Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 12/2022

17.06.2022 | Original Article

PET/CT imaging of CSF1R in a mouse model of tuberculosis

verfasst von: Catherine A. Foss, Alvaro A. Ordonez, Ravi Naik, Deepankar Das, Andrew Hall, Yunkou Wu, Robert F. Dannals, Sanjay K. Jain, Martin G. Pomper, Andrew G. Horti

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 12/2022

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Macrophages represent an essential means of sequestration and immune evasion for Mycobacterium tuberculosis. Pulmonary tuberculosis (TB) is characterized by dense collections of tissue-specific and recruited macrophages, both of which abundantly express CSF1R on their outer surface. 4-Cyano-N-(5-(1-(dimethylglycyl)piperidin-4-yl)-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-2-yl)-1H-imidazole-2-carboxamide (JNJ-28312141) is a reported high affinity, CSF1R-selective antagonist. We report the radiosynthesis of 4-cyano-N-(5-(1-(N-methyl-N-([11C]methyl)glycyl)piperidin-4-yl)-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-2-yl)-1H-imidazole-2-carboxamide ([11C]JNJ-28312141) and non-invasive detection of granulomatous and diffuse lesions in a mouse model of TB using positron emission tomography (PET).

Methods

Nor-methyl-JNJ-28312141 precursor was radiolabeled with [11C]iodomethane to produce [11C]JNJ-28312141. PET/CT imaging was performed in the C3HeB/FeJ murine model of chronic pulmonary TB to co-localize radiotracer uptake with granulomatous lesions observed on CT. Additionally, CSF1R, Iba1 fluorescence immunohistochemistry was performed to co-localize CSF1R target with reactive macrophages in infected and healthy mice.

Results

Radiosynthesis of [11C]JNJ-28312141 averaged a non-decay-corrected yield of 18.7 ± 2.1%, radiochemical purity of 99%, and specific activity averaging 658 ± 141 GBq/µmol at the end-of-synthesis. PET/CT imaging in healthy mice showed hepatobiliary [13.39–25.34% ID/g, percentage of injected dose per gram of tissue (ID/g)] and kidney uptake (12.35% ID/g) at 40–50 min post-injection. Infected mice showed focal pulmonary lesion uptake (5.58–12.49% ID/g), hepatobiliary uptake (15.30–40.50% ID/g), cervical node uptake, and renal uptake (11.66–29.33% ID/g). The ratio of infected lesioned lung/healthy lung uptake is 5.91:1, while the ratio of lesion uptake to adjacent infected radiolucent lung is 2.8:1. Pre-administration of 1 mg/kg of unlabeled JNJ-28312141 with [11C]JNJ-28312141 in infected animals resulted in substantial blockade. Fluorescence microscopy of infected and uninfected whole lung sections exclusively co-localized CSF1R staining with abundant Iba1 + macrophages. Healthy lung exhibited no CSF1R staining and very few Iba1 + macrophages.

Conclusion

[11C]JNJ-28312141 binds specifically to CSF1R + macrophages and delineates granulomatous foci of disease in a murine model of pulmonary TB.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Gordon O, Ruiz-Bedoya CA, Ordonez AA, Tucker EW, Jain SK. Molecular imaging: a novel tool to visualize pathogenesis of infections In Situ. 2019;mBio 10. Gordon O, Ruiz-Bedoya CA, Ordonez AA, Tucker EW, Jain SK. Molecular imaging: a novel tool to visualize pathogenesis of infections In Situ. 2019;mBio 10.
2.
Zurück zum Zitat Jain SK, Tobin DM, Tucker EW, et al. Tuberculous meningitis: a roadmap for advancing basic and translational research. Nat Immunol. 2018;19:521–5.PubMedPubMedCentralCrossRef Jain SK, Tobin DM, Tucker EW, et al. Tuberculous meningitis: a roadmap for advancing basic and translational research. Nat Immunol. 2018;19:521–5.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Foss CA, Harper JS, Wang H, Pomper MG, Jain SK. Noninvasive molecular imaging of tuberculosis-associated inflammation with radioiodinated DPA-713. J Infect Dis. 2013;208:2067–74.PubMedPubMedCentralCrossRef Foss CA, Harper JS, Wang H, Pomper MG, Jain SK. Noninvasive molecular imaging of tuberculosis-associated inflammation with radioiodinated DPA-713. J Infect Dis. 2013;208:2067–74.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Ordonez AA, Carroll LS, Abhishek S, et al. Radiosynthesis and PET Bioimaging of (76)Br-Bedaquiline in a Murine Model of Tuberculosis. ACS Infect Dis. 2019;5:1996–2002.PubMedPubMedCentralCrossRef Ordonez AA, Carroll LS, Abhishek S, et al. Radiosynthesis and PET Bioimaging of (76)Br-Bedaquiline in a Murine Model of Tuberculosis. ACS Infect Dis. 2019;5:1996–2002.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Ordonez AA, DeMarco VP, Klunk MH, Pokkali S, Jain SK. Imaging Chronic Tuberculous Lesions Using Sodium [(18)F]Fluoride Positron Emission Tomography in Mice. Mol Imaging Biol. 2015;17:609–14.PubMedPubMedCentralCrossRef Ordonez AA, DeMarco VP, Klunk MH, Pokkali S, Jain SK. Imaging Chronic Tuberculous Lesions Using Sodium [(18)F]Fluoride Positron Emission Tomography in Mice. Mol Imaging Biol. 2015;17:609–14.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Tucker EW, Guglieri-Lopez B, Ordonez AA et al. Noninvasive (11)C-rifampin positron emission tomography reveals drug biodistribution in tuberculous meningitis. Sci Transl Med. 2018;10:eaau0965. Tucker EW, Guglieri-Lopez B, Ordonez AA et al. Noninvasive (11)C-rifampin positron emission tomography reveals drug biodistribution in tuberculous meningitis. Sci Transl Med. 2018;10:eaau0965.
7.
Zurück zum Zitat Foss CA, Plyku D, Ordonez AA, et al. Biodistribution and Radiation Dosimetry of (124)I-DPA-713, a PET Radiotracer for Macrophage-Associated Inflammation. J Nucl Med. 2018;59:1751–6.PubMedPubMedCentralCrossRef Foss CA, Plyku D, Ordonez AA, et al. Biodistribution and Radiation Dosimetry of (124)I-DPA-713, a PET Radiotracer for Macrophage-Associated Inflammation. J Nucl Med. 2018;59:1751–6.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Upadhyay S, Mittal E, Philips JA. Tuberculosis and the art of macrophage manipulation. Pathog Dis. 2018;76:fty037. Upadhyay S, Mittal E, Philips JA. Tuberculosis and the art of macrophage manipulation. Pathog Dis. 2018;76:fty037.
9.
Zurück zum Zitat Ordonez AA, Pokkali S, Sanchez-Bautista J, et al. Matrix Metalloproteinase Inhibition in a Murine Model of Cavitary Tuberculosis Paradoxically Worsens Pathology. J Infect Dis. 2019;219:633–6.PubMedCrossRef Ordonez AA, Pokkali S, Sanchez-Bautista J, et al. Matrix Metalloproteinase Inhibition in a Murine Model of Cavitary Tuberculosis Paradoxically Worsens Pathology. J Infect Dis. 2019;219:633–6.PubMedCrossRef
