Skip to main content
Erschienen in: Journal of Digital Imaging 6/2023

03.08.2023

PFP-HOG: Pyramid and Fixed-Size Patch-Based HOG Technique for Automated Brain Abnormality Classification with MRI

verfasst von: Ela Kaplan, Wai Yee Chan, Hasan Baki Altinsoy, Mehmet Baygin, Prabal Datta Barua, Subrata Chakraborty, Sengul Dogan, Turker Tuncer, U. Rajendra Acharya

Erschienen in: Journal of Imaging Informatics in Medicine | Ausgabe 6/2023

Einloggen, um Zugang zu erhalten

Abstract

Detecting neurological abnormalities such as brain tumors and Alzheimer’s disease (AD) using magnetic resonance imaging (MRI) images is an important research topic in the literature. Numerous machine learning models have been used to detect brain abnormalities accurately. This study addresses the problem of detecting neurological abnormalities in MRI. The motivation behind this problem lies in the need for accurate and efficient methods to assist neurologists in the diagnosis of these disorders. In addition, many deep learning techniques have been applied to MRI to develop accurate brain abnormality detection models, but these networks have high time complexity. Hence, a novel hand-modeled feature-based learning network is presented to reduce the time complexity and obtain high classification performance. The model proposed in this work uses a new feature generation architecture named pyramid and fixed-size patch (PFP). The main aim of the proposed PFP structure is to attain high classification performance using essential feature extractors with both multilevel and local features. Furthermore, the PFP feature extractor generates low- and high-level features using a handcrafted extractor. To obtain the high discriminative feature extraction ability of the PFP, we have used histogram-oriented gradients (HOG); hence, it is named PFP-HOG. Furthermore, the iterative Chi2 (IChi2) is utilized to choose the clinically significant features. Finally, the k-nearest neighbors (kNN) with tenfold cross-validation is used for automated classification. Four MRI neurological databases (AD dataset, brain tumor dataset 1, brain tumor dataset 2, and merged dataset) have been utilized to develop our model. PFP-HOG and IChi2-based models attained 100%, 94.98%, 98.19%, and 97.80% using the AD dataset, brain tumor dataset1, brain tumor dataset 2, and merged brain MRI dataset, respectively. These findings not only provide an accurate and robust classification of various neurological disorders using MRI but also hold the potential to assist neurologists in validating manual MRI brain abnormality screening.
Literatur
2.
Zurück zum Zitat Smith-Bindman R, et al.: Trends in use of medical imaging in US health care systems and in Ontario, Canada, 2000-2016. Jama 322:843-856, 2019PubMedPubMedCentral Smith-Bindman R, et al.: Trends in use of medical imaging in US health care systems and in Ontario, Canada, 2000-2016. Jama 322:843-856, 2019PubMedPubMedCentral
3.
Zurück zum Zitat Malik M, Jaffar MA, Naqvi MR: Comparison of Brain Tumor Detection in MRI Images Using Straightforward Image Processing Techniques and Deep Learning Techniques. