Skip to main content
Erschienen in: Lasers in Medical Science 4/2017

17.03.2017 | Original Article

Neuropeptide expression and morphometric differences in crushed alveolar inferior nerve of rats: Effects of photobiomodulation

verfasst von: Daniel Oliveira Martins, Fabio Martinez dos Santos, Adriano Polican Ciena, Ii-sei Watanabe, Luiz Roberto G. de Britto, José Benedito Dias Lemos, Marucia Chacur

Erschienen in: Lasers in Medical Science | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

Inferior alveolar nerve (IAN) injuries may occur during various dental routine procedures, especially in the removal of impacted lower third molars, and nerve recovery in these cases is a great challenge in dentistry. Here, the IAN crush injury model was used to assess the efficacy of photobiomodulation (PBM) in the recovery of the IAN in rats following crushing injury (a partial lesion). Rats were divided into four experimental groups: without any procedure, IAN crush injury, and IAN crush injury with PBM and sham group with PBM. Treatment was started 2 days after surgery, above the site of injury, and was performed every other day, totaling 10 sessions. Rats were irradiated with GaAs Laser (Gallium Arsenide, Laserpulse, Ibramed Brazil) emitting a wavelength of 904 nm, an output power of 70 mWpk, beam spot size at target ∼0.1 cm2, a frequency of 9500 Hz, a pulse time 60 ns, and an energy density of 6 J/cm2. Nerve recovery was investigated by measuring the morphometric data of the IAN using TEM and by the expression of laminin, neurofilaments (NFs), and myelin protein zero (MPZ) using Western blot analysis. We found that IAN-injured rats which received PBM had a significant improvement of IAN morphometry when compared to IAN-injured rats without PBM. In parallel, all MPZ, laminin, and NFs exhibited a decrease after PBM. The results of this study indicate that the correlation between the peripheral nerve ultrastructure and the associated protein expression shows the beneficial effects of PBM.
Literatur
1.
Zurück zum Zitat Raimondo S et al (2011) Perspectives in regeneration and tissue engineering of peripheral nerves. Ann Anat 193(4):334–40CrossRefPubMed Raimondo S et al (2011) Perspectives in regeneration and tissue engineering of peripheral nerves. Ann Anat 193(4):334–40CrossRefPubMed
2.
Zurück zum Zitat Mendonca AC, Barbieri CH, Mazzer N (2003) Directly applied low intensity direct electric current enhances peripheral nerve regeneration in rats. J Neurosci Methods 129(2):183–90CrossRefPubMed Mendonca AC, Barbieri CH, Mazzer N (2003) Directly applied low intensity direct electric current enhances peripheral nerve regeneration in rats. J Neurosci Methods 129(2):183–90CrossRefPubMed
3.
Zurück zum Zitat Anders JJ, Geuna S, Rochkind S (2004) Phototherapy promotes regeneration and functional recovery of injured peripheral nerve. Neurol Res 26(2):233–9CrossRefPubMed Anders JJ, Geuna S, Rochkind S (2004) Phototherapy promotes regeneration and functional recovery of injured peripheral nerve. Neurol Res 26(2):233–9CrossRefPubMed
4.
Zurück zum Zitat Tucker BA, Mearow KM (2008) Peripheral sensory axon growth: from receptor binding to cellular signaling. Can J Neurol Sci 35(5):551–66CrossRefPubMed Tucker BA, Mearow KM (2008) Peripheral sensory axon growth: from receptor binding to cellular signaling. Can J Neurol Sci 35(5):551–66CrossRefPubMed
5.
Zurück zum Zitat Wang X et al (2011) Schwann-like mesenchymal stem cells within vein graft facilitate facial nerve regeneration and remyelination. Brain Res 1383:71–80CrossRefPubMed Wang X et al (2011) Schwann-like mesenchymal stem cells within vein graft facilitate facial nerve regeneration and remyelination. Brain Res 1383:71–80CrossRefPubMed
6.
Zurück zum Zitat Thompson DM, Buettner HM (2001) Schwann cell response to micropatterned laminin surfaces. Tissue Eng 7(3):247–65CrossRefPubMed Thompson DM, Buettner HM (2001) Schwann cell response to micropatterned laminin surfaces. Tissue Eng 7(3):247–65CrossRefPubMed
7.
Zurück zum Zitat Chen ZL, Strickland S (2003) Laminin gamma1 is critical for Schwann cell differentiation, axon myelination, and regeneration in the peripheral nerve. J Cell Biol 163(4):889–99CrossRefPubMedPubMedCentral Chen ZL, Strickland S (2003) Laminin gamma1 is critical for Schwann cell differentiation, axon myelination, and regeneration in the peripheral nerve. J Cell Biol 163(4):889–99CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Yuan A et al (2009) Neurofilaments form a highly stable stationary cytoskeleton after reaching a critical level in axons. J Neurosci 29(36):11316–29CrossRefPubMedPubMedCentral Yuan A et al (2009) Neurofilaments form a highly stable stationary cytoskeleton after reaching a critical level in axons. J Neurosci 29(36):11316–29CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Al-Chalabi A, Miller CC (2003) Neurofilaments and neurological disease. Bioessays 25(4):346–55CrossRefPubMed Al-Chalabi A, Miller CC (2003) Neurofilaments and neurological disease. Bioessays 25(4):346–55CrossRefPubMed
10.
Zurück zum Zitat Walker KL et al (2001) Loss of neurofilaments alters axonal growth dynamics. J Neurosci 21(24):9655–66PubMed Walker KL et al (2001) Loss of neurofilaments alters axonal growth dynamics. J Neurosci 21(24):9655–66PubMed
11.
Zurück zum Zitat Shao Y et al (2002) Effect of nerve growth factor on changes of myelin basic protein and functional repair of peripheral nerve following sciatic nerve injury in rats. Chin J Traumatol 5(4):237–40PubMed Shao Y et al (2002) Effect of nerve growth factor on changes of myelin basic protein and functional repair of peripheral nerve following sciatic nerve injury in rats. Chin J Traumatol 5(4):237–40PubMed
12.
Zurück zum Zitat Boyce VS et al (2007) Neurotrophic factors promote and enhance locomotor recovery in untrained spinalized cats. J Neurophysiol 98(4):1988–96CrossRefPubMed Boyce VS et al (2007) Neurotrophic factors promote and enhance locomotor recovery in untrained spinalized cats. J Neurophysiol 98(4):1988–96CrossRefPubMed
13.
Zurück zum Zitat Sasaki M et al (2009) BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury. J Neurosci 29(47):14932–41CrossRefPubMedPubMedCentral Sasaki M et al (2009) BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury. J Neurosci 29(47):14932–41CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Petruska JC, Mendell LM (2004) The many functions of nerve growth factor: multiple actions on nociceptors. Neurosci Lett 361(1–3):168–71CrossRefPubMed Petruska JC, Mendell LM (2004) The many functions of nerve growth factor: multiple actions on nociceptors. Neurosci Lett 361(1–3):168–71CrossRefPubMed
15.
Zurück zum Zitat Zochodne DW (2000) The microenvironment of injured and regenerating peripheral nerves. Muscle Nerve Suppl 9:S33–8CrossRefPubMed Zochodne DW (2000) The microenvironment of injured and regenerating peripheral nerves. Muscle Nerve Suppl 9:S33–8CrossRefPubMed
16.
Zurück zum Zitat de Oliveira Martins D et al (2013) Laser therapy and pain-related behavior after injury of the inferior alveolar nerve: possible involvement of neurotrophins. J Neurotrauma 30(6):480–6CrossRefPubMedPubMedCentral de Oliveira Martins D et al (2013) Laser therapy and pain-related behavior after injury of the inferior alveolar nerve: possible involvement of neurotrophins. J Neurotrauma 30(6):480–6CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16(2):109–10CrossRefPubMed Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16(2):109–10CrossRefPubMed
18.
Zurück zum Zitat Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–54CrossRefPubMed Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–54CrossRefPubMed
19.
Zurück zum Zitat Ciena AP et al (2012) Fine structure of myotendinous junction between the anterior belly of the digastric muscle and intermediate tendon in adults rats. Micron 43(2–3):258–62CrossRefPubMed Ciena AP et al (2012) Fine structure of myotendinous junction between the anterior belly of the digastric muscle and intermediate tendon in adults rats. Micron 43(2–3):258–62CrossRefPubMed
20.
Zurück zum Zitat da Silva JT et al (2015) Neural mobilization promotes nerve regeneration by nerve growth factor and myelin protein zero increased after sciatic nerve injury. Growth Factors 33(1):8–13CrossRefPubMed da Silva JT et al (2015) Neural mobilization promotes nerve regeneration by nerve growth factor and myelin protein zero increased after sciatic nerve injury. Growth Factors 33(1):8–13CrossRefPubMed
21.
Zurück zum Zitat Watanabe I, Yamada E (1983) The fine structure of lamellated nerve endings found in the rat gingiva. Arch Histol Jpn 46(2):173–82CrossRefPubMed Watanabe I, Yamada E (1983) The fine structure of lamellated nerve endings found in the rat gingiva. Arch Histol Jpn 46(2):173–82CrossRefPubMed
22.
Zurück zum Zitat Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–5CrossRefPubMed Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–5CrossRefPubMed
23.
Zurück zum Zitat Snedecor GW, Sokal RR, Rohlf FJ (1946) Statistical methods biometry. 4 ed. Ames, ed. W.H. Freeman & Co. New York: Owa State University Press. p.859 Snedecor GW, Sokal RR, Rohlf FJ (1946) Statistical methods biometry. 4 ed. Ames, ed. W.H. Freeman & Co. New York: Owa State University Press. p.859
24.
Zurück zum Zitat Chaplan SR et al (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63 Chaplan SR et al (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63
25.
Zurück zum Zitat Yonehara N, Kudo C, Kamisaki Y (2003) Involvement of NMDA-nitric oxide pathways in the development of tactile hypersensitivity evoked by the loose-ligation of inferior alveolar nerves in rats. Brain Res 963(1–2):232–43 Yonehara N, Kudo C, Kamisaki Y (2003) Involvement of NMDA-nitric oxide pathways in the development of tactile hypersensitivity evoked by the loose-ligation of inferior alveolar nerves in rats. Brain Res 963(1–2):232–43
26.
27.
Zurück zum Zitat Fortun J, Hill CE, Bunge MB (2009) Combinatorial strategies with Schwann cell transplantation to improve repair of the injured spinal cord. Neurosci Lett 456(3):124–32CrossRefPubMedPubMedCentral Fortun J, Hill CE, Bunge MB (2009) Combinatorial strategies with Schwann cell transplantation to improve repair of the injured spinal cord. Neurosci Lett 456(3):124–32CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Toft A et al (2013) A comparative study of glial and non-neural cell properties for transplant-mediated repair of the injured spinal cord. Glia 61(4):513–28CrossRefPubMed Toft A et al (2013) A comparative study of glial and non-neural cell properties for transplant-mediated repair of the injured spinal cord. Glia 61(4):513–28CrossRefPubMed
29.
Zurück zum Zitat Webber CA et al (2011) Schwann cells direct peripheral nerve regeneration through the Netrin-1 receptors, DCC and Unc5H2. Glia 59(10):1503–17CrossRefPubMed Webber CA et al (2011) Schwann cells direct peripheral nerve regeneration through the Netrin-1 receptors, DCC and Unc5H2. Glia 59(10):1503–17CrossRefPubMed
30.
Zurück zum Zitat Podratz JL, Rodriguez E, Windebank AJ (2001) Role of the extracellular matrix in myelination of peripheral nerve. Glia 35(1):35–40CrossRefPubMed Podratz JL, Rodriguez E, Windebank AJ (2001) Role of the extracellular matrix in myelination of peripheral nerve. Glia 35(1):35–40CrossRefPubMed
31.
Zurück zum Zitat Tsiper MV, Yurchenco PD (2002) Laminin assembles into separate basement membrane and fibrillar matrices in Schwann cells. J Cell Sci 115(Pt 5):1005–15PubMed Tsiper MV, Yurchenco PD (2002) Laminin assembles into separate basement membrane and fibrillar matrices in Schwann cells. J Cell Sci 115(Pt 5):1005–15PubMed
32.
Zurück zum Zitat Mirsky R et al (2001) Regulation of genes involved in Schwann cell development and differentiation. Prog Brain Res 132:3–11CrossRefPubMed Mirsky R et al (2001) Regulation of genes involved in Schwann cell development and differentiation. Prog Brain Res 132:3–11CrossRefPubMed
33.
Zurück zum Zitat Uziyel Y, Hall S, Cohen J (2000) Influence of laminin-2 on Schwann cell-axon interactions. Glia 32(2):109–21CrossRefPubMed Uziyel Y, Hall S, Cohen J (2000) Influence of laminin-2 on Schwann cell-axon interactions. Glia 32(2):109–21CrossRefPubMed
34.
Zurück zum Zitat Rankin SL et al (2008) Neurotrophin-induced upregulation of p75NTR via a protein kinase C-delta-dependent mechanism. Brain Res 1217:10–24CrossRefPubMed Rankin SL et al (2008) Neurotrophin-induced upregulation of p75NTR via a protein kinase C-delta-dependent mechanism. Brain Res 1217:10–24CrossRefPubMed
35.
Zurück zum Zitat Luo L (2002) Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. Annu Rev Cell Dev Biol 18:601–35CrossRefPubMed Luo L (2002) Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. Annu Rev Cell Dev Biol 18:601–35CrossRefPubMed
36.
Zurück zum Zitat Nakagawa M et al (2001) Schwann cell myelination occurred without basal lamina formation in laminin alpha2 chain-null mutant (dy3K/dy3K) mice. Glia 35(2):101–10CrossRefPubMed Nakagawa M et al (2001) Schwann cell myelination occurred without basal lamina formation in laminin alpha2 chain-null mutant (dy3K/dy3K) mice. Glia 35(2):101–10CrossRefPubMed
38.
40.
Zurück zum Zitat Varejao AS et al (2004) Functional and morphological assessment of a standardized rat sciatic nerve crush injury with a non-serrated clamp. J Neurotrauma 21(11):1652–70CrossRefPubMed Varejao AS et al (2004) Functional and morphological assessment of a standardized rat sciatic nerve crush injury with a non-serrated clamp. J Neurotrauma 21(11):1652–70CrossRefPubMed
41.
Zurück zum Zitat Perrot R et al (2008) Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration. Mol Neurobiol 38(1):27–65CrossRefPubMed Perrot R et al (2008) Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration. Mol Neurobiol 38(1):27–65CrossRefPubMed
42.
Zurück zum Zitat Peplow PV, Chung TY, Baxter GD (2010) Laser photobiomodulation of proliferation of cells in culture: a review of human and animal studies. Photomed Laser Surg 28(Suppl 1):S3–40PubMed Peplow PV, Chung TY, Baxter GD (2010) Laser photobiomodulation of proliferation of cells in culture: a review of human and animal studies. Photomed Laser Surg 28(Suppl 1):S3–40PubMed
Metadaten
Titel
Neuropeptide expression and morphometric differences in crushed alveolar inferior nerve of rats: Effects of photobiomodulation
verfasst von
Daniel Oliveira Martins
Fabio Martinez dos Santos
Adriano Polican Ciena
Ii-sei Watanabe
Luiz Roberto G. de Britto
José Benedito Dias Lemos
Marucia Chacur
Publikationsdatum
17.03.2017
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 4/2017
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-017-2181-2

Weitere Artikel der Ausgabe 4/2017

Lasers in Medical Science 4/2017 Zur Ausgabe