. 289–99.CrossRef
45.
Zurück zum Zitat Bogdanis GC, Nevill ME, Lakomy HK, Boobis LH. Power output and muscle metabolism during and following recovery from 10 and 20 s of maximal sprint exercise in humans. Acta Physiol Scand. 1998;163(3):261–72.PubMedCrossRef Bogdanis GC, Nevill ME, Lakomy HK, Boobis LH. Power output and muscle metabolism during and following recovery from 10 and 20 s of maximal sprint exercise in humans. Acta Physiol Scand. 1998;163(3):261–72.PubMedCrossRef
46.
Zurück zum Zitat Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol (1985). 1996;80(3):876–84.CrossRef Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol (1985). 1996;80(3):876–84.CrossRef
47.
Zurück zum Zitat Jones NL, McCartney N, Graham T, Spriet LL, Kowalchuk JM, Heigenhauser GJ, et al. Muscle performance and metabolism in maximal isokinetic cycling at slow and fast speeds. J Appl Physiol (1985). 1985;59(1):132–6.PubMedCrossRef Jones NL, McCartney N, Graham T, Spriet LL, Kowalchuk JM, Heigenhauser GJ, et al. Muscle performance and metabolism in maximal isokinetic cycling at slow and fast speeds. J Appl Physiol (1985). 1985;59(1):132–6.PubMedCrossRef
48.
Zurück zum Zitat Greenhaff PL, Nevill ME, Soderlund K, Bodin K, Boobis LH, Williams C, et al. The metabolic responses of human type I and II muscle fibres during maximal treadmill sprinting. J Physiol. 1994;478(Pt 1):149–55.PubMedPubMedCentralCrossRef Greenhaff PL, Nevill ME, Soderlund K, Bodin K, Boobis LH, Williams C, et al. The metabolic responses of human type I and II muscle fibres during maximal treadmill sprinting. J Physiol. 1994;478(Pt 1):149–55.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Spriet LL. Anaerobic metabolism in human skeletal muscle during short-term, intense activity. Can J Physiol Pharmacol. 1992;70(1):157–65.PubMedCrossRef Spriet LL. Anaerobic metabolism in human skeletal muscle during short-term, intense activity. Can J Physiol Pharmacol. 1992;70(1):157–65.PubMedCrossRef
50.
Zurück zum Zitat Spriet LL, Lindinger MI, McKelvie RS, Heigenhauser GJ, Jones NL. Muscle glycogenolysis and H+ concentration during maximal intermittent cycling. J Appl Physiol (1985). 1989;66(1):8–13.CrossRef Spriet LL, Lindinger MI, McKelvie RS, Heigenhauser GJ, Jones NL. Muscle glycogenolysis and H+ concentration during maximal intermittent cycling. J Appl Physiol (1985). 1989;66(1):8–13.CrossRef
51.
Zurück zum Zitat Vollestad NK, Tabata I, Medbo JI. Glycogen breakdown in different human muscle fibre types during exhaustive exercise of short duration. Acta Physiol Scand. 1992;144(2):135–41.PubMedCrossRef Vollestad NK, Tabata I, Medbo JI. Glycogen breakdown in different human muscle fibre types during exhaustive exercise of short duration. Acta Physiol Scand. 1992;144(2):135–41.PubMedCrossRef
52.
Zurück zum Zitat Vollestad NK, Blom PC. Effect of varying exercise intensity on glycogen depletion in human muscle fibres. Acta Physiol Scand. 1985;125(3):395–405.PubMedCrossRef Vollestad NK, Blom PC. Effect of varying exercise intensity on glycogen depletion in human muscle fibres. Acta Physiol Scand. 1985;125(3):395–405.PubMedCrossRef
53.
Zurück zum Zitat Vollestad NK, Vaage O, Hermansen L. Muscle glycogen depletion patterns in type I and subgroups of type II fibres during prolonged severe exercise in man. Acta Physiol Scand. 1984;122(4):433–41.PubMedCrossRef Vollestad NK, Vaage O, Hermansen L. Muscle glycogen depletion patterns in type I and subgroups of type II fibres during prolonged severe exercise in man. Acta Physiol Scand. 1984;122(4):433–41.PubMedCrossRef
54.
Zurück zum Zitat Gollnick PD, Armstrong RB, Saubert CW, Sembrowich WL, Shepherd RE, Saltin B. Glycogen depletion patterns in human skeletal muscle fibers during prolonged work. Pflugers Arch. 1973;344(1):1–12.PubMedCrossRef Gollnick PD, Armstrong RB, Saubert CW, Sembrowich WL, Shepherd RE, Saltin B. Glycogen depletion patterns in human skeletal muscle fibers during prolonged work. Pflugers Arch. 1973;344(1):1–12.PubMedCrossRef
55.
Zurück zum Zitat Essen B. Intramuscular substrate utilization during prolonged exercise. Ann N Y Acad Sci. 1977;301:30–44.PubMedCrossRef Essen B. Intramuscular substrate utilization during prolonged exercise. Ann N Y Acad Sci. 1977;301:30–44.PubMedCrossRef
56.
Zurück zum Zitat Krustrup P, Soderlund K, Mohr M, Gonzalez-Alonso J, Bangsbo J. Recruitment of fibre types and quadriceps muscle portions during repeated, intense knee-extensor exercise in humans. Pflugers Arch. 2004;449(1):56–65.PubMedCrossRef Krustrup P, Soderlund K, Mohr M, Gonzalez-Alonso J, Bangsbo J. Recruitment of fibre types and quadriceps muscle portions during repeated, intense knee-extensor exercise in humans. Pflugers Arch. 2004;449(1):56–65.PubMedCrossRef
57.
Zurück zum Zitat Krustrup P, Mohr M, Steensberg A, Bencke J, Kjaer M, Bangsbo J. Muscle and blood metabolites during a soccer game: implications for sprint performance. Med Sci Sports Exerc. 2006;38(6):1165–74.PubMedCrossRef Krustrup P, Mohr M, Steensberg A, Bencke J, Kjaer M, Bangsbo J. Muscle and blood metabolites during a soccer game: implications for sprint performance. Med Sci Sports Exerc. 2006;38(6):1165–74.PubMedCrossRef
58.
Zurück zum Zitat Ball-Burnett M, Green HJ, Houston ME. Energy metabolism in human slow and fast twitch fibres during prolonged cycle exercise. J Physiol. 1991;437:257–67.PubMedPubMedCentralCrossRef Ball-Burnett M, Green HJ, Houston ME. Energy metabolism in human slow and fast twitch fibres during prolonged cycle exercise. J Physiol. 1991;437:257–67.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Gollnick PD, Piehl K, Saltin B. Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J Physiol. 1974;241(1):45–57.PubMedPubMedCentralCrossRef Gollnick PD, Piehl K, Saltin B. Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J Physiol. 1974;241(1):45–57.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Kristensen DE, Albers PH, Prats C, Baba O, Birk JB, Wojtaszewski JF. Human muscle fibre type-specific regulation of AMPK and downstream targets by exercise. J Physiol. 2015;593(8):2053–69.PubMedPubMedCentralCrossRef Kristensen DE, Albers PH, Prats C, Baba O, Birk JB, Wojtaszewski JF. Human muscle fibre type-specific regulation of AMPK and downstream targets by exercise. J Physiol. 2015;593(8):2053–69.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Norman B, Sollevi A, Jansson E. Increased IMP content in glycogen-depleted muscle fibres during submaximal exercise in man. Acta Physiol Scand. 1988;133(1):97–100.PubMedCrossRef Norman B, Sollevi A, Jansson E. Increased IMP content in glycogen-depleted muscle fibres during submaximal exercise in man. Acta Physiol Scand. 1988;133(1):97–100.PubMedCrossRef
62.
Zurück zum Zitat Sahlin K, Soderlund K, Tonkonogi M, Hirakoba K. Phosphocreatine content in single fibers of human muscle after sustained submaximal exercise. Am J Physiol. 1997;273(1 Pt 1):C172–8.PubMedCrossRef Sahlin K, Soderlund K, Tonkonogi M, Hirakoba K. Phosphocreatine content in single fibers of human muscle after sustained submaximal exercise. Am J Physiol. 1997;273(1 Pt 1):C172–8.PubMedCrossRef
63.
Zurück zum Zitat Karatzaferi C, de Haan A, Ferguson RA, van Mechelen W, Sargeant AJ. Phosphocreatine and ATP content in human single muscle fibres before and after maximum dynamic exercise. Pflugers Arch. 2001;442(3):467–74.PubMedCrossRef Karatzaferi C, de Haan A, Ferguson RA, van Mechelen W, Sargeant AJ. Phosphocreatine and ATP content in human single muscle fibres before and after maximum dynamic exercise. Pflugers Arch. 2001;442(3):467–74.PubMedCrossRef
64.
Zurück zum Zitat Ørtenblad N, Nielsen J. Muscle glycogen and cell function—location, location, location. Scand J Med Sci Sports. 2015;25(Suppl 4):34–40.PubMedCrossRef Ørtenblad N, Nielsen J. Muscle glycogen and cell function—location, location, location. Scand J Med Sci Sports. 2015;25(Suppl 4):34–40.PubMedCrossRef
65.
