Skip to main content
Erschienen in: Journal of the Association for Research in Otolaryngology 1/2012

01.02.2012

Neuron-Specific Stimulus Masking Reveals Interference in Spike Timing at the Cortical Level

verfasst von: Eric Larson, Ross K. Maddox, Ben P. Perrone, Kamal Sen, Cyrus P. Billimoria

Erschienen in: Journal of the Association for Research in Otolaryngology | Ausgabe 1/2012

Einloggen, um Zugang zu erhalten

Abstract

The auditory system is capable of robust recognition of sounds in the presence of competing maskers (e.g., other voices or background music). This capability arises despite the fact that masking stimuli can disrupt neural responses at the cortical level. Since the origins of such interference effects remain unknown, in this study, we work to identify and quantify neural interference effects that originate due to masking occurring within and outside receptive fields of neurons. We record from single and multi-unit auditory sites from field L, the auditory cortex homologue in zebra finches. We use a novel method called spike timing-based stimulus filtering that uses the measured response of each neuron to create an individualized stimulus set. In contrast to previous adaptive experimental approaches, which have typically focused on the average firing rate, this method uses the complete pattern of neural responses, including spike timing information, in the calculation of the receptive field. When we generate and present novel stimuli for each neuron that mask the regions within the receptive field, we find that the time-varying information in the neural responses is disrupted, degrading neural discrimination performance and decreasing spike timing reliability and sparseness. We also find that, while removing stimulus energy from frequency regions outside the receptive field does not significantly affect neural responses for many sites, adding a masker in these frequency regions can nonetheless have a significant impact on neural responses and discriminability without a significant change in the average firing rate. These findings suggest that maskers can interfere with neural responses by disrupting stimulus timing information with power either within or outside the receptive fields of neurons.
Literatur
Zurück zum Zitat Ahrens MB, Linden JF, Sahani M (2008) Nonlinearities and contextual influences in auditory cortical responses modeled with multilinear spectrotemporal methods. J Neurosci 28:1929–1942PubMedCrossRef Ahrens MB, Linden JF, Sahani M (2008) Nonlinearities and contextual influences in auditory cortical responses modeled with multilinear spectrotemporal methods. J Neurosci 28:1929–1942PubMedCrossRef
Zurück zum Zitat Bar-Yosef O, Nelken I (2007) The effects of background noise on the neural responses to natural sounds in cat primary auditory cortex. Front Comput Neurosci 1:3PubMedCrossRef Bar-Yosef O, Nelken I (2007) The effects of background noise on the neural responses to natural sounds in cat primary auditory cortex. Front Comput Neurosci 1:3PubMedCrossRef
Zurück zum Zitat Bar-Yosef O, Rotman Y, Nelken I (2002) Responses of neurons in cat primary auditory cortex to bird chirps: effects of temporal and spectral context. J Neurosci 22:8619–8632PubMed Bar-Yosef O, Rotman Y, Nelken I (2002) Responses of neurons in cat primary auditory cortex to bird chirps: effects of temporal and spectral context. J Neurosci 22:8619–8632PubMed
Zurück zum Zitat Billimoria CP, Kraus BJ, Narayan R, Maddox RK, Sen K (2008) Invariance and sensitivity to intensity in neural discrimination of natural sounds. J Neurosci 28:6304–6308PubMedCrossRef Billimoria CP, Kraus BJ, Narayan R, Maddox RK, Sen K (2008) Invariance and sensitivity to intensity in neural discrimination of natural sounds. J Neurosci 28:6304–6308PubMedCrossRef
Zurück zum Zitat Brimijoin WO, O’Neill WE (2010) Patterned tone sequences reveal non-linear interactions in auditory spectrotemporal receptive fields in the inferior colliculus. Hear Res 267:96–110PubMedCrossRef Brimijoin WO, O’Neill WE (2010) Patterned tone sequences reveal non-linear interactions in auditory spectrotemporal receptive fields in the inferior colliculus. Hear Res 267:96–110PubMedCrossRef
Zurück zum Zitat Cherry EC (1953) Some experiments on the recognition of speech, with one and with two ears. J Acoust Soc Am 25:975–979CrossRef Cherry EC (1953) Some experiments on the recognition of speech, with one and with two ears. J Acoust Soc Am 25:975–979CrossRef
Zurück zum Zitat Christianson GB, Sahani M, Linden JF (2008) The consequences of response nonlinearities for interpretation of spectrotemporal receptive fields. J Neurosci 28:446–455PubMedCrossRef Christianson GB, Sahani M, Linden JF (2008) The consequences of response nonlinearities for interpretation of spectrotemporal receptive fields. J Neurosci 28:446–455PubMedCrossRef
Zurück zum Zitat David SV, Mesgarani N, Shamma SA (2007) Estimating sparse spectro-temporal receptive fields with natural stimuli. Network 18:191–212PubMedCrossRef David SV, Mesgarani N, Shamma SA (2007) Estimating sparse spectro-temporal receptive fields with natural stimuli. Network 18:191–212PubMedCrossRef
Zurück zum Zitat deCharms RC, Blake DT, Merzenich MM (1998) Optimizing sound features for cortical neurons. Science 280:1439–1443PubMedCrossRef deCharms RC, Blake DT, Merzenich MM (1998) Optimizing sound features for cortical neurons. Science 280:1439–1443PubMedCrossRef
Zurück zum Zitat Endepols H, Feng AS, Gerhardt HC, Schul J, Walkowiak W (2003) Roles of the auditory midbrain and thalamus in selective phonotaxis in female gray treefrogs (Hyla versicolor). Behavioural Brain Research 145:63–77PubMedCrossRef Endepols H, Feng AS, Gerhardt HC, Schul J, Walkowiak W (2003) Roles of the auditory midbrain and thalamus in selective phonotaxis in female gray treefrogs (Hyla versicolor). Behavioural Brain Research 145:63–77PubMedCrossRef
Zurück zum Zitat Gentner TQ, Margoliash D (2003) Neuronal populations and single cells representing learned auditory objects. Nature 424:669–674PubMedCrossRef Gentner TQ, Margoliash D (2003) Neuronal populations and single cells representing learned auditory objects. Nature 424:669–674PubMedCrossRef
Zurück zum Zitat Gourevitch B, Norena A, Shaw G, Eggermont JJ (2009) Spectrotemporal receptive fields in anesthetized cat primary auditory cortex are context dependent. Cereb Cortex 19:1448–1461PubMedCrossRef Gourevitch B, Norena A, Shaw G, Eggermont JJ (2009) Spectrotemporal receptive fields in anesthetized cat primary auditory cortex are context dependent. Cereb Cortex 19:1448–1461PubMedCrossRef
Zurück zum Zitat Grace JA, Amin N, Singh NC, Theunissen FE (2003) Selectivity for conspecific song in the zebra finch auditory forebrain. J Neurophysiol 89:472–487PubMedCrossRef Grace JA, Amin N, Singh NC, Theunissen FE (2003) Selectivity for conspecific song in the zebra finch auditory forebrain. J Neurophysiol 89:472–487PubMedCrossRef
Zurück zum Zitat Grana GD, Billimoria CP, Sen K (2009) Analyzing variability in neural responses to complex natural sounds in the awake songbird. J Neurophysiol 101:3147–3157PubMedCrossRef Grana GD, Billimoria CP, Sen K (2009) Analyzing variability in neural responses to complex natural sounds in the awake songbird. J Neurophysiol 101:3147–3157PubMedCrossRef
Zurück zum Zitat Hsu A, Borst A, Theunissen FE (2004) Quantifying variability in neural responses and its application for the validation of model predictions. Network 15:91–109PubMedCrossRef Hsu A, Borst A, Theunissen FE (2004) Quantifying variability in neural responses and its application for the validation of model predictions. Network 15:91–109PubMedCrossRef
