Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 2/2024

03.10.2023 | Original Article

PET image denoising based on denoising diffusion probabilistic model

verfasst von: Kuang Gong, Keith Johnson, Georges El Fakhri, Quanzheng Li, Tinsu Pan

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 2/2024

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Due to various physical degradation factors and limited counts received, PET image quality needs further improvements. The denoising diffusion probabilistic model (DDPM) was a distribution learning-based model, which tried to transform a normal distribution into a specific data distribution based on iterative refinements. In this work, we proposed and evaluated different DDPM-based methods for PET image denoising.

Methods

Under the DDPM framework, one way to perform PET image denoising was to provide the PET image and/or the prior image as the input. Another way was to supply the prior image as the network input with the PET image included in the refinement steps, which could fit for scenarios of different noise levels. 150 brain [\(^{18}\)F]FDG datasets and 140 brain [\(^{18}\)F]MK-6240 (imaging neurofibrillary tangles deposition) datasets were utilized to evaluate the proposed DDPM-based methods.

Results

Quantification showed that the DDPM-based frameworks with PET information included generated better results than the nonlocal mean, Unet and generative adversarial network (GAN)-based denoising methods. Adding additional MR prior in the model helped achieved better performance and further reduced the uncertainty during image denoising. Solely relying on MR prior while ignoring the PET information resulted in large bias. Regional and surface quantification showed that employing MR prior as the network input while embedding PET image as a data-consistency constraint during inference achieved the best performance.