Zurück zum Zitat Wanson JC, Drochmans P. Role of the sarcoplasmic reticulum in glycogen metabolism. Binding of phosphorylase, phosphorylase kinase, and primer complexes to the sarcovesicles of rabbit skeletal muscle. J Cell Biol. 1972;54(2):206–24.PubMedPubMedCentralCrossRef Wanson JC, Drochmans P. Role of the sarcoplasmic reticulum in glycogen metabolism. Binding of phosphorylase, phosphorylase kinase, and primer complexes to the sarcovesicles of rabbit skeletal muscle. J Cell Biol. 1972;54(2):206–24.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Wanson JC, Drochmans P. Rabbit skeletal muscle glycogen. A morphological and biochemical study of glycogen beta-particles isolated by the precipitation-centrifugation method. J Cell Biol. 1968;38(1):130–50.PubMedPubMedCentralCrossRef Wanson JC, Drochmans P. Rabbit skeletal muscle glycogen. A morphological and biochemical study of glycogen beta-particles isolated by the precipitation-centrifugation method. J Cell Biol. 1968;38(1):130–50.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Nielsen J, Cheng AJ, Ørtenblad N, Westerblad H. Subcellular distribution of glycogen and decreased tetanic Ca2+ in fatigued single intact mouse muscle fibres. J Physiol. 2014;592(9):2003–12.PubMedPubMedCentralCrossRef Nielsen J, Cheng AJ, Ørtenblad N, Westerblad H. Subcellular distribution of glycogen and decreased tetanic Ca2+ in fatigued single intact mouse muscle fibres. J Physiol. 2014;592(9):2003–12.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Jensen R, Ørtenblad N, Stausholm MH, Skjaerbaek MC, Larsen DN, Hansen M, et al. Heterogeneity in subcellular muscle glycogen utilisation during exercise impacts endurance capacity in men. J Physiol. 2020;598(19):4271–92.PubMedCrossRef Jensen R, Ørtenblad N, Stausholm MH, Skjaerbaek MC, Larsen DN, Hansen M, et al. Heterogeneity in subcellular muscle glycogen utilisation during exercise impacts endurance capacity in men. J Physiol. 2020;598(19):4271–92.PubMedCrossRef
69.
Zurück zum Zitat Gejl KD, Ørtenblad N, Andersson E, Plomgaard P, Holmberg HC, Nielsen J. Local depletion of glycogen with supramaximal exercise in human skeletal muscle fibres. J Physiol. 2017;595(9):2809–21.PubMedCrossRef Gejl KD, Ørtenblad N, Andersson E, Plomgaard P, Holmberg HC, Nielsen J. Local depletion of glycogen with supramaximal exercise in human skeletal muscle fibres. J Physiol. 2017;595(9):2809–21.PubMedCrossRef
70.
Zurück zum Zitat Nielsen J, Holmberg HC, Schroder HD, Saltin B, Ørtenblad N. Human skeletal muscle glycogen utilization in exhaustive exercise: role of subcellular localization and fibre type. J Physiol. 2011;589(Pt 11):2871–85.PubMedPubMedCentralCrossRef Nielsen J, Holmberg HC, Schroder HD, Saltin B, Ørtenblad N. Human skeletal muscle glycogen utilization in exhaustive exercise: role of subcellular localization and fibre type. J Physiol. 2011;589(Pt 11):2871–85.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Marchand I, Tarnopolsky M, Adamo KB, Bourgeois JM, Chorneyko K, Graham TE. Quantitative assessment of human muscle glycogen granules size and number in subcellular locations during recovery from prolonged exercise. J Physiol. 2007;580(Pt. 2):617–28.PubMedPubMedCentralCrossRef Marchand I, Tarnopolsky M, Adamo KB, Bourgeois JM, Chorneyko K, Graham TE. Quantitative assessment of human muscle glycogen granules size and number in subcellular locations during recovery from prolonged exercise. J Physiol. 2007;580(Pt. 2):617–28.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Hokken R, Laugesen S, Aagaard P, Suetta C, Frandsen U, Ørtenblad N, et al. Subcellular localization- and fibre type-dependent utilization of muscle glycogen during heavy resistance exercise in elite power and Olympic weightlifters. Acta Physiol (Oxf). 2021;231(2):e13561. Hokken R, Laugesen S, Aagaard P, Suetta C, Frandsen U, Ørtenblad N, et al. Subcellular localization- and fibre type-dependent utilization of muscle glycogen during heavy resistance exercise in elite power and Olympic weightlifters. Acta Physiol (Oxf). 2021;231(2):e13561.
73.
Zurück zum Zitat Stephenson DG, Nguyen LT, Stephenson GM. Glycogen content and excitation-contraction coupling in mechanically skinned muscle fibres of the cane toad. J Physiol. 1999;519(Pt 1):177–87.PubMedPubMedCentralCrossRef Stephenson DG, Nguyen LT, Stephenson GM. Glycogen content and excitation-contraction coupling in mechanically skinned muscle fibres of the cane toad. J Physiol. 1999;519(Pt 1):177–87.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Barnes M, Gibson LM, Stephenson DG. Increased muscle glycogen content is associated with increased capacity to respond to T-system depolarisation in mechanically skinned skeletal muscle fibres from the rat. Pflugers Arch. 2001;442(1):101–6.PubMedCrossRef Barnes M, Gibson LM, Stephenson DG. Increased muscle glycogen content is associated with increased capacity to respond to T-system depolarisation in mechanically skinned skeletal muscle fibres from the rat. Pflugers Arch. 2001;442(1):101–6.PubMedCrossRef
75.
Zurück zum Zitat Symons JD, Jacobs I. High-intensity exercise performance is not impaired by low intramuscular glycogen. Med Sci Sports Exerc. 1989;21(5):550–7.PubMedCrossRef Symons JD, Jacobs I. High-intensity exercise performance is not impaired by low intramuscular glycogen. Med Sci Sports Exerc. 1989;21(5):550–7.PubMedCrossRef
76.
Zurück zum Zitat Greenhaff PL, Gleeson M, Maughan RJ. Diet-induced metabolic acidosis and the performance of high intensity exercise in man. Eur J Appl Physiol Occup Physiol. 1988;57(5):583–90.PubMedCrossRef Greenhaff PL, Gleeson M, Maughan RJ. Diet-induced metabolic acidosis and the performance of high intensity exercise in man. Eur J Appl Physiol Occup Physiol. 1988;57(5):583–90.PubMedCrossRef
77.
Zurück zum Zitat Greenhaff PL, Gleeson M, Maughan RJ. The effects of dietary manipulation on blood acid-base status and the performance of high intensity exercise. Eur J Appl Physiol Occup Physiol. 1987;56(3):331–7.PubMedCrossRef Greenhaff PL, Gleeson M, Maughan RJ. The effects of dietary manipulation on blood acid-base status and the performance of high intensity exercise. Eur J Appl Physiol Occup Physiol. 1987;56(3):331–7.PubMedCrossRef
78.
Zurück zum Zitat Greenhaff PL, Gleeson M, Whiting PH, Maughan RJ. Dietary composition and acid-base status: limiting factors in the performance of maximal exercise in man? Eur J Appl Physiol Occup Physiol. 1987;56(4):444–50.PubMedCrossRef Greenhaff PL, Gleeson M, Whiting PH, Maughan RJ. Dietary composition and acid-base status: limiting factors in the performance of maximal exercise in man? Eur J Appl Physiol Occup Physiol. 1987;56(4):444–50.PubMedCrossRef
79.
Zurück zum Zitat Maughan RJ, Poole DC. The effects of a glycogen-loading regimen on the capacity to perform anaerobic exercise. Eur J Appl Physiol Occup Physiol. 1981;46(3):211–9.PubMedCrossRef Maughan RJ, Poole DC. The effects of a glycogen-loading regimen on the capacity to perform anaerobic exercise. Eur J Appl Physiol Occup Physiol. 1981;46(3):211–9.PubMedCrossRef
80.
Zurück zum Zitat Jacobs I. Lactate concentrations after short, maximal exercise at various glycogen levels. Acta Physiol Scand. 1981;111(4):465–9.PubMedCrossRef Jacobs I. Lactate concentrations after short, maximal exercise at various glycogen levels. Acta Physiol Scand. 1981;111(4):465–9.PubMedCrossRef
81.
Zurück zum Zitat Wootton SAWC. Influence of carbohydrate-status on performance during maximal exercise. Int J Sports Med. 1984;5:126–7.CrossRef Wootton SAWC. Influence of carbohydrate-status on performance during maximal exercise. Int J Sports Med. 1984;5:126–7.CrossRef
82.
Zurück zum Zitat Young K, Davies CT. Effect of diet on human muscle weakness following prolonged exercise. Eur J Appl Physiol Occup Physiol. 1984;53(1):81–5.PubMedCrossRef Young K, Davies CT. Effect of diet on human muscle weakness following prolonged exercise. Eur J Appl Physiol Occup Physiol. 1984;53(1):81–5.PubMedCrossRef
83.
85.
Zurück zum Zitat Hargreaves M, McKenna MJ, Jenkins DG, Warmington SA, Li JL, Snow RJ, et al. Muscle metabolites and performance during high-intensity, intermittent exercise. J Appl Physiol (1985). 1998;84(5):1687–91.CrossRef Hargreaves M, McKenna MJ, Jenkins DG, Warmington SA, Li JL, Snow RJ, et al. Muscle metabolites and performance during high-intensity, intermittent exercise. J Appl Physiol (1985). 1998;84(5):1687–91.CrossRef
86.