Zurück zum Zitat Hulse SH, MacDougall-Shackleton SA, Wisniewski AB (1997) Auditory scene analysis by songbirds: stream segregation of birdsong by European starlings (Sturnus vulgaris). J Comp Psychol 111:3–13PubMedCrossRef Hulse SH, MacDougall-Shackleton SA, Wisniewski AB (1997) Auditory scene analysis by songbirds: stream segregation of birdsong by European starlings (Sturnus vulgaris). J Comp Psychol 111:3–13PubMedCrossRef
Zurück zum Zitat Langner G, Bonke D, Scheich H (1981) Neuronal discrimination of natural and synthetic vowels in field L of trained mynah birds. Exp Brain Res 43:11–24PubMedCrossRef Langner G, Bonke D, Scheich H (1981) Neuronal discrimination of natural and synthetic vowels in field L of trained mynah birds. Exp Brain Res 43:11–24PubMedCrossRef
Zurück zum Zitat Larson E, Billimoria CP, Sen K (2009) A biologically plausible computational model for auditory object recognition. J Neurophysiol 101:323–331PubMedCrossRef Larson E, Billimoria CP, Sen K (2009) A biologically plausible computational model for auditory object recognition. J Neurophysiol 101:323–331PubMedCrossRef
Zurück zum Zitat Leppelsack HJ, Vogt M (1976) Responses of auditory neurons in the forebrain of a songbird to stimulation with species-specific sounds. J Comp Physiol 107:263–274CrossRef Leppelsack HJ, Vogt M (1976) Responses of auditory neurons in the forebrain of a songbird to stimulation with species-specific sounds. J Comp Physiol 107:263–274CrossRef
Zurück zum Zitat Machens CK, Schutze H, Franz A, Kolesnikova O, Stemmler MB, Ronacher B, Herz AV (2003) Single auditory neurons rapidly discriminate conspecific communication signals. Nat Neurosci 6:341–342PubMedCrossRef Machens CK, Schutze H, Franz A, Kolesnikova O, Stemmler MB, Ronacher B, Herz AV (2003) Single auditory neurons rapidly discriminate conspecific communication signals. Nat Neurosci 6:341–342PubMedCrossRef
Zurück zum Zitat Nagel KI, Doupe AJ (2006) Temporal processing and adaptation in the songbird auditory forebrain. Neuron 51:845–859PubMedCrossRef Nagel KI, Doupe AJ (2006) Temporal processing and adaptation in the songbird auditory forebrain. Neuron 51:845–859PubMedCrossRef
Zurück zum Zitat Narayan R, Grana G, Sen K (2006) Distinct time scales in cortical discrimination of natural sounds in songbirds. J Neurophysiol 96:252–258PubMedCrossRef Narayan R, Grana G, Sen K (2006) Distinct time scales in cortical discrimination of natural sounds in songbirds. J Neurophysiol 96:252–258PubMedCrossRef
Zurück zum Zitat Narayan R, Best V, Ozmeral E, Mcclaine E, Dent M, Shinn-Cunningham B, Sen K (2007) Cortical interference effects in the cocktail party problem. Nat Neurosci 10:1601–1607PubMedCrossRef Narayan R, Best V, Ozmeral E, Mcclaine E, Dent M, Shinn-Cunningham B, Sen K (2007) Cortical interference effects in the cocktail party problem. Nat Neurosci 10:1601–1607PubMedCrossRef
Zurück zum Zitat Nelken I (2004) Processing of complex stimuli and natural scenes in the auditory cortex. Curr Opin Neurobiol 14:474–480PubMedCrossRef Nelken I (2004) Processing of complex stimuli and natural scenes in the auditory cortex. Curr Opin Neurobiol 14:474–480PubMedCrossRef
Zurück zum Zitat Paninski L, Pillow J, Lewi J (2007) Statistical models for neural encoding, decoding, and optimal stimulus design. In: Cisek P, Drew T, Kalaska J (eds) Computational neuroscience: theoretical insights into brain function. Elsevier, Amsterdam, pp 493–507CrossRef Paninski L, Pillow J, Lewi J (2007) Statistical models for neural encoding, decoding, and optimal stimulus design. In: Cisek P, Drew T, Kalaska J (eds) Computational neuroscience: theoretical insights into brain function. Elsevier, Amsterdam, pp 493–507CrossRef
Zurück zum Zitat Sadagopan S, Wang X (2009) Nonlinear spectrotemporal interactions underlying selectivity for complex sounds in auditory cortex. J Neurosci 29:11192–11202PubMedCrossRef Sadagopan S, Wang X (2009) Nonlinear spectrotemporal interactions underlying selectivity for complex sounds in auditory cortex. J Neurosci 29:11192–11202PubMedCrossRef