10.
Zurück zum Zitat Skerry C, Harper J, Klunk M, Bishai WR, Jain SK. Adjunctive TNF inhibition with standard treatment enhances bacterial clearance in a murine model of necrotic TB granulomas. PLoS One. 2012;7:e39680.PubMedPubMedCentralCrossRef Skerry C, Harper J, Klunk M, Bishai WR, Jain SK. Adjunctive TNF inhibition with standard treatment enhances bacterial clearance in a murine model of necrotic TB granulomas. PLoS One. 2012;7:e39680.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Urbanowski ME, Ordonez AA, Ruiz-Bedoya CA, Jain SK, Bishai WR. Cavitary tuberculosis: the gateway of disease transmission. Lancet Infect Dis. 2020;20:e117–28.PubMedPubMedCentralCrossRef Urbanowski ME, Ordonez AA, Ruiz-Bedoya CA, Jain SK, Bishai WR. Cavitary tuberculosis: the gateway of disease transmission. Lancet Infect Dis. 2020;20:e117–28.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Franze E, Laudisi F, Di Grazia A, et al. Macrophages produce and functionally respond to interleukin-34 in colon cancer. Cell Death Discov. 2020;6:117.PubMedPubMedCentralCrossRef Franze E, Laudisi F, Di Grazia A, et al. Macrophages produce and functionally respond to interleukin-34 in colon cancer. Cell Death Discov. 2020;6:117.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol. 2019;40:98–112.PubMedCrossRef Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol. 2019;40:98–112.PubMedCrossRef
14.
Zurück zum Zitat Hume DA, Caruso M, Ferrari-Cestari M, Summers KM, Pridans C, Irvine KM. Phenotypic impacts of CSF1R deficiencies in humans and model organisms. J Leukoc Biol. 2019;107(2):205–219. Hume DA, Caruso M, Ferrari-Cestari M, Summers KM, Pridans C, Irvine KM. Phenotypic impacts of CSF1R deficiencies in humans and model organisms. J Leukoc Biol. 2019;107(2):205–219.
15.
Zurück zum Zitat Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH, Ruttinger D. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer. 2017;5:53.PubMedPubMedCentralCrossRef Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH, Ruttinger D. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer. 2017;5:53.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Stanley ER, Chitu V. CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol. 2014;6(6):a021857 Stanley ER, Chitu V. CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol. 2014;6(6):a021857
17.
Zurück zum Zitat Kumari A, Silakari O, Singh RK. Recent advances in colony stimulating factor-1 receptor/c-FMS as an emerging target for various therapeutic implications. Biomed Pharmacother. 2018;103:662–79.PubMedCrossRef Kumari A, Silakari O, Singh RK. Recent advances in colony stimulating factor-1 receptor/c-FMS as an emerging target for various therapeutic implications. Biomed Pharmacother. 2018;103:662–79.PubMedCrossRef
18.
Zurück zum Zitat Peyraud F, Cousin S, Italiano A. CSF-1R Inhibitor Development: Current Clinical Status. Curr Oncol Rep. 2017;19:70.PubMedCrossRef Peyraud F, Cousin S, Italiano A. CSF-1R Inhibitor Development: Current Clinical Status. Curr Oncol Rep. 2017;19:70.PubMedCrossRef
19.
Zurück zum Zitat El-Gamal MI, Al-Ameen SK, Al-Koumi DM, Hamad MG, Jalal NA, Oh CH. Recent Advances of Colony-Stimulating Factor-1 Receptor (CSF-1R) Kinase and Its Inhibitors. J Med Chem. 2018;61:5450–66.PubMedCrossRef El-Gamal MI, Al-Ameen SK, Al-Koumi DM, Hamad MG, Jalal NA, Oh CH. Recent Advances of Colony-Stimulating Factor-1 Receptor (CSF-1R) Kinase and Its Inhibitors. J Med Chem. 2018;61:5450–66.PubMedCrossRef