Zurück zum Zitat Vandenberghe K, Hespel P, Vanden Eynde B, Lysens R, Richter EA. No effect of glycogen level on glycogen metabolism during high intensity exercise. Med Sci Sports Exerc. 1995;27(9):1278–83.PubMedCrossRef Vandenberghe K, Hespel P, Vanden Eynde B, Lysens R, Richter EA. No effect of glycogen level on glycogen metabolism during high intensity exercise. Med Sci Sports Exerc. 1995;27(9):1278–83.PubMedCrossRef
87.
Zurück zum Zitat Jenkins DG, Palmer J, Spillman D. The influence of dietary carbohydrate on performance of supramaximal intermittent exercise. Eur J Appl Physiol Occup Physiol. 1993;67(4):309–14.PubMedCrossRef Jenkins DG, Palmer J, Spillman D. The influence of dietary carbohydrate on performance of supramaximal intermittent exercise. Eur J Appl Physiol Occup Physiol. 1993;67(4):309–14.PubMedCrossRef
88.
Zurück zum Zitat Casey A, Short AH, Curtis S, Greenhaff PL. The effect of glycogen availability on power output and the metabolic response to repeated bouts of maximal, isokinetic exercise in man. Eur J Appl Physiol Occup Physiol. 1996;72(3):249–55.PubMedCrossRef Casey A, Short AH, Curtis S, Greenhaff PL. The effect of glycogen availability on power output and the metabolic response to repeated bouts of maximal, isokinetic exercise in man. Eur J Appl Physiol Occup Physiol. 1996;72(3):249–55.PubMedCrossRef
89.
Zurück zum Zitat Pizza FX, Flynn MG, Duscha BD, Holden J, Kubitz ER. A carbohydrate loading regimen improves high intensity, short duration exercise performance. Int J Sport Nutr. 1995;5(2):110–6.PubMedCrossRef Pizza FX, Flynn MG, Duscha BD, Holden J, Kubitz ER. A carbohydrate loading regimen improves high intensity, short duration exercise performance. Int J Sport Nutr. 1995;5(2):110–6.PubMedCrossRef
90.
Zurück zum Zitat Mitchell JB, DiLauro PC, Pizza FX, Cavender DL. The effect of preexercise carbohydrate status on resistance exercise performance. Int J Sport Nutr. 1997;7(3):185–96.PubMedCrossRef Mitchell JB, DiLauro PC, Pizza FX, Cavender DL. The effect of preexercise carbohydrate status on resistance exercise performance. Int J Sport Nutr. 1997;7(3):185–96.PubMedCrossRef
91.
Zurück zum Zitat Langfort J, Zarzeczny R, Pilis W, Nazar K, Kaciuba-Uscitko H. The effect of a low-carbohydrate diet on performance, hormonal and metabolic responses to a 30-s bout of supramaximal exercise. Eur J Appl Physiol Occup Physiol. 1997;76(2):128–33.PubMedCrossRef Langfort J, Zarzeczny R, Pilis W, Nazar K, Kaciuba-Uscitko H. The effect of a low-carbohydrate diet on performance, hormonal and metabolic responses to a 30-s bout of supramaximal exercise. Eur J Appl Physiol Occup Physiol. 1997;76(2):128–33.PubMedCrossRef
92.
Zurück zum Zitat Leveritt M, Abernethy PJ. Effects of carbohydrate restriction on strength performance. J Strength Cond Res. 1999;13:52–7. Leveritt M, Abernethy PJ. Effects of carbohydrate restriction on strength performance. J Strength Cond Res. 1999;13:52–7.
93.
Zurück zum Zitat Rockwell MS, Rankin JW, Dixon H. Effects of muscle glycogen on performance of repeated sprints and mechanisms of fatigue. Int J Sport Nutr Exerc Metab. 2003;13(1):1–14.PubMedCrossRef Rockwell MS, Rankin JW, Dixon H. Effects of muscle glycogen on performance of repeated sprints and mechanisms of fatigue. Int J Sport Nutr Exerc Metab. 2003;13(1):1–14.PubMedCrossRef
94.
Zurück zum Zitat Hatfield DL, Kraemer WJ, Volek JS, Rubin MR, Grebien B, Gomez AL, et al. The effects of carbohydrate loading on repetitive jump squat power performance. J Strength Cond Res. 2006;20(1):167–71.PubMed Hatfield DL, Kraemer WJ, Volek JS, Rubin MR, Grebien B, Gomez AL, et al. The effects of carbohydrate loading on repetitive jump squat power performance. J Strength Cond Res. 2006;20(1):167–71.PubMed
95.
Zurück zum Zitat Lima-Silva AE, Pires FO, Bertuzzi R, Silva-Cavalcante MD, Oliveira RS, Kiss MA, et al. Effects of a low- or a high-carbohydrate diet on performance, energy system contribution, and metabolic responses during supramaximal exercise. Appl Physiol Nutr Metab. 2013;38(9):928–34.PubMedCrossRef Lima-Silva AE, Pires FO, Bertuzzi R, Silva-Cavalcante MD, Oliveira RS, Kiss MA, et al. Effects of a low- or a high-carbohydrate diet on performance, energy system contribution, and metabolic responses during supramaximal exercise. Appl Physiol Nutr Metab. 2013;38(9):928–34.PubMedCrossRef
96.
Zurück zum Zitat Skein M, Duffield R, Kelly BT, Marino FE. The effects of carbohydrate intake and muscle glycogen content on self-paced intermittent-sprint exercise despite no knowledge of carbohydrate manipulation. Eur J Appl Physiol. 2012;112(8):2859–70.PubMedCrossRef Skein M, Duffield R, Kelly BT, Marino FE. The effects of carbohydrate intake and muscle glycogen content on self-paced intermittent-sprint exercise despite no knowledge of carbohydrate manipulation. Eur J Appl Physiol. 2012;112(8):2859–70.PubMedCrossRef
97.
Zurück zum Zitat Gejl KD, Hvid LG, Frandsen U, Jensen K, Sahlin K, Ørtenblad N. Muscle glycogen content modifies SR Ca2+ release rate in elite endurance athletes. Med Sci Sports Exerc. 2014;46(3):496–505.PubMedCrossRef Gejl KD, Hvid LG, Frandsen U, Jensen K, Sahlin K, Ørtenblad N. Muscle glycogen content modifies SR Ca2+ release rate in elite endurance athletes. Med Sci Sports Exerc. 2014;46(3):496–505.PubMedCrossRef
98.
Zurück zum Zitat Oliver JM, Almada AL, Van Eck LE, Shah M, Mitchell JB, Jones MT, et al. Ingestion of high molecular weight carbohydrate enhances subsequent repeated maximal power: a randomized controlled trial. PLoS ONE. 2016;11(9):e0163009.PubMedPubMedCentralCrossRef Oliver JM, Almada AL, Van Eck LE, Shah M, Mitchell JB, Jones MT, et al. Ingestion of high molecular weight carbohydrate enhances subsequent repeated maximal power: a randomized controlled trial. PLoS ONE. 2016;11(9):e0163009.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Cheng AJ, Chaillou T, Kamandulis S, Subocius A, Westerblad H, Brazaitis M, et al. Carbohydrates do not accelerate force recovery after glycogen-depleting followed by high-intensity exercise in humans. Scand J Med Sci Sports. 2020;30(6):998–1007.PubMedCrossRef Cheng AJ, Chaillou T, Kamandulis S, Subocius A, Westerblad H, Brazaitis M, et al. Carbohydrates do not accelerate force recovery after glycogen-depleting followed by high-intensity exercise in humans. Scand J Med Sci Sports. 2020;30(6):998–1007.PubMedCrossRef
100.
Zurück zum Zitat Akermark C, Jacobs I, Rasmusson M, Karlsson J. Diet and muscle glycogen concentration in relation to physical performance in Swedish elite ice hockey players. Int J Sport Nutr. 1996;6(3):272–84.PubMedCrossRef Akermark C, Jacobs I, Rasmusson M, Karlsson J. Diet and muscle glycogen concentration in relation to physical performance in Swedish elite ice hockey players. Int J Sport Nutr. 1996;6(3):272–84.PubMedCrossRef
101.
Zurück zum Zitat Bangsbo J, Norregaard L, Thorsoe F. The effect of carbohydrate diet on intermittent exercise performance. Int J Sports Med. 1992;13(2):152–7.PubMedCrossRef Bangsbo J, Norregaard L, Thorsoe F. The effect of carbohydrate diet on intermittent exercise performance. Int J Sports Med. 1992;13(2):152–7.PubMedCrossRef
102.
Zurück zum Zitat Bendiksen M, Bischoff R, Randers MB, Mohr M, Rollo I, Suetta C, et al. The Copenhagen Soccer Test: physiological response and fatigue development. Med Sci Sports Exerc. 2012;44(8):1595–603.PubMedCrossRef Bendiksen M, Bischoff R, Randers MB, Mohr M, Rollo I, Suetta C, et al. The Copenhagen Soccer Test: physiological response and fatigue development. Med Sci Sports Exerc. 2012;44(8):1595–603.PubMedCrossRef
103.