Zurück zum Zitat Schreiber S, Fellous JM, Whitmer D, Tiesinga P, Sejnowski TJ (2003) A new correlation-based measure of spike timing reliability. Neurocomputing 52:925–931PubMedCrossRef Schreiber S, Fellous JM, Whitmer D, Tiesinga P, Sejnowski TJ (2003) A new correlation-based measure of spike timing reliability. Neurocomputing 52:925–931PubMedCrossRef
Zurück zum Zitat Theunissen FE, David SV, Singh NC, Hsu A, Vinje WE, Gallant JL (2001) Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli. Network 12:289–316PubMed Theunissen FE, David SV, Singh NC, Hsu A, Vinje WE, Gallant JL (2001) Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli. Network 12:289–316PubMed
Zurück zum Zitat Theunissen FE, Sen K, Doupe AJ (2000) Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds. J Neurosci 20:2315–2331PubMed Theunissen FE, Sen K, Doupe AJ (2000) Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds. J Neurosci 20:2315–2331PubMed
Zurück zum Zitat Theunissen FE, Shaevitz SS (2006) Auditory processing of vocal sounds in birds. Curr Opin Neurobiol 16:400–407PubMedCrossRef Theunissen FE, Shaevitz SS (2006) Auditory processing of vocal sounds in birds. Curr Opin Neurobiol 16:400–407PubMedCrossRef
Zurück zum Zitat Vinje WE, Gallant JL (2000) Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287:1273–1276PubMedCrossRef Vinje WE, Gallant JL (2000) Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287:1273–1276PubMedCrossRef
Zurück zum Zitat Wang L, Narayan R, Grana G, Shamir M, Sen K (2007) Cortical discrimination of complex natural stimuli: can single neurons match behavior? J Neurosci 27:582–589PubMedCrossRef Wang L, Narayan R, Grana G, Shamir M, Sen K (2007) Cortical discrimination of complex natural stimuli: can single neurons match behavior? J Neurosci 27:582–589PubMedCrossRef
Zurück zum Zitat Wang Y, Brzozowska-Prechtl A, Karten HJ (2010) Laminar and columnar auditory cortex in avian brain. Proceedings of the National Academy of Sciences 107:12676–12681CrossRef Wang Y, Brzozowska-Prechtl A, Karten HJ (2010) Laminar and columnar auditory cortex in avian brain. Proceedings of the National Academy of Sciences 107:12676–12681CrossRef
Zurück zum Zitat Yamane Y, Carlson ET, Bowman KC, Wang Z, Connor CE (2008) A neural code for three-dimensional object shape in macaque inferotemporal cortex. Nat Neurosci 11:1352–1360PubMedCrossRef Yamane Y, Carlson ET, Bowman KC, Wang Z, Connor CE (2008) A neural code for three-dimensional object shape in macaque inferotemporal cortex. Nat Neurosci 11:1352–1360PubMedCrossRef
Metadaten
Titel
Neuron-Specific Stimulus Masking Reveals Interference in Spike Timing at the Cortical Level
verfasst von
Eric Larson
Ross K. Maddox
Ben P. Perrone
Kamal Sen
Cyrus P. Billimoria
Publikationsdatum
01.02.2012
Verlag
Springer-Verlag
Erschienen in
Journal of the Association for Research in Otolaryngology / Ausgabe 1/2012
Print ISSN: 1525-3961
Elektronische ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-011-0292-1

Weitere Artikel der Ausgabe 1/2012

Journal of the Association for Research in Otolaryngology 1/2012 Zur Ausgabe

Kinder mit anhaltender Sinusitis profitieren häufig von Antibiotika

30.04.2024 Rhinitis und Sinusitis Nachrichten

Persistieren Sinusitisbeschwerden bei Kindern länger als zehn Tage, ist eine Antibiotikatherapie häufig gut wirksam: Ein Therapieversagen ist damit zu über 40% seltener zu beobachten als unter Placebo.

CUP-Syndrom: Künstliche Intelligenz kann Primärtumor finden

30.04.2024 Künstliche Intelligenz Nachrichten

Krebserkrankungen unbekannten Ursprungs (CUP) sind eine diagnostische Herausforderung. KI-Systeme können Pathologen dabei unterstützen, zytologische Bilder zu interpretieren, um den Primärtumor zu lokalisieren.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.