Conclusion

DDPM-based PET image denoising is a flexible framework, which can efficiently utilize prior information and achieve better performance than the nonlocal mean, Unet and GAN-based denoising methods.
Literatur
1.
Zurück zum Zitat Lin J-W, Laine AF, Bergmann SR. Improving pet-based physiological quantification through methods of wavelet denoising. IEEE Trans Biomed Eng. 2001;48(2):202–12.CrossRefPubMed Lin J-W, Laine AF, Bergmann SR. Improving pet-based physiological quantification through methods of wavelet denoising. IEEE Trans Biomed Eng. 2001;48(2):202–12.CrossRefPubMed
2.
Zurück zum Zitat Christian BT, Vandehey NT, Floberg JM, Mistretta CA. Dynamic pet denoising with hypr processing. J Nuclear Med. 2010;51(7):1147–54.CrossRef Christian BT, Vandehey NT, Floberg JM, Mistretta CA. Dynamic pet denoising with hypr processing. J Nuclear Med. 2010;51(7):1147–54.CrossRef
3.
Zurück zum Zitat Chan C, Fulton R, Barnett R, Feng DD, Meikle S. Postreconstruction nonlocal means filtering of whole-body pet with an anatomical prior. IEEE Trans Med Imaging. 2014;33(3):636–50.CrossRefPubMed Chan C, Fulton R, Barnett R, Feng DD, Meikle S. Postreconstruction nonlocal means filtering of whole-body pet with an anatomical prior. IEEE Trans Med Imaging. 2014;33(3):636–50.CrossRefPubMed
4.
Zurück zum Zitat Dutta J, Leahy RM, Li Q. Non-local means denoising of dynamic pet images. PloS One. 2013;8(12):81390.CrossRef Dutta J, Leahy RM, Li Q. Non-local means denoising of dynamic pet images. PloS One. 2013;8(12):81390.CrossRef
5.
Zurück zum Zitat Yan J, Lim JC-S, Townsend DW. Mri-guided brain pet image filtering and partial volume correction. Phys Med Biol. 2015;60(3):961 Yan J, Lim JC-S, Townsend DW. Mri-guided brain pet image filtering and partial volume correction. Phys Med Biol. 2015;60(3):961
6.
Zurück zum Zitat Ote K, Hashimoto F, Kakimoto A, Isobe T, Inubushi T, Ota R, Tokui A, Saito A, Moriya T, Omura T, et al. Kinetics-induced block matching and 5-d transform domain filtering for dynamic pet image denoising. IEEE Trans Rad Plasma Med Sci. 2020;4(6):720–8.CrossRef Ote K, Hashimoto F, Kakimoto A, Isobe T, Inubushi T, Ota R, Tokui A, Saito A, Moriya T, Omura T, et al. Kinetics-induced block matching and 5-d transform domain filtering for dynamic pet image denoising. IEEE Trans Rad Plasma Med Sci. 2020;4(6):720–8.CrossRef
7.
Zurück zum Zitat Wang Y, Ma G, An L, Shi F, Zhang P, Lalush DS, Wu X, Pu Y, Zhou J, Shen D. Semisupervised tripled dictionary learning for standard-dose pet image prediction using low-dose pet and multimodal mri. IEEE Trans Biomed Eng. 2016;64(3):569–79.CrossRefPubMedPubMedCentral Wang Y, Ma G, An L, Shi F, Zhang P, Lalush DS, Wu X, Pu Y, Zhou J, Shen D. Semisupervised tripled dictionary learning for standard-dose pet image prediction using low-dose pet and multimodal mri. IEEE Trans Biomed Eng. 2016;64(3):569–79.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Xiang L, Qiao Y, Nie D, An L, Lin W, Wang Q, Shen D. Deep auto-context convolutional neural networks for standard-dose pet image estimation from low-dose pet/mri. Neurocomputing. 2017;267:406–16.CrossRefPubMedPubMedCentral Xiang L, Qiao Y, Nie D, An L, Lin W, Wang Q, Shen D. Deep auto-context convolutional neural networks for standard-dose pet image estimation from low-dose pet/mri. Neurocomputing. 2017;267:406–16.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Kaplan S, Zhu Y-M. Full-dose pet image estimation from low-dose pet image using deep learning: a pilot study. J Digit Imaging. 2019;32(5):773–8.CrossRefPubMed Kaplan S, Zhu Y-M. Full-dose pet image estimation from low-dose pet image using deep learning: a pilot study. J Digit Imaging. 2019;32(5):773–8.CrossRefPubMed
10.