20.
Zurück zum Zitat Gelderblom H, Cropet C, Chevreau C, et al. Nilotinib in locally advanced pigmented villonodular synovitis: a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 2018;19:639–48.PubMedCrossRef Gelderblom H, Cropet C, Chevreau C, et al. Nilotinib in locally advanced pigmented villonodular synovitis: a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 2018;19:639–48.PubMedCrossRef
21.
Zurück zum Zitat Papadopoulos KP, Gluck L, Martin LP, et al. First-in-Human Study of AMG 820, a Monoclonal Anti-Colony-Stimulating Factor 1 Receptor Antibody, in Patients with Advanced Solid Tumors. Clin Cancer Res. 2017;23:5703–10.PubMedCrossRef Papadopoulos KP, Gluck L, Martin LP, et al. First-in-Human Study of AMG 820, a Monoclonal Anti-Colony-Stimulating Factor 1 Receptor Antibody, in Patients with Advanced Solid Tumors. Clin Cancer Res. 2017;23:5703–10.PubMedCrossRef
22.
Zurück zum Zitat Wang Q, Lu Y, Li R, et al. Therapeutic effects of CSF1R-blocking antibodies in multiple myeloma. Leukemia. 2018;32:176–83.PubMedCrossRef Wang Q, Lu Y, Li R, et al. Therapeutic effects of CSF1R-blocking antibodies in multiple myeloma. Leukemia. 2018;32:176–83.PubMedCrossRef
23.
Zurück zum Zitat Pradel LP, Ooi CH, Romagnoli S, et al. Macrophage Susceptibility to Emactuzumab (RG7155) Treatment. Mol Cancer Ther. 2016;15:3077–86.PubMedCrossRef Pradel LP, Ooi CH, Romagnoli S, et al. Macrophage Susceptibility to Emactuzumab (RG7155) Treatment. Mol Cancer Ther. 2016;15:3077–86.PubMedCrossRef
24.
Zurück zum Zitat Horti AG, Naik R, Foss CA, et al. PET imaging of microglia by targeting macrophage colony-stimulating factor 1 receptor (CSF1R). Proc Natl Acad Sci U S A. 2019;116:1686–91.PubMedPubMedCentralCrossRef Horti AG, Naik R, Foss CA, et al. PET imaging of microglia by targeting macrophage colony-stimulating factor 1 receptor (CSF1R). Proc Natl Acad Sci U S A. 2019;116:1686–91.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Harper J, Skerry C, Davis SL, et al. Mouse model of necrotic tuberculosis granulomas develops hypoxic lesions. J Infect Dis. 2012;205:595–602.PubMedCrossRef Harper J, Skerry C, Davis SL, et al. Mouse model of necrotic tuberculosis granulomas develops hypoxic lesions. J Infect Dis. 2012;205:595–602.PubMedCrossRef
27.
Zurück zum Zitat Davis SL, Nuermberger EL, Um PK, et al. Noninvasive pulmonary [18F]-2-fluoro-deoxy-D-glucose positron emission tomography correlates with bactericidal activity of tuberculosis drug treatment. Antimicrob Agents Chemother. 2009;53:4879–84.PubMedPubMedCentralCrossRef Davis SL, Nuermberger EL, Um PK, et al. Noninvasive pulmonary [18F]-2-fluoro-deoxy-D-glucose positron emission tomography correlates with bactericidal activity of tuberculosis drug treatment. Antimicrob Agents Chemother. 2009;53:4879–84.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Davis SL, Be NA, Lamichhane G, et al. Bacterial thymidine kinase as a non-invasive imaging reporter for Mycobacterium tuberculosis in live animals. PLoS One. 2009;4:e6297.PubMedPubMedCentralCrossRef Davis SL, Be NA, Lamichhane G, et al. Bacterial thymidine kinase as a non-invasive imaging reporter for Mycobacterium tuberculosis in live animals. PLoS One. 2009;4:e6297.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Glunde K, Foss CA, Takagi T, Wildes F, Bhujwalla ZM. Synthesis of 6’-O-lissamine-rhodamine B-glucosamine as a novel probe for fluorescence imaging of lysosomes in breast tumors. Bioconjug Chem. 2005;16:843–51.PubMedCrossRef Glunde K, Foss CA, Takagi T, Wildes F, Bhujwalla ZM. Synthesis of 6’-O-lissamine-rhodamine B-glucosamine as a novel probe for fluorescence imaging of lysosomes in breast tumors. Bioconjug Chem. 2005;16:843–51.PubMedCrossRef