Zurück zum Zitat Green HJ, Daub BD, Painter DC, Thomson JA. Glycogen depletion patterns during ice hockey performance. Med Sci Sports. 1978;10(4):289–93.PubMed Green HJ, Daub BD, Painter DC, Thomson JA. Glycogen depletion patterns during ice hockey performance. Med Sci Sports. 1978;10(4):289–93.PubMed
105.
Zurück zum Zitat Krustrup P, Ørtenblad N, Nielsen J, Nybo L, Gunnarsson TP, Iaia FM, et al. Maximal voluntary contraction force, SR function and glycogen resynthesis during the first 72 h after a high-level competitive soccer game. Eur J Appl Physiol. 2011;111(12):2987–95.PubMedCrossRef Krustrup P, Ørtenblad N, Nielsen J, Nybo L, Gunnarsson TP, Iaia FM, et al. Maximal voluntary contraction force, SR function and glycogen resynthesis during the first 72 h after a high-level competitive soccer game. Eur J Appl Physiol. 2011;111(12):2987–95.PubMedCrossRef
106.
Zurück zum Zitat Pascoe DD, Gladden LB. Muscle glycogen resynthesis after short term, high intensity exercise and resistance exercise. Sports Med. 1996;21(2):98–118.PubMedCrossRef Pascoe DD, Gladden LB. Muscle glycogen resynthesis after short term, high intensity exercise and resistance exercise. Sports Med. 1996;21(2):98–118.PubMedCrossRef
107.
Zurück zum Zitat Jentjens R, Jeukendrup A. Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Med. 2003;33(2):117–44.PubMedCrossRef Jentjens R, Jeukendrup A. Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Med. 2003;33(2):117–44.PubMedCrossRef
108.
Zurück zum Zitat Jacobs I, Kaiser P, Tesch P. Muscle strength and fatigue after selective glycogen depletion in human skeletal muscle fibers. Eur J Appl Physiol Occup Physiol. 1981;46(1):47–53.PubMedCrossRef Jacobs I, Kaiser P, Tesch P. Muscle strength and fatigue after selective glycogen depletion in human skeletal muscle fibers. Eur J Appl Physiol Occup Physiol. 1981;46(1):47–53.PubMedCrossRef
109.
Zurück zum Zitat Karlsson J, Sjodin B, Jacobs I, Kaiser P. Relevance of muscle fibre type to fatigue in short intense and prolonged exercise in man. Ciba Found Symp. 1981;82:59–74.PubMed Karlsson J, Sjodin B, Jacobs I, Kaiser P. Relevance of muscle fibre type to fatigue in short intense and prolonged exercise in man. Ciba Found Symp. 1981;82:59–74.PubMed
110.
Zurück zum Zitat Nybo L. CNS fatigue and prolonged exercise: effect of glucose supplementation. Med Sci Sports Exerc. 2003;35(4):589–94.PubMedCrossRef Nybo L. CNS fatigue and prolonged exercise: effect of glucose supplementation. Med Sci Sports Exerc. 2003;35(4):589–94.PubMedCrossRef
111.
Zurück zum Zitat Sahlin K, Katz A, Broberg S. Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise. Am J Physiol. 1990;259(5 Pt 1):C834–41.PubMedCrossRef Sahlin K, Katz A, Broberg S. Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise. Am J Physiol. 1990;259(5 Pt 1):C834–41.PubMedCrossRef
112.
Zurück zum Zitat Norman B, Sollevi A, Kaijser L, Jansson E. ATP breakdown products in human skeletal muscle during prolonged exercise to exhaustion. Clin Physiol. 1987;7(6):503–10.PubMedCrossRef Norman B, Sollevi A, Kaijser L, Jansson E. ATP breakdown products in human skeletal muscle during prolonged exercise to exhaustion. Clin Physiol. 1987;7(6):503–10.PubMedCrossRef
113.
Zurück zum Zitat Broberg S, Sahlin K. Adenine nucleotide degradation in human skeletal muscle during prolonged exercise. J Appl Physiol (1985). 1989;67(1):116–22.CrossRef Broberg S, Sahlin K. Adenine nucleotide degradation in human skeletal muscle during prolonged exercise. J Appl Physiol (1985). 1989;67(1):116–22.CrossRef
114.
Zurück zum Zitat Sahlin K, Broberg S, Ren JM. Formation of inosine monophosphate (IMP) in human skeletal muscle during incremental dynamic exercise. Acta Physiol Scand. 1989;136(2):193–8.PubMedCrossRef Sahlin K, Broberg S, Ren JM. Formation of inosine monophosphate (IMP) in human skeletal muscle during incremental dynamic exercise. Acta Physiol Scand. 1989;136(2):193–8.PubMedCrossRef
115.
Zurück zum Zitat Gollnick PD, Karlsson J, Piehl K, Saltin B. Selective glycogen depletion in skeletal muscle fibres of man following sustained contractions. J Physiol. 1974;241(1):59–67.PubMedPubMedCentralCrossRef Gollnick PD, Karlsson J, Piehl K, Saltin B. Selective glycogen depletion in skeletal muscle fibres of man following sustained contractions. J Physiol. 1974;241(1):59–67.PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Meyer RA, Terjung RL. AMP deamination and IMP reamination in working skeletal muscle. Am J Physiol. 1980;239(1):C32–8.PubMedCrossRef Meyer RA, Terjung RL. AMP deamination and IMP reamination in working skeletal muscle. Am J Physiol. 1980;239(1):C32–8.PubMedCrossRef
117.
Zurück zum Zitat Nelson CR, Debold EP, Fitts RH. Phosphate and acidosis act synergistically to depress peak power in rat muscle fibers. Am J Physiol Cell Physiol. 2014;307(10):C939–50.PubMedPubMedCentralCrossRef Nelson CR, Debold EP, Fitts RH. Phosphate and acidosis act synergistically to depress peak power in rat muscle fibers. Am J Physiol Cell Physiol. 2014;307(10):C939–50.PubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Bangsbo J, Graham T, Johansen L, Strange S, Christensen C, Saltin B. Elevated muscle acidity and energy production during exhaustive exercise in humans. Am J Physiol. 1992;263(4 Pt 2):R891–9.PubMed Bangsbo J, Graham T, Johansen L, Strange S, Christensen C, Saltin B. Elevated muscle acidity and energy production during exhaustive exercise in humans. Am J Physiol. 1992;263(4 Pt 2):R891–9.PubMed
119.
Zurück zum Zitat Sherman WM, Costill DL, Fink WJ, Miller JM. Effect of exercise-diet manipulation on muscle glycogen and its subsequent utilization during performance. Int J Sports Med. 1981;2(2):114–8.PubMedCrossRef Sherman WM, Costill DL, Fink WJ, Miller JM. Effect of exercise-diet manipulation on muscle glycogen and its subsequent utilization during performance. Int J Sports Med. 1981;2(2):114–8.PubMedCrossRef
120.
Zurück zum Zitat Bosch AN, Dennis SC, Noakes TD. Influence of carbohydrate loading on fuel substrate turnover and oxidation during prolonged exercise. J Appl Physiol (1985). 1993;74(4):1921–7.CrossRef Bosch AN, Dennis SC, Noakes TD. Influence of carbohydrate loading on fuel substrate turnover and oxidation during prolonged exercise. J Appl Physiol (1985). 1993;74(4):1921–7.CrossRef
121.
Zurück zum Zitat Putman CT, Spriet LL, Hultman E, Lindinger MI, Lands LC, McKelvie RS, et al. Pyruvate dehydrogenase activity and acetyl group accumulation during exercise after different diets. Am J Physiol. 1993;265(5 Pt 1):E752–60.PubMed Putman CT, Spriet LL, Hultman E, Lindinger MI, Lands LC, McKelvie RS, et al. Pyruvate dehydrogenase activity and acetyl group accumulation during exercise after different diets. Am J Physiol. 1993;265(5 Pt 1):E752–60.PubMed
122.
Zurück zum Zitat Hargreaves M, McConell G, Proietto J. Influence of muscle glycogen on glycogenolysis and glucose uptake during exercise in humans. J Appl Physiol (1985). 1995;78(1):288–92.CrossRef Hargreaves M, McConell G, Proietto J. Influence of muscle glycogen on glycogenolysis and glucose uptake during exercise in humans. J Appl Physiol (1985). 1995;78(1):288–92.CrossRef
123.
Zurück zum Zitat Madsen K, Pedersen PK, Rose P, Richter EA. Carbohydrate supercompensation and muscle glycogen utilization during exhaustive running in highly trained athletes. Eur J Appl Physiol Occup Physiol. 1990;61(5–6):467–72.PubMedCrossRef Madsen K, Pedersen PK, Rose P, Richter EA. Carbohydrate supercompensation and muscle glycogen utilization during exhaustive running in highly trained athletes. Eur J Appl Physiol Occup Physiol. 1990;61(5–6):467–72.PubMedCrossRef
124.
Zurück zum Zitat Costill DL, Coyle E, Dalsky G, Evans W, Fink W, Hoopes D. Effects of elevated plasma FFA and insulin on muscle glycogen usage during exercise. J Appl Physiol Respir Environ Exerc Physiol. 1977;43(4):695–9.PubMed Costill DL, Coyle E, Dalsky G, Evans W, Fink W, Hoopes D. Effects of elevated plasma FFA and insulin on muscle glycogen usage during exercise. J Appl Physiol Respir Environ Exerc Physiol. 1977;43(4):695–9.PubMed
125.
126.
Zurück zum Zitat Stellingwerff T, Spriet LL, Watt MJ, Kimber NE, Hargreaves M, Hawley JA, et al. Decreased PDH activation and glycogenolysis during exercise following fat adaptation with carbohydrate restoration. Am J Physiol Endocrinol Metab. 2006;290(2):E380–8.PubMedCrossRef Stellingwerff T, Spriet LL, Watt MJ, Kimber NE, Hargreaves M, Hawley JA, et al. Decreased PDH activation and glycogenolysis during exercise following fat adaptation with carbohydrate restoration. Am J Physiol Endocrinol Metab. 2006;290(2):E380–8.PubMedCrossRef
127.
Zurück zum Zitat Hespel P, Richter EA. Glucose uptake and transport in contracting, perfused rat muscle with different pre-contraction glycogen concentrations. J Physiol. 1990;427:347–59.PubMedPubMedCentralCrossRef Hespel P, Richter EA. Glucose uptake and transport in contracting, perfused rat muscle with different pre-contraction glycogen concentrations. J Physiol. 1990;427:347–59.PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Hespel P, Richter EA. Mechanism linking glycogen concentration and glycogenolytic rate in perfused contracting rat skeletal muscle. Biochem J. 1992;284(Pt 3):777–80.PubMedPubMedCentralCrossRef Hespel P, Richter EA. Mechanism linking glycogen concentration and glycogenolytic rate in perfused contracting rat skeletal muscle. Biochem J. 1992;284(Pt 3):777–80.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Richter EA, Galbo H. High glycogen levels enhance glycogen breakdown in isolated contracting skeletal muscle. J Appl Physiol (1985). 1986;61(3):827–31.CrossRef Richter EA, Galbo H. High glycogen levels enhance glycogen breakdown in isolated contracting skeletal muscle. J Appl Physiol (1985). 1986;61(3):827–31.CrossRef
130.
Zurück zum Zitat Spriet LL, Berardinucci L, Marsh DR, Campbell CB, Graham TE. Glycogen content has no effect on skeletal muscle glycogenolysis during short-term tetanic stimulation. J Appl Physiol (1985). 1990;68(5):1883–8.CrossRef Spriet LL, Berardinucci L, Marsh DR, Campbell CB, Graham TE. Glycogen content has no effect on skeletal muscle glycogenolysis during short-term tetanic stimulation. J Appl Physiol (1985). 1990;68(5):1883–8.CrossRef
131.
Zurück zum Zitat Vandenberghe K, Richter EA, Hespel P. Regulation of glycogen breakdown by glycogen level in contracting rat muscle. Acta Physiol Scand. 1999;165(3):307–14.PubMedCrossRef Vandenberghe K, Richter EA, Hespel P. Regulation of glycogen breakdown by glycogen level in contracting rat muscle. Acta Physiol Scand. 1999;165(3):307–14.PubMedCrossRef
132.
Zurück zum Zitat Klausen K, Sjogaard G. Glycogen stores and lactate accumulation in skeletal muscle of man during intense bicycle exercise. Scand J Sports Sci. 1980;2(1):7–12. Klausen K, Sjogaard G. Glycogen stores and lactate accumulation in skeletal muscle of man during intense bicycle exercise. Scand J Sports Sci. 1980;2(1):7–12.
133.
Zurück zum Zitat Boobis LH, Williams C, Wootton SA. Influence of sprint training on muscle metabolism during brief maximal exercise in man. J Physiol. 1983;342:36–7. Boobis LH, Williams C, Wootton SA. Influence of sprint training on muscle metabolism during brief maximal exercise in man. J Physiol. 1983;342:36–7.
134.
Zurück zum Zitat Ren JM, Broberg S, Sahlin K, Hultman E. Influence of reduced glycogen level on glycogenolysis during short-term stimulation in man. Acta Physiol Scand. 1990;139(3):467–74.PubMedCrossRef Ren JM, Broberg S, Sahlin K, Hultman E. Influence of reduced glycogen level on glycogenolysis during short-term stimulation in man. Acta Physiol Scand. 1990;139(3):467–74.PubMedCrossRef
135.
Zurück zum Zitat Spencer MK, Katz A. Role of glycogen in control of glycolysis and IMP formation in human muscle during exercise. Am J Physiol. 1991;260(6 Pt 1):E859–64.PubMed Spencer MK, Katz A. Role of glycogen in control of glycolysis and IMP formation in human muscle during exercise. Am J Physiol. 1991;260(6 Pt 1):E859–64.PubMed
136.
Zurück zum Zitat Greenhaff PL, Gleeson M, Maughan RJ. The effects of a glycogen loading regimen on acid-base status and blood lactate concentration before and after a fixed period of high intensity exercise in man. Eur J Appl Physiol Occup Physiol. 1988;57(2):254–9.PubMedCrossRef Greenhaff PL, Gleeson M, Maughan RJ. The effects of a glycogen loading regimen on acid-base status and blood lactate concentration before and after a fixed period of high intensity exercise in man. Eur J Appl Physiol Occup Physiol. 1988;57(2):254–9.PubMedCrossRef
137.
Zurück zum Zitat Greenhaff PL, Gleeson M, Maughan RJ. The effects of diet on muscle pH and metabolism during high intensity exercise. Eur J Appl Physiol Occup Physiol. 1988;57(5):531–9.PubMedCrossRef Greenhaff PL, Gleeson M, Maughan RJ. The effects of diet on muscle pH and metabolism during high intensity exercise. Eur J Appl Physiol Occup Physiol. 1988;57(5):531–9.PubMedCrossRef
138.
Zurück zum Zitat Spriet LL. New insights into the interaction of carbohydrate and fat metabolism during exercise. Sports Med. 2014;44(Suppl 1):S87-96.PubMedCrossRef Spriet LL. New insights into the interaction of carbohydrate and fat metabolism during exercise. Sports Med. 2014;44(Suppl 1):S87-96.PubMedCrossRef
139.
Zurück zum Zitat Sahlin K, Harris RC. Control of lipid oxidation during exercise: role of energy state and mitochondrial factors. Acta Physiol (Oxf). 2008;194(4):283–91.CrossRef Sahlin K, Harris RC. Control of lipid oxidation during exercise: role of energy state and mitochondrial factors. Acta Physiol (Oxf). 2008;194(4):283–91.CrossRef
140.
Zurück zum Zitat Sahlin K, Sallstedt EK, Bishop D, Tonkonogi M. Turning down lipid oxidation during heavy exercise–what is the mechanism? J Physiol Pharmacol. 2008;59(Suppl 7):19–30.PubMed Sahlin K, Sallstedt EK, Bishop D, Tonkonogi M. Turning down lipid oxidation during heavy exercise–what is the mechanism? J Physiol Pharmacol. 2008;59(Suppl 7):19–30.PubMed
141.
Zurück zum Zitat Hargreaves M. Exercise, muscle, and CHO metabolism. Scand J Med Sci Sports. 2015;25(Suppl 4):29–33.PubMedCrossRef Hargreaves M. Exercise, muscle, and CHO metabolism. Scand J Med Sci Sports. 2015;25(Suppl 4):29–33.PubMedCrossRef
142.
Zurück zum Zitat Ørtenblad N, Macdonald WA, Sahlin K. Glycolysis in contracting rat skeletal muscle is controlled by factors related to energy state. Biochem J. 2009;420(2):161–8.PubMedCrossRef Ørtenblad N, Macdonald WA, Sahlin K. Glycolysis in contracting rat skeletal muscle is controlled by factors related to energy state. Biochem J. 2009;420(2):161–8.PubMedCrossRef
143.
Zurück zum Zitat Newsholme EA, Start C. Regulation in metabolism. Toronto: Wiley; 1973. Newsholme EA, Start C. Regulation in metabolism. Toronto: Wiley; 1973.
144.
Zurück zum Zitat Juel C, Pilegaard H, Nielsen JJ, Bangsbo J. Interstitial K(+) in human skeletal muscle during and after dynamic graded exercise determined by microdialysis. Am J Physiol Regul Integr Comp Physiol. 2000;278(2):R400–6.PubMedCrossRef Juel C, Pilegaard H, Nielsen JJ, Bangsbo J. Interstitial K(+) in human skeletal muscle during and after dynamic graded exercise determined by microdialysis. Am J Physiol Regul Integr Comp Physiol. 2000;278(2):R400–6.PubMedCrossRef
145.
Zurück zum Zitat Clausen T. Quantification of Na+, K+ pumps and their transport rate in skeletal muscle: functional significance. J Gen Physiol. 2013;142(4):327–45.PubMedPubMedCentralCrossRef Clausen T. Quantification of Na+, K+ pumps and their transport rate in skeletal muscle: functional significance. J Gen Physiol. 2013;142(4):327–45.PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat Nordsborg N, Mohr M, Pedersen LD, Nielsen JJ, Langberg H, Bangsbo J. Muscle interstitial potassium kinetics during intense exhaustive exercise: effect of previous arm exercise. Am J Physiol Regul Integr Comp Physiol. 2003;285(1):R143–8.PubMedCrossRef Nordsborg N, Mohr M, Pedersen LD, Nielsen JJ, Langberg H, Bangsbo J. Muscle interstitial potassium kinetics during intense exhaustive exercise: effect of previous arm exercise. Am J Physiol Regul Integr Comp Physiol. 2003;285(1):R143–8.PubMedCrossRef
147.