Zurück zum Zitat Cui J, Gong K, Guo N, Wu C, Meng X, Kim K, Zheng K, Wu Z, Fu L, Xu B, et al. Pet image denoising using unsupervised deep learning. Eur J Nuclear Med Mol Imaging. 2019;46(13):2780–9.CrossRef Cui J, Gong K, Guo N, Wu C, Meng X, Kim K, Zheng K, Wu Z, Fu L, Xu B, et al. Pet image denoising using unsupervised deep learning. Eur J Nuclear Med Mol Imaging. 2019;46(13):2780–9.CrossRef
11.
Zurück zum Zitat Chen KT, Gong E, Carvalho Macruz FB, Xu J, Boumis A, Khalighi M, Poston KL, Sha SJ, Greicius MD, Mormino E, et al. Ultra-low-dose 18f-florbetaben amyloid pet imaging using deep learning with multi-contrast mri inputs. Radiol. 2019;290(3):649–56.CrossRef Chen KT, Gong E, Carvalho Macruz FB, Xu J, Boumis A, Khalighi M, Poston KL, Sha SJ, Greicius MD, Mormino E, et al. Ultra-low-dose 18f-florbetaben amyloid pet imaging using deep learning with multi-contrast mri inputs. Radiol. 2019;290(3):649–56.CrossRef
12.
Zurück zum Zitat Hashimoto F, Ohba H, Ote K, Teramoto A, Tsukada H. Dynamic pet image denoising using deep convolutional neural networks without prior training datasets. IEEE Access. 2019;7:96594–603.CrossRef Hashimoto F, Ohba H, Ote K, Teramoto A, Tsukada H. Dynamic pet image denoising using deep convolutional neural networks without prior training datasets. IEEE Access. 2019;7:96594–603.CrossRef
13.
Zurück zum Zitat Costa-Luis CO, Reader AJ. Micro-networks for robust mr-guided low count pet imaging. IEEE Trans Rad Plasma Med Sci. 2020;5(2):202–12.CrossRef Costa-Luis CO, Reader AJ. Micro-networks for robust mr-guided low count pet imaging. IEEE Trans Rad Plasma Med Sci. 2020;5(2):202–12.CrossRef
14.
Zurück zum Zitat Schramm G, Rigie D, Vahle T, Rezaei A, Van Laere K, Shepherd T, Nuyts J, Boada F. Approximating anatomically-guided pet reconstruction in image space using a convolutional neural network. Neuroimage. 2021;224:117399.CrossRefPubMed Schramm G, Rigie D, Vahle T, Rezaei A, Van Laere K, Shepherd T, Nuyts J, Boada F. Approximating anatomically-guided pet reconstruction in image space using a convolutional neural network. Neuroimage. 2021;224:117399.CrossRefPubMed
15.
Zurück zum Zitat Mehranian A, Wollenweber SD, Walker MD, Bradley KM, Fielding PA, Su K-H, Johnsen R, Kotasidis F, Jansen FP, McGowan DR. Image enhancement of whole-body oncology [18f]-fdg pet scans using deep neural networks to reduce noise. Eur J Nuclear Med Mol Imaging. 2022;49(2):539–49.CrossRef Mehranian A, Wollenweber SD, Walker MD, Bradley KM, Fielding PA, Su K-H, Johnsen R, Kotasidis F, Jansen FP, McGowan DR. Image enhancement of whole-body oncology [18f]-fdg pet scans using deep neural networks to reduce noise. Eur J Nuclear Med Mol Imaging. 2022;49(2):539–49.CrossRef
16.
Zurück zum Zitat Daveau RS, Law I, Henriksen OM, Hasselbalch SG, Andersen UB, Anderberg L, Højgaard L, Andersen FL, Ladefoged CN. Deep learning based low-activity pet reconstruction of [11c] pib and [18f] fe-pe2i in neurodegenerative disorders. NeuroImage. 2022;259:119412.CrossRefPubMed Daveau RS, Law I, Henriksen OM, Hasselbalch SG, Andersen UB, Anderberg L, Højgaard L, Andersen FL, Ladefoged CN. Deep learning based low-activity pet reconstruction of [11c] pib and [18f] fe-pe2i in neurodegenerative disorders. NeuroImage. 2022;259:119412.CrossRefPubMed
17.
Zurück zum Zitat Ouyang J, Chen KT, Gong E, Pauly J, Zaharchuk G. Ultra-low-dose pet reconstruction using generative adversarial network with feature matching and task-specific perceptual loss. Med Phy. 2019;46(8):3555–64.CrossRef Ouyang J, Chen KT, Gong E, Pauly J, Zaharchuk G. Ultra-low-dose pet reconstruction using generative adversarial network with feature matching and task-specific perceptual loss. Med Phy. 2019;46(8):3555–64.CrossRef
18.
Zurück zum Zitat Lei Y, Dong X, Wang T, Higgins K, Liu T, Curran WJ, Mao H, Nye JA. Yang X Whole-body pet estimation from low count statistics using cycle-consistent generative adversarial networks. Phys Med Biol. 2019;64(21):215017.CrossRefPubMedPubMedCentral Lei Y, Dong X, Wang T, Higgins K, Liu T, Curran WJ, Mao H, Nye JA. Yang X Whole-body pet estimation from low count statistics using cycle-consistent generative adversarial networks. Phys Med Biol. 2019;64(21):215017.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Zhou L, Schaefferkoetter JD, Tham IW, Huang G, Yan J. Supervised learning with cyclegan for low-dose fdg pet image denoising. Med Image Anal. 2020;65:101770.CrossRefPubMed Zhou L, Schaefferkoetter JD, Tham IW, Huang G, Yan J. Supervised learning with cyclegan for low-dose fdg pet image denoising. Med Image Anal. 2020;65:101770.CrossRefPubMed
20.
21.
Zurück zum Zitat Sanaat A, Shiri I, Arabi H, Mainta I, Nkoulou R, Zaidi H. Deep learning-assisted ultra-fast/low-dose whole-body pet/ct imaging. Eur J Nuclear Med Mol Imaging. 2021;48(8):2405–15.CrossRef Sanaat A, Shiri I, Arabi H, Mainta I, Nkoulou R, Zaidi H. Deep learning-assisted ultra-fast/low-dose whole-body pet/ct imaging. Eur J Nuclear Med Mol Imaging. 2021;48(8):2405–15.CrossRef
22.
Zurück zum Zitat Xue S, Guo R, Bohn KP, Matzke J, Viscione M, Alberts I, Meng H, Sun C, Zhang M, Zhang M, et al. A cross-scanner and cross-tracer deep learning method for the recovery of standard-dose imaging quality from low-dose pet. Eur J Nuclear Med Mol Imaging. 2022;49(6):1843–56.CrossRef Xue S, Guo R, Bohn KP, Matzke J, Viscione M, Alberts I, Meng H, Sun C, Zhang M, Zhang M, et al. A cross-scanner and cross-tracer deep learning method for the recovery of standard-dose imaging quality from low-dose pet. Eur J Nuclear Med Mol Imaging. 2022;49(6):1843–56.CrossRef
23.
Zurück zum Zitat Gong K, Guan J, Liu C-C, Qi J. Pet image denoising using a deep neural network through fine tuning. IEEE Trans Rad Plasma Med Sci. 2018;3(2):153–61.CrossRef Gong K, Guan J, Liu C-C, Qi J. Pet image denoising using a deep neural network through fine tuning. IEEE Trans Rad Plasma Med Sci. 2018;3(2):153–61.CrossRef
24.
Zurück zum Zitat Liu H, Wu J, Lu W, Onofrey JA, Liu Y-H, Liu C. Noise reduction with cross-tracer and cross-protocol deep transfer learning for low-dose pet. Phys Med Biol. 2020;65(18):185006.CrossRefPubMed Liu H, Wu J, Lu W, Onofrey JA, Liu Y-H, Liu C. Noise reduction with cross-tracer and cross-protocol deep transfer learning for low-dose pet. Phys Med Biol. 2020;65(18):185006.CrossRefPubMed
25.
Zurück zum Zitat Chen KT, Schürer M, Ouyang J, Koran MEI, Davidzon G, Mormino E, Tiepolt S, Hoffmann K-T, Sabri O, Zaharchuk G, et al. Generalization of deep learning models for ultra-low-count amyloid pet/mri using transfer learning. Eur J Nuclear Med Mol Imaging. 2020;47(13):2998–3007.CrossRef Chen KT, Schürer M, Ouyang J, Koran MEI, Davidzon G, Mormino E, Tiepolt S, Hoffmann K-T, Sabri O, Zaharchuk G, et al. Generalization of deep learning models for ultra-low-count amyloid pet/mri using transfer learning. Eur J Nuclear Med Mol Imaging. 2020;47(13):2998–3007.CrossRef
26.
Zurück zum Zitat Cui J, Gong K, Guo N, Wu C, Kim K, Liu H, Li Q. Populational and individual information based pet image denoising using conditional unsupervised learning. Phys Med Biol. 2021;66(15):155001.CrossRef Cui J, Gong K, Guo N, Wu C, Kim K, Liu H, Li Q. Populational and individual information based pet image denoising using conditional unsupervised learning. Phys Med Biol. 2021;66(15):155001.CrossRef
27.
Zurück zum Zitat Zhou B, Miao T, Mirian N, Chen X, Xie H, Feng Z, Guo X, Li X, Zhou SK, Duncan JS, et al. Federated transfer learning for low-dose pet denoising: a pilot study with simulated heterogeneous data. IEEE Transactions on Radiation and Plasma Medical Sciences; 2022 Zhou B, Miao T, Mirian N, Chen X, Xie H, Feng Z, Guo X, Li X, Zhou SK, Duncan JS, et al. Federated transfer learning for low-dose pet denoising: a pilot study with simulated heterogeneous data. IEEE Transactions on Radiation and Plasma Medical Sciences; 2022
28.
Zurück zum Zitat Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models. Adv Neural Inf Process Syst. 2020;33:6840–51. Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models. Adv Neural Inf Process Syst. 2020;33:6840–51.
29.
Zurück zum Zitat Song Y, Ermon S. Generative modeling by estimating gradients of the data distribution. Advances in Neural Information Processing Systems. 2019;32 Song Y, Ermon S. Generative modeling by estimating gradients of the data distribution. Advances in Neural Information Processing Systems. 2019;32
30.
Zurück zum Zitat Song Y, Sohl-Dickstein J, Kingma DP, Kumar A, Ermon S, Poole B. Score-based generative modeling through stochastic differential equations. 2020. arXiv:2011.13456 Song Y, Sohl-Dickstein J, Kingma DP, Kumar A, Ermon S, Poole B. Score-based generative modeling through stochastic differential equations. 2020. arXiv:​2011.​13456
31.
Zurück zum Zitat Edupuganti V, Mardani M, Vasanawala S, Pauly J. Uncertainty quantification in deep MRI reconstruction. IEEE Trans Med Imaging. 2020;40(1):239–50.CrossRefPubMedPubMedCentral Edupuganti V, Mardani M, Vasanawala S, Pauly J. Uncertainty quantification in deep MRI reconstruction. IEEE Trans Med Imaging. 2020;40(1):239–50.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Wu P, Sisniega A, Uneri A, Han R, Jones C, Vagdargi P, Zhang X, Luciano M, Anderson W, Siewerdsen J. Using uncertainty in deep learning reconstruction for cone-beam CT of the brain. 2021. arXiv:2108.09229 Wu P, Sisniega A, Uneri A, Han R, Jones C, Vagdargi P, Zhang X, Luciano M, Anderson W, Siewerdsen J. Using uncertainty in deep learning reconstruction for cone-beam CT of the brain. 2021. arXiv:​2108.​09229
33.
Zurück zum Zitat Sudarshan VP, Upadhyay U, Egan GF, Chen Z, Awate SP. Towards lower-dose PET using physics-based uncertainty-aware multimodal learning with robustness to out-of-distribution data. Med Image Anal. 2021;73:102187.CrossRefPubMed Sudarshan VP, Upadhyay U, Egan GF, Chen Z, Awate SP. Towards lower-dose PET using physics-based uncertainty-aware multimodal learning with robustness to out-of-distribution data. Med Image Anal. 2021;73:102187.CrossRefPubMed
34.
Zurück zum Zitat Dhariwal P, Nichol A. Diffusion models beat gans on image synthesis. Adv Neural Inf Process Syst. 2021;34:8780–94. Dhariwal P, Nichol A. Diffusion models beat gans on image synthesis. Adv Neural Inf Process Syst. 2021;34:8780–94.
35.
Zurück zum Zitat Rombach R, Blattmann A, Lorenz D, Esser P, Ommer B. High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition; 2022. pp. 10684–10695 Rombach R, Blattmann A, Lorenz D, Esser P, Ommer B. High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition; 2022. pp. 10684–10695
36.
Zurück zum Zitat Saharia C, Ho J, Chan W, Salimans T, Fleet DJ, Norouzi M. Image super-resolution via iterative refinement. 2021. arXiv:2104.07636 Saharia C, Ho J, Chan W, Salimans T, Fleet DJ, Norouzi M. Image super-resolution via iterative refinement. 2021. arXiv:​2104.​07636
37.
Zurück zum Zitat Lugmayr A, Danelljan M, Romero A, Yu F, Timofte R, Van Gool L. Repaint: inpainting using denoising diffusion probabilistic models. In: Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition; 2022. pp. 11461–11471 Lugmayr A, Danelljan M, Romero A, Yu F, Timofte R, Van Gool L. Repaint: inpainting using denoising diffusion probabilistic models. In: Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition; 2022. pp. 11461–11471
38.
Zurück zum Zitat Jalal A, Arvinte M, Daras G, Price E, Dimakis AG, Tamir J. Robust compressed sensing mri with deep generative priors. Adv Neural Inf Process Syst. 2021;34:14938–54. Jalal A, Arvinte M, Daras G, Price E, Dimakis AG, Tamir J. Robust compressed sensing mri with deep generative priors. Adv Neural Inf Process Syst. 2021;34:14938–54.
39.
Zurück zum Zitat Chung H, Ye JC. Score-based diffusion models for accelerated mri. Medical Image Analysis; 2022 102479 Chung H, Ye JC. Score-based diffusion models for accelerated mri. Medical Image Analysis; 2022 102479
40.
Zurück zum Zitat Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on computer vision and pattern recognition; 2017. pp. 1125–1134 Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on computer vision and pattern recognition; 2017. pp. 1125–1134
41.
Zurück zum Zitat Tiepolt S, Hesse S, Patt M, Luthardt J, Schroeter ML, Hoffmann K-T, Weise D, Gertz H-J, Sabri O, Barthel H. Early [18f] florbetaben and [11c] pib pet images are a surrogate biomarker of neuronal injury in alzheimer’s disease. Eur J Nuclear Med Mol Imaging. 2016;43(9):1700–9.CrossRef Tiepolt S, Hesse S, Patt M, Luthardt J, Schroeter ML, Hoffmann K-T, Weise D, Gertz H-J, Sabri O, Barthel H. Early [18f] florbetaben and [11c] pib pet images are a surrogate biomarker of neuronal injury in alzheimer’s disease. Eur J Nuclear Med Mol Imaging. 2016;43(9):1700–9.CrossRef
42.
Zurück zum Zitat Hammes J, Leuwer I, Bischof GN, Drzezga A, Eimeren T. Multimodal correlation of dynamic [18f]-av-1451 perfusion pet and neuronal hypometabolism in [18f]-fdg pet. Eur J Nuclear Med Mol Imaging. 2017;44(13):2249–56.CrossRef Hammes J, Leuwer I, Bischof GN, Drzezga A, Eimeren T. Multimodal correlation of dynamic [18f]-av-1451 perfusion pet and neuronal hypometabolism in [18f]-fdg pet. Eur J Nuclear Med Mol Imaging. 2017;44(13):2249–56.CrossRef
43.
Zurück zum Zitat Visser D, Wolters EE, Verfaillie SC, Coomans EM, Timmers T, Tuncel H, Reimand J, Boellaard R, Windhorst AD, Scheltens P, et al. Tau pathology and relative cerebral blood flow are independently associated with cognition in alzheimer’s disease. Eur J Nuclear Med Mol Imaging. 2020;47(13):3165–75.CrossRef Visser D, Wolters EE, Verfaillie SC, Coomans EM, Timmers T, Tuncel H, Reimand J, Boellaard R, Windhorst AD, Scheltens P, et al. Tau pathology and relative cerebral blood flow are independently associated with cognition in alzheimer’s disease. Eur J Nuclear Med Mol Imaging. 2020;47(13):3165–75.CrossRef
44.
Zurück zum Zitat Avants BB, Tustison N, Song G, et al. Advanced normalization tools (ants). Insight J. 2009;2(365):1–35. Avants BB, Tustison N, Song G, et al. Advanced normalization tools (ants). Insight J. 2009;2(365):1–35.
46.
Zurück zum Zitat Qi J, Leahy RM. Iterative reconstruction techniques in emission computed tomography. Phys Med Biol. 2006;51(15):541.CrossRef Qi J, Leahy RM. Iterative reconstruction techniques in emission computed tomography. Phys Med Biol. 2006;51(15):541.CrossRef
47.
Zurück zum Zitat Chung H, Sim B, Ye JC. Come-closer-diffuse-faster: accelerating conditional diffusion models for inverse problems through stochastic contraction. In: Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition; 2022. pp. 12413–12422 Chung H, Sim B, Ye JC. Come-closer-diffuse-faster: accelerating conditional diffusion models for inverse problems through stochastic contraction. In: Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition; 2022. pp. 12413–12422
Metadaten
Titel
PET image denoising based on denoising diffusion probabilistic model
verfasst von
Kuang Gong
Keith Johnson
Georges El Fakhri
Quanzheng Li
Tinsu Pan
Publikationsdatum
03.10.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 2/2024
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-023-06417-8

Weitere Artikel der Ausgabe 2/2024

European Journal of Nuclear Medicine and Molecular Imaging 2/2024 Zur Ausgabe