30.
Zurück zum Zitat Illig CR, Manthey CL, Wall MJ, et al. Optimization of a potent class of arylamide colony-stimulating factor-1 receptor inhibitors leading to anti-inflammatory clinical candidate 4-cyano-N-[2-(1-cyclohexen-1-yl)-4-[1-[(dimethylamino)acetyl]-4-piperidinyl]pheny l]-1H-imidazole-2-carboxamide (JNJ-28312141). J Med Chem. 2011;54:7860–83.PubMedCrossRef Illig CR, Manthey CL, Wall MJ, et al. Optimization of a potent class of arylamide colony-stimulating factor-1 receptor inhibitors leading to anti-inflammatory clinical candidate 4-cyano-N-[2-(1-cyclohexen-1-yl)-4-[1-[(dimethylamino)acetyl]-4-piperidinyl]pheny l]-1H-imidazole-2-carboxamide (JNJ-28312141). J Med Chem. 2011;54:7860–83.PubMedCrossRef
31.
Zurück zum Zitat Chitu V, Stanley ER. Regulation of Embryonic and Postnatal Development by the CSF-1 Receptor. Curr Top Dev Biol. 2017;123:229–75.PubMedCrossRef Chitu V, Stanley ER. Regulation of Embryonic and Postnatal Development by the CSF-1 Receptor. Curr Top Dev Biol. 2017;123:229–75.PubMedCrossRef
32.
Zurück zum Zitat Jones CV, Williams TM, Walker KA, et al. M2 macrophage polarisation is associated with alveolar formation during postnatal lung development. Respir Res. 2013;14:41.PubMedPubMedCentralCrossRef Jones CV, Williams TM, Walker KA, et al. M2 macrophage polarisation is associated with alveolar formation during postnatal lung development. Respir Res. 2013;14:41.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Irwin SM, Prideaux B, Lyon ER, et al. Bedaquiline and Pyrazinamide Treatment Responses Are Affected by Pulmonary Lesion Heterogeneity in Mycobacterium tuberculosis Infected C3HeB/FeJ Mice. ACS Infect Dis. 2016;2:251–67.PubMedPubMedCentralCrossRef Irwin SM, Prideaux B, Lyon ER, et al. Bedaquiline and Pyrazinamide Treatment Responses Are Affected by Pulmonary Lesion Heterogeneity in Mycobacterium tuberculosis Infected C3HeB/FeJ Mice. ACS Infect Dis. 2016;2:251–67.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Olson A, Ragan EJ, Nakiyingi L, et al. Brief Report: Pulmonary Tuberculosis Is Associated With Persistent Systemic Inflammation and Decreased HIV-1 Reservoir Markers in Coinfected Ugandans. J Acquir Immune Defic Syndr. 2018;79:407–11.PubMedPubMedCentralCrossRef Olson A, Ragan EJ, Nakiyingi L, et al. Brief Report: Pulmonary Tuberculosis Is Associated With Persistent Systemic Inflammation and Decreased HIV-1 Reservoir Markers in Coinfected Ugandans. J Acquir Immune Defic Syndr. 2018;79:407–11.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Hayashi C, Gudino CV, Gibson FC 3rd, Genco CA. Review: Pathogen-induced inflammation at sites distant from oral infection: bacterial persistence and induction of cell-specific innate immune inflammatory pathways. Mol Oral Microbiol. 2010;25:305–16.PubMedPubMedCentralCrossRef Hayashi C, Gudino CV, Gibson FC 3rd, Genco CA. Review: Pathogen-induced inflammation at sites distant from oral infection: bacterial persistence and induction of cell-specific innate immune inflammatory pathways. Mol Oral Microbiol. 2010;25:305–16.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Carlessi AS, Borba LA, Zugno AI, Quevedo J, Reus GZ. Gut-microbiota-brain axis in depression: The role of neuroinflammation. Eur J Neurosci. 2021;53(1):222–235. Carlessi AS, Borba LA, Zugno AI, Quevedo J, Reus GZ. Gut-microbiota-brain axis in depression: The role of neuroinflammation. Eur J Neurosci. 2021;53(1):222–235.
37.
Zurück zum Zitat Giridharan VV, Sayana P, Pinjari OF, et al. Postmortem evidence of brain inflammatory markers in bipolar disorder: a systematic review. Mol Psychiatry. 2020;25:94–113.PubMedCrossRef Giridharan VV, Sayana P, Pinjari OF, et al. Postmortem evidence of brain inflammatory markers in bipolar disorder: a systematic review. Mol Psychiatry. 2020;25:94–113.PubMedCrossRef
38.
Zurück zum Zitat Barichello T, Simoes LR, Quevedo J, Zhang XY. Microglial activation and psychotic disorders: evidence from pre-clinical and clinical studies. Curr Top Behav Neurosci. 2020;44:161–205. Barichello T, Simoes LR, Quevedo J, Zhang XY. Microglial activation and psychotic disorders: evidence from pre-clinical and clinical studies. Curr Top Behav Neurosci. 2020;44:161–205.
39.
Zurück zum Zitat Erblich B, Zhu L, Etgen AM, Dobrenis K, Pollard JW. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS One. 2011;6:e26317.PubMedPubMedCentralCrossRef Erblich B, Zhu L, Etgen AM, Dobrenis K, Pollard JW. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS One. 2011;6:e26317.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Li J, Chen K, Zhu L, Pollard JW. Conditional deletion of the colony stimulating factor-1 receptor (c-fms proto-oncogene) in mice. Genesis. 2006;44:328–35.PubMedCrossRef Li J, Chen K, Zhu L, Pollard JW. Conditional deletion of the colony stimulating factor-1 receptor (c-fms proto-oncogene) in mice. Genesis. 2006;44:328–35.PubMedCrossRef
41.
Zurück zum Zitat Stewart TA, Hughes K, Hume DA, Davis FM. Developmental Stage-Specific Distribution of Macrophages in Mouse Mammary Gland. Front Cell Dev Biol. 2019;7:250.PubMedPubMedCentralCrossRef Stewart TA, Hughes K, Hume DA, Davis FM. Developmental Stage-Specific Distribution of Macrophages in Mouse Mammary Gland. Front Cell Dev Biol. 2019;7:250.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Mathews WB, Wu Y, Horti AG, et al. Radiosynthesis and validation of [5-cyano-N-(4-(4-[(11) C]methylpiperazin-1-yl)-2-(piperidin-1-yl)phenyl) furan-2-carboxamide] ([(11) C]CPPC), a PET radiotracer for imaging CSF1R, a microglia-specific marker. J Labelled Comp Radiopharm. 2019;62:903–8.PubMedCrossRef Mathews WB, Wu Y, Horti AG, et al. Radiosynthesis and validation of [5-cyano-N-(4-(4-[(11) C]methylpiperazin-1-yl)-2-(piperidin-1-yl)phenyl) furan-2-carboxamide] ([(11) C]CPPC), a PET radiotracer for imaging CSF1R, a microglia-specific marker. J Labelled Comp Radiopharm. 2019;62:903–8.PubMedCrossRef
43.
Zurück zum Zitat Mancuso R, Fryatt G, Cleal M, et al. CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and neurodegeneration in P301S mice. Brain. 2019;142:3243–64.PubMedPubMedCentralCrossRef Mancuso R, Fryatt G, Cleal M, et al. CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and neurodegeneration in P301S mice. Brain. 2019;142:3243–64.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Janssen B, Mach RH. Development of brain PET imaging agents: Strategies for imaging neuroinflammation in Alzheimer’s disease. Prog Mol Biol Transl Sci. 2019;165:371–99.PubMedCrossRef Janssen B, Mach RH. Development of brain PET imaging agents: Strategies for imaging neuroinflammation in Alzheimer’s disease. Prog Mol Biol Transl Sci. 2019;165:371–99.PubMedCrossRef
45.
Zurück zum Zitat Mason C, Kossatz S, Carter L et al. A (89)Zr-HDL PET tracer monitors response to a CSF1R inhibitor. J Nucl Med. 2020;61(3):433–436. Mason C, Kossatz S, Carter L et al. A (89)Zr-HDL PET tracer monitors response to a CSF1R inhibitor. J Nucl Med. 2020;61(3):433–436.
46.
Zurück zum Zitat Moon HG, Kim SJ, Lee MK et al. Colony-stimulating factor 1 and its receptor are new potential therapeutic targets for allergic asthma. Allergy. 2020;75(2):357–369. Moon HG, Kim SJ, Lee MK et al. Colony-stimulating factor 1 and its receptor are new potential therapeutic targets for allergic asthma. Allergy. 2020;75(2):357–369.
47.
Zurück zum Zitat Mammana S, Fagone P, Cavalli E et al. The role of macrophages in neuroinflammatory and neurodegenerative pathways of alzheimer's disease, amyotrophic lateral sclerosis, and multiple sclerosis: pathogenetic cellular effectors and potential therapeutic targets. Int J Mol Sci 19. 2018;19(3):831. Mammana S, Fagone P, Cavalli E et al. The role of macrophages in neuroinflammatory and neurodegenerative pathways of alzheimer's disease, amyotrophic lateral sclerosis, and multiple sclerosis: pathogenetic cellular effectors and potential therapeutic targets. Int J Mol Sci 19. 2018;19(3):831.
48.
Zurück zum Zitat Costarelli L, Malavolta M, Giacconi R, Provinciali M. Dysfunctional macrophages in Alzheimer Disease: another piece of the “macroph-aging” puzzle? Aging (Albany NY). 2017;9:1865–6.CrossRef Costarelli L, Malavolta M, Giacconi R, Provinciali M. Dysfunctional macrophages in Alzheimer Disease: another piece of the “macroph-aging” puzzle? Aging (Albany NY). 2017;9:1865–6.CrossRef
50.
Zurück zum Zitat Varadkar S, Bien CG, Kruse CA, et al. Rasmussen’s encephalitis: clinical features, pathobiology, and treatment advances. Lancet Neurol. 2014;13:195–205.PubMedPubMedCentralCrossRef Varadkar S, Bien CG, Kruse CA, et al. Rasmussen’s encephalitis: clinical features, pathobiology, and treatment advances. Lancet Neurol. 2014;13:195–205.PubMedPubMedCentralCrossRef
51.
52.
Zurück zum Zitat Manthey CL, Johnson DL, Illig CR, et al. JNJ-28312141, a novel orally active colony-stimulating factor-1 receptor/FMS-related receptor tyrosine kinase-3 receptor tyrosine kinase inhibitor with potential utility in solid tumors, bone metastases, and acute myeloid leukemia. Mol Cancer Ther. 2009;8:3151–61.PubMedCrossRef Manthey CL, Johnson DL, Illig CR, et al. JNJ-28312141, a novel orally active colony-stimulating factor-1 receptor/FMS-related receptor tyrosine kinase-3 receptor tyrosine kinase inhibitor with potential utility in solid tumors, bone metastases, and acute myeloid leukemia. Mol Cancer Ther. 2009;8:3151–61.PubMedCrossRef
53.
Zurück zum Zitat Ma Y, Pope RM. The role of macrophages in rheumatoid arthritis. Curr Pharm Des. 2005;11:569–80.PubMedCrossRef Ma Y, Pope RM. The role of macrophages in rheumatoid arthritis. Curr Pharm Des. 2005;11:569–80.PubMedCrossRef
54.
Zurück zum Zitat Bobryshev YV, Ivanova EA, Chistiakov DA, Nikiforov NG, Orekhov AN. Macrophages and Their Role in Atherosclerosis: Pathophysiology and Transcriptome Analysis. Biomed Res Int. 2016;2016:9582430.PubMedPubMedCentralCrossRef Bobryshev YV, Ivanova EA, Chistiakov DA, Nikiforov NG, Orekhov AN. Macrophages and Their Role in Atherosclerosis: Pathophysiology and Transcriptome Analysis. Biomed Res Int. 2016;2016:9582430.PubMedPubMedCentralCrossRef
55.
Metadaten
Titel
PET/CT imaging of CSF1R in a mouse model of tuberculosis
verfasst von
Catherine A. Foss
Alvaro A. Ordonez
Ravi Naik
Deepankar Das
Andrew Hall
Yunkou Wu
Robert F. Dannals
Sanjay K. Jain
Martin G. Pomper
Andrew G. Horti
Publikationsdatum
17.06.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 12/2022
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-022-05862-1

Weitere Artikel der Ausgabe 12/2022

European Journal of Nuclear Medicine and Molecular Imaging 12/2022 Zur Ausgabe