Zurück zum Zitat Mohr M, Nordsborg N, Nielsen JJ, Pedersen LD, Fischer C, Krustrup P, et al. Potassium kinetics in human muscle interstitium during repeated intense exercise in relation to fatigue. Pflugers Arch. 2004;448(4):452–6.PubMedCrossRef Mohr M, Nordsborg N, Nielsen JJ, Pedersen LD, Fischer C, Krustrup P, et al. Potassium kinetics in human muscle interstitium during repeated intense exercise in relation to fatigue. Pflugers Arch. 2004;448(4):452–6.PubMedCrossRef
148.
Zurück zum Zitat Cairns SP, Flatman JA, Clausen T. Relation between extracellular [K+], membrane potential and contraction in rat soleus muscle: modulation by the Na+-K+ pump. Pflugers Arch. 1995;430(6):909–15.PubMedCrossRef Cairns SP, Flatman JA, Clausen T. Relation between extracellular [K+], membrane potential and contraction in rat soleus muscle: modulation by the Na+-K+ pump. Pflugers Arch. 1995;430(6):909–15.PubMedCrossRef
149.
Zurück zum Zitat Sejersted OM, Sjogaard G. Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise. Physiol Rev. 2000;80(4):1411–81.PubMedCrossRef Sejersted OM, Sjogaard G. Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise. Physiol Rev. 2000;80(4):1411–81.PubMedCrossRef
150.
Zurück zum Zitat Ruff RL. Sodium channel slow inactivation and the distribution of sodium channels on skeletal muscle fibres enable the performance properties of different skeletal muscle fibre types. Acta Physiol Scand. 1996;156(3):159–68.PubMedCrossRef Ruff RL. Sodium channel slow inactivation and the distribution of sodium channels on skeletal muscle fibres enable the performance properties of different skeletal muscle fibre types. Acta Physiol Scand. 1996;156(3):159–68.PubMedCrossRef
151.
Zurück zum Zitat Pedersen TH, Clausen T, Nielsen OB. Loss of force induced by high extracellular [K+] in rat muscle: effect of temperature, lactic acid and beta2-agonist. J Physiol. 2003;551(Pt 1):277–86.PubMedPubMedCentralCrossRef Pedersen TH, Clausen T, Nielsen OB. Loss of force induced by high extracellular [K+] in rat muscle: effect of temperature, lactic acid and beta2-agonist. J Physiol. 2003;551(Pt 1):277–86.PubMedPubMedCentralCrossRef
152.
Zurück zum Zitat de Paoli FV, Overgaard K, Pedersen TH, Nielsen OB. Additive protective effects of the addition of lactic acid and adrenaline on excitability and force in isolated rat skeletal muscle depressed by elevated extracellular K+. J Physiol. 2007;581(Pt 2):829–39.PubMedPubMedCentralCrossRef de Paoli FV, Overgaard K, Pedersen TH, Nielsen OB. Additive protective effects of the addition of lactic acid and adrenaline on excitability and force in isolated rat skeletal muscle depressed by elevated extracellular K+. J Physiol. 2007;581(Pt 2):829–39.PubMedPubMedCentralCrossRef
153.
Zurück zum Zitat Overgaard K, Nielsen OB. Activity-induced recovery of excitability in K(+)-depressed rat soleus muscle. Am J Physiol Regul Integr Comp Physiol. 2001;280(1):R48-55.PubMedCrossRef Overgaard K, Nielsen OB. Activity-induced recovery of excitability in K(+)-depressed rat soleus muscle. Am J Physiol Regul Integr Comp Physiol. 2001;280(1):R48-55.PubMedCrossRef
154.
Zurück zum Zitat Leppik JA, Aughey RJ, Medved I, Fairweather I, Carey MF, McKenna MJ. Prolonged exercise to fatigue in humans impairs skeletal muscle Na+-K+-ATPase activity, sarcoplasmic reticulum Ca2+ release, and Ca2+ uptake. J Appl Physiol (1985). 2004;97(4):1414–23.CrossRef Leppik JA, Aughey RJ, Medved I, Fairweather I, Carey MF, McKenna MJ. Prolonged exercise to fatigue in humans impairs skeletal muscle Na+-K+-ATPase activity, sarcoplasmic reticulum Ca2+ release, and Ca2+ uptake. J Appl Physiol (1985). 2004;97(4):1414–23.CrossRef
155.
Zurück zum Zitat Fowles JR, Green HJ, Tupling R, O’Brien S, Roy BD. Human neuromuscular fatigue is associated with altered Na+-K+-ATPase activity following isometric exercise. J Appl Physiol (1985). 2002;92(4):1585–93.CrossRef Fowles JR, Green HJ, Tupling R, O’Brien S, Roy BD. Human neuromuscular fatigue is associated with altered Na+-K+-ATPase activity following isometric exercise. J Appl Physiol (1985). 2002;92(4):1585–93.CrossRef
156.
Zurück zum Zitat Fraser SF, Li JL, Carey MF, Wang XN, Sangkabutra T, Sostaric S, et al. Fatigue depresses maximal in vitro skeletal muscle Na(+)-K(+)-ATPase activity in untrained and trained individuals. J Appl Physiol (1985). 2002;93(5):1650–9.CrossRef Fraser SF, Li JL, Carey MF, Wang XN, Sangkabutra T, Sostaric S, et al. Fatigue depresses maximal in vitro skeletal muscle Na(+)-K(+)-ATPase activity in untrained and trained individuals. J Appl Physiol (1985). 2002;93(5):1650–9.CrossRef
157.
Zurück zum Zitat Aughey RJ, Clark SA, Gore CJ, Townsend NE, Hahn AG, Kinsman TA, et al. Interspersed normoxia during live high, train low interventions reverses an early reduction in muscle Na+, K +ATPase activity in well-trained athletes. Eur J Appl Physiol. 2006;98(3):299–309.PubMedCrossRef Aughey RJ, Clark SA, Gore CJ, Townsend NE, Hahn AG, Kinsman TA, et al. Interspersed normoxia during live high, train low interventions reverses an early reduction in muscle Na+, K +ATPase activity in well-trained athletes. Eur J Appl Physiol. 2006;98(3):299–309.PubMedCrossRef
158.
Zurück zum Zitat Petersen AC, Murphy KT, Snow RJ, Leppik JA, Aughey RJ, Garnham AP, et al. Depressed Na+-K+-ATPase activity in skeletal muscle at fatigue is correlated with increased Na+-K+-ATPase mRNA expression following intense exercise. Am J Physiol Regul Integr Comp Physiol. 2005;289(1):R266–74.PubMedCrossRef Petersen AC, Murphy KT, Snow RJ, Leppik JA, Aughey RJ, Garnham AP, et al. Depressed Na+-K+-ATPase activity in skeletal muscle at fatigue is correlated with increased Na+-K+-ATPase mRNA expression following intense exercise. Am J Physiol Regul Integr Comp Physiol. 2005;289(1):R266–74.PubMedCrossRef
159.
Zurück zum Zitat Sandiford SD, Green HJ, Duhamel TA, Perco JG, Schertzer JD, Ouyang J. Inactivation of human muscle Na+-K+-ATPase in vitro during prolonged exercise is increased with hypoxia. J Appl Physiol (1985). 2004;96(5):1767–75.CrossRef Sandiford SD, Green HJ, Duhamel TA, Perco JG, Schertzer JD, Ouyang J. Inactivation of human muscle Na+-K+-ATPase in vitro during prolonged exercise is increased with hypoxia. J Appl Physiol (1985). 2004;96(5):1767–75.CrossRef
160.
Zurück zum Zitat Aughey RJ, Murphy KT, Clark SA, Garnham AP, Snow RJ, Cameron-Smith D, et al. Muscle Na+-K+-ATPase activity and isoform adaptations to intense interval exercise and training in well-trained athletes. J Appl Physiol (1985). 2007;103(1):39–47.CrossRef Aughey RJ, Murphy KT, Clark SA, Garnham AP, Snow RJ, Cameron-Smith D, et al. Muscle Na+-K+-ATPase activity and isoform adaptations to intense interval exercise and training in well-trained athletes. J Appl Physiol (1985). 2007;103(1):39–47.CrossRef
161.
Zurück zum Zitat Jannas-Vela S, Brownell S, Petrick HL, Heigenhauser GJF, Spriet LL, Holloway GP. Assessment of Na+/K+ ATPase activity in small rodent and human skeletal muscle samples. Med Sci Sports Exerc. 2019;51(11):2403–9.PubMedCrossRef Jannas-Vela S, Brownell S, Petrick HL, Heigenhauser GJF, Spriet LL, Holloway GP. Assessment of Na+/K+ ATPase activity in small rodent and human skeletal muscle samples. Med Sci Sports Exerc. 2019;51(11):2403–9.PubMedCrossRef
162.
Zurück zum Zitat Juel C, Hostrup M, Bangsbo J. The effect of exercise and beta2-adrenergic stimulation on glutathionylation and function of the Na, K-ATPase in human skeletal muscle. Physiol Rep. 2015;3(8):e12515.PubMedPubMedCentralCrossRef Juel C, Hostrup M, Bangsbo J. The effect of exercise and beta2-adrenergic stimulation on glutathionylation and function of the Na, K-ATPase in human skeletal muscle. Physiol Rep. 2015;3(8):e12515.PubMedPubMedCentralCrossRef
163.
Zurück zum Zitat Juel C, Nordsborg NB, Bangsbo J. Purinergic effects on Na, K-ATPase activity differ in rat and human skeletal muscle. PLoS ONE. 2014;9(3):e91175.PubMedPubMedCentralCrossRef Juel C, Nordsborg NB, Bangsbo J. Purinergic effects on Na, K-ATPase activity differ in rat and human skeletal muscle. PLoS ONE. 2014;9(3):e91175.PubMedPubMedCentralCrossRef
164.
Zurück zum Zitat Juel C, Nordsborg NB, Bangsbo J. Exercise-induced increase in maximal in vitro Na-K-ATPase activity in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2013;304(12):R1161–5.PubMedCrossRef Juel C, Nordsborg NB, Bangsbo J. Exercise-induced increase in maximal in vitro Na-K-ATPase activity in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2013;304(12):R1161–5.PubMedCrossRef
165.
Zurück zum Zitat Juel C. Maximal Na(+)-K(+)-ATPase activity is upregulated in association with muscle activity. J Appl Physiol (1985). 2012;112(12):2121–3.CrossRef Juel C. Maximal Na(+)-K(+)-ATPase activity is upregulated in association with muscle activity. J Appl Physiol (1985). 2012;112(12):2121–3.CrossRef
166.
Zurück zum Zitat Dhar-Chowdhury P, Malester B, Rajacic P, Coetzee WA. The regulation of ion channels and transporters by glycolytically derived ATP. Cell Mol Life Sci. 2007;64(23):3069–83.PubMedCrossRef Dhar-Chowdhury P, Malester B, Rajacic P, Coetzee WA. The regulation of ion channels and transporters by glycolytically derived ATP. Cell Mol Life Sci. 2007;64(23):3069–83.PubMedCrossRef
167.
Zurück zum Zitat James JH, Wagner KR, King JK, Leffler RE, Upputuri RK, Balasubramaniam A, et al. Stimulation of both aerobic glycolysis and Na(+)-K(+)-ATPase activity in skeletal muscle by epinephrine or amylin. Am J Physiol. 1999;277(1):E176–86.PubMed James JH, Wagner KR, King JK, Leffler RE, Upputuri RK, Balasubramaniam A, et al. Stimulation of both aerobic glycolysis and Na(+)-K(+)-ATPase activity in skeletal muscle by epinephrine or amylin. Am J Physiol. 1999;277(1):E176–86.PubMed
168.
Zurück zum Zitat Okamoto K, Wang W, Rounds J, Chambers EA, Jacobs DO. ATP from glycolysis is required for normal sodium homeostasis in resting fast-twitch rodent skeletal muscle. Am J Physiol Endocrinol Metab. 2001;281(3):E479–88.PubMedCrossRef Okamoto K, Wang W, Rounds J, Chambers EA, Jacobs DO. ATP from glycolysis is required for normal sodium homeostasis in resting fast-twitch rodent skeletal muscle. Am J Physiol Endocrinol Metab. 2001;281(3):E479–88.PubMedCrossRef
169.
Zurück zum Zitat Baekgaard Nielsen O, de Paoli FV, Riisager A, Pedersen TH. Chloride channels take center stage in acute regulation of excitability in skeletal muscle: implications for fatigue. Physiology (Bethesda). 2017;32(6):425–34. Baekgaard Nielsen O, de Paoli FV, Riisager A, Pedersen TH. Chloride channels take center stage in acute regulation of excitability in skeletal muscle: implications for fatigue. Physiology (Bethesda). 2017;32(6):425–34.
170.
Zurück zum Zitat Imbrici P, Altamura C, Pessia M, Mantegazza R, Desaphy JF, Camerino DC. ClC-1 chloride channels: state-of-the-art research and future challenges. Front Cell Neurosci. 2015;9:156.PubMedPubMedCentralCrossRef Imbrici P, Altamura C, Pessia M, Mantegazza R, Desaphy JF, Camerino DC. ClC-1 chloride channels: state-of-the-art research and future challenges. Front Cell Neurosci. 2015;9:156.PubMedPubMedCentralCrossRef
171.
Zurück zum Zitat Entman ML, Keslensky SS, Chu A, Van Winkle WB. The sarcoplasmic reticulum-glycogenolytic complex in mammalian fast twitch skeletal muscle. Proposed in vitro counterpart of the contraction-activated glycogenolytic pool. J Biol Chem. 1980;255(13):6245–52.PubMedCrossRef Entman ML, Keslensky SS, Chu A, Van Winkle WB. The sarcoplasmic reticulum-glycogenolytic complex in mammalian fast twitch skeletal muscle. Proposed in vitro counterpart of the contraction-activated glycogenolytic pool. J Biol Chem. 1980;255(13):6245–52.PubMedCrossRef
172.
Zurück zum Zitat Xu KY, Becker LC. Ultrastructural localization of glycolytic enzymes on sarcoplasmic reticulum vesticles. J Histochem Cytochem. 1998;46(4):419–27.PubMedCrossRef Xu KY, Becker LC. Ultrastructural localization of glycolytic enzymes on sarcoplasmic reticulum vesticles. J Histochem Cytochem. 1998;46(4):419–27.PubMedCrossRef
173.
Zurück zum Zitat Lees SJ, Chen YT, Williams JH. Glycogen debranching enzyme is associated with rat skeletal muscle sarcoplasmic reticulum. Acta Physiol Scand. 2004;181(2):239–45.PubMedCrossRef Lees SJ, Chen YT, Williams JH. Glycogen debranching enzyme is associated with rat skeletal muscle sarcoplasmic reticulum. Acta Physiol Scand. 2004;181(2):239–45.PubMedCrossRef
174.
Zurück zum Zitat Lees SJ, Franks PD, Spangenburg EE, Williams JH. Glycogen and glycogen phosphorylase associated with sarcoplasmic reticulum: effects of fatiguing activity. J Appl Physiol (1985). 2001;91(4):1638–44.CrossRef Lees SJ, Franks PD, Spangenburg EE, Williams JH. Glycogen and glycogen phosphorylase associated with sarcoplasmic reticulum: effects of fatiguing activity. J Appl Physiol (1985). 2001;91(4):1638–44.CrossRef
175.
Zurück zum Zitat Laver DR. Regulation of ryanodine receptors from skeletal and cardiac muscle during rest and excitation. Clin Exp Pharmacol Physiol. 2006;33(11):1107–13.PubMedCrossRef Laver DR. Regulation of ryanodine receptors from skeletal and cardiac muscle during rest and excitation. Clin Exp Pharmacol Physiol. 2006;33(11):1107–13.PubMedCrossRef
176.
Zurück zum Zitat Laver DR, Lenz GK, Lamb GD. Regulation of the calcium release channel from rabbit skeletal muscle by the nucleotides ATP, AMP, IMP and adenosine. J Physiol. 2001;537(Pt 3):763–78.PubMedPubMedCentralCrossRef Laver DR, Lenz GK, Lamb GD. Regulation of the calcium release channel from rabbit skeletal muscle by the nucleotides ATP, AMP, IMP and adenosine. J Physiol. 2001;537(Pt 3):763–78.PubMedPubMedCentralCrossRef
177.
Zurück zum Zitat Popova OB, Baker MR, Tran TP, Le T, Serysheva II. Identification of ATP-binding regions in the RyR1 Ca(2)(+) release channel. PLoS ONE. 2012;7(11):e48725.PubMedPubMedCentralCrossRef Popova OB, Baker MR, Tran TP, Le T, Serysheva II. Identification of ATP-binding regions in the RyR1 Ca(2)(+) release channel. PLoS ONE. 2012;7(11):e48725.PubMedPubMedCentralCrossRef
178.
Zurück zum Zitat Ogawa H, Kurebayashi N, Yamazawa T, Murayama T. Regulatory mechanisms of ryanodine receptor/Ca(2+) release channel revealed by recent advancements in structural studies. J Muscle Res Cell Motil. 2020 Feb 10. Epub ahead of print. Ogawa H, Kurebayashi N, Yamazawa T, Murayama T. Regulatory mechanisms of ryanodine receptor/Ca(2+) release channel revealed by recent advancements in structural studies. J Muscle Res Cell Motil. 2020 Feb 10. Epub ahead of print.
179.
Zurück zum Zitat Duhamel TA, Perco JG, Green HJ. Manipulation of dietary carbohydrates after prolonged effort modifies muscle sarcoplasmic reticulum responses in exercising males. Am J Physiol Regul Integr Comp Physiol. 2006;291(4):R1100–10.PubMedCrossRef Duhamel TA, Perco JG, Green HJ. Manipulation of dietary carbohydrates after prolonged effort modifies muscle sarcoplasmic reticulum responses in exercising males. Am J Physiol Regul Integr Comp Physiol. 2006;291(4):R1100–10.PubMedCrossRef
180.
Zurück zum Zitat Goodman C, Blazev R, Stephenson G. Glycogen content and contractile responsiveness to T-system depolarization in skinned muscle fibres of the rat. Clin Exp Pharmacol Physiol. 2005;32(9):749–56.PubMedCrossRef Goodman C, Blazev R, Stephenson G. Glycogen content and contractile responsiveness to T-system depolarization in skinned muscle fibres of the rat. Clin Exp Pharmacol Physiol. 2005;32(9):749–56.PubMedCrossRef
181.
Zurück zum Zitat Impey SG, Hearris MA, Hammond KM, Bartlett JD, Louis J, Close GL, et al. Fuel for the work required: a theoretical framework for carbohydrate periodization and the glycogen threshold hypothesis. Sports Med. 2018;48(5):1031–48.PubMedPubMedCentralCrossRef Impey SG, Hearris MA, Hammond KM, Bartlett JD, Louis J, Close GL, et al. Fuel for the work required: a theoretical framework for carbohydrate periodization and the glycogen threshold hypothesis. Sports Med. 2018;48(5):1031–48.PubMedPubMedCentralCrossRef
182.
Zurück zum Zitat Cuenda A, Nogues M, Henao F, Gutierrez-Merino C. Interaction between glycogen phosphorylase and sarcoplasmic reticulum membranes and its functional implications. J Biol Chem. 1995;270(20):11998–2004.PubMedCrossRef Cuenda A, Nogues M, Henao F, Gutierrez-Merino C. Interaction between glycogen phosphorylase and sarcoplasmic reticulum membranes and its functional implications. J Biol Chem. 1995;270(20):11998–2004.PubMedCrossRef
183.
Zurück zum Zitat Favero TG. Sarcoplasmic reticulum Ca(2+) release and muscle fatigue. J Appl Physiol (1985). 1999;87(2):471–83.CrossRef Favero TG. Sarcoplasmic reticulum Ca(2+) release and muscle fatigue. J Appl Physiol (1985). 1999;87(2):471–83.CrossRef
184.
Zurück zum Zitat Shearer J, Graham TE. New perspectives on the storage and organization of muscle glycogen. Can J Appl Physiol. 2002;27(2):179–203.PubMedCrossRef Shearer J, Graham TE. New perspectives on the storage and organization of muscle glycogen. Can J Appl Physiol. 2002;27(2):179–203.PubMedCrossRef
185.
Zurück zum Zitat Sacchetto R, Bovo E, Donella-Deana A, Damiani E. Glycogen- and PP1c-targeting subunit GM is phosphorylated at Ser48 by sarcoplasmic reticulum-bound Ca2+-calmodulin protein kinase in rabbit fast twitch skeletal muscle. J Biol Chem. 2005;280(8):7147–55.PubMedCrossRef Sacchetto R, Bovo E, Donella-Deana A, Damiani E. Glycogen- and PP1c-targeting subunit GM is phosphorylated at Ser48 by sarcoplasmic reticulum-bound Ca2+-calmodulin protein kinase in rabbit fast twitch skeletal muscle. J Biol Chem. 2005;280(8):7147–55.PubMedCrossRef
186.
Zurück zum Zitat Prats C, Gomez-Cabello A, Hansen AV. Intracellular compartmentalization of skeletal muscle glycogen metabolism and insulin signalling. Exp Physiol. 2011;96(4):385–90.PubMedCrossRef Prats C, Gomez-Cabello A, Hansen AV. Intracellular compartmentalization of skeletal muscle glycogen metabolism and insulin signalling. Exp Physiol. 2011;96(4):385–90.PubMedCrossRef
187.
Zurück zum Zitat Graham TE. Glycogen: an overview of possible regulatory roles of the proteins associated with the granule. Appl Physiol Nutr Metab. 2009;34(3):488–92.PubMedCrossRef Graham TE. Glycogen: an overview of possible regulatory roles of the proteins associated with the granule. Appl Physiol Nutr Metab. 2009;34(3):488–92.PubMedCrossRef
188.
Zurück zum Zitat Graham TE, Yuan Z, Hill AK, Wilson RJ. The regulation of muscle glycogen: the granule and its proteins. Acta Physiol (Oxf). 2010;199(4):489–98.CrossRef Graham TE, Yuan Z, Hill AK, Wilson RJ. The regulation of muscle glycogen: the granule and its proteins. Acta Physiol (Oxf). 2010;199(4):489–98.CrossRef
189.
Zurück zum Zitat Hoffman NJ, Whitfield J, Janzen NR, Belhaj MR, Galic S, Murray-Segal L, et al. Genetic loss of AMPK-glycogen binding destabilises AMPK and disrupts metabolism. Mol Metab. 2020;41:101048.PubMedPubMedCentralCrossRef Hoffman NJ, Whitfield J, Janzen NR, Belhaj MR, Galic S, Murray-Segal L, et al. Genetic loss of AMPK-glycogen binding destabilises AMPK and disrupts metabolism. Mol Metab. 2020;41:101048.PubMedPubMedCentralCrossRef
190.
Zurück zum Zitat Janzen NR, Whitfield J, Hoffman NJ. Interactive roles for AMPK and glycogen from cellular energy sensing to exercise metabolism. Int J Mol Sci. 2018;19(11):3344.PubMedCentralCrossRef Janzen NR, Whitfield J, Hoffman NJ. Interactive roles for AMPK and glycogen from cellular energy sensing to exercise metabolism. Int J Mol Sci. 2018;19(11):3344.PubMedCentralCrossRef
191.
Zurück zum Zitat McBride A, Ghilagaber S, Nikolaev A, Hardie DG. The glycogen-binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor. Cell Metab. 2009;9(1):23–34.PubMedPubMedCentralCrossRef McBride A, Ghilagaber S, Nikolaev A, Hardie DG. The glycogen-binding domain on the AMPK beta subunit allows the kinase to act as a glycogen sensor. Cell Metab. 2009;9(1):23–34.PubMedPubMedCentralCrossRef
192.
Zurück zum Zitat McBride A, Hardie DG. AMP-activated protein kinase–a sensor of glycogen as well as AMP and ATP? Acta Physiol (Oxf). 2009;196(1):99–113.CrossRef McBride A, Hardie DG. AMP-activated protein kinase–a sensor of glycogen as well as AMP and ATP? Acta Physiol (Oxf). 2009;196(1):99–113.CrossRef
193.
Zurück zum Zitat Rauch HG, St Clair Gibson A, Lambert EV, Noakes TD. A signalling role for muscle glycogen in the regulation of pace during prolonged exercise. Br J Sports Med. 2005;39(1):34–8.PubMedPubMedCentralCrossRef Rauch HG, St Clair Gibson A, Lambert EV, Noakes TD. A signalling role for muscle glycogen in the regulation of pace during prolonged exercise. Br J Sports Med. 2005;39(1):34–8.PubMedPubMedCentralCrossRef
194.
Zurück zum Zitat Karelis AD, Smith JW, Passe DH, Peronnet F. Carbohydrate administration and exercise performance: what are the potential mechanisms involved? Sports Med. 2010;40(9):747–63.PubMedCrossRef Karelis AD, Smith JW, Passe DH, Peronnet F. Carbohydrate administration and exercise performance: what are the potential mechanisms involved? Sports Med. 2010;40(9):747–63.PubMedCrossRef
195.
Zurück zum Zitat Williams JH, Batts TW, Lees S. Reduced muscle glycogen differentially affects exercise performance and muscle fatigue. Int Scholarly Res Notices. 2013;2013:371235 Williams JH, Batts TW, Lees S. Reduced muscle glycogen differentially affects exercise performance and muscle fatigue. Int Scholarly Res Notices. 2013;2013:371235
196.
Zurück zum Zitat Matsui T, Soya M, Soya H. Endurance and brain glycogen: a clue toward understanding central fatigue. Adv Neurobiol. 2019;23:331–46.PubMedCrossRef Matsui T, Soya M, Soya H. Endurance and brain glycogen: a clue toward understanding central fatigue. Adv Neurobiol. 2019;23:331–46.PubMedCrossRef
197.
Zurück zum Zitat Matsui T, Soya S, Okamoto M, Ichitani Y, Kawanaka K, Soya H. Brain glycogen decreases during prolonged exercise. J Physiol. 2011;589(Pt 13):3383–93.PubMedPubMedCentral Matsui T, Soya S, Okamoto M, Ichitani Y, Kawanaka K, Soya H. Brain glycogen decreases during prolonged exercise. J Physiol. 2011;589(Pt 13):3383–93.PubMedPubMedCentral
Metadaten
Titel
Muscle Glycogen Metabolism and High-Intensity Exercise Performance: A Narrative Review
verfasst von
Jeppe F. Vigh-Larsen
Niels Ørtenblad
Lawrence L. Spriet
Kristian Overgaard
Magni Mohr
Publikationsdatum
26.04.2021
Verlag
Springer International Publishing
Erschienen in
Sports Medicine / Ausgabe 9/2021
Print ISSN: 0112-1642
Elektronische ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-021-01475-0

Weitere Artikel der Ausgabe 9/2021

Sports Medicine 9/2021 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Arthroskopie kann Knieprothese nicht hinauszögern

25.04.2024 Gonarthrose Nachrichten

Ein arthroskopischer Eingriff bei Kniearthrose macht im Hinblick darauf, ob und wann ein Gelenkersatz fällig wird, offenbar keinen Unterschied.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Ärztliche Empathie hilft gegen Rückenschmerzen

23.04.2024 Leitsymptom Rückenschmerzen Nachrichten

Personen mit chronischen Rückenschmerzen, die von einfühlsamen Ärzten und Ärztinnen betreut werden, berichten über weniger Beschwerden und eine bessere Lebensqualität.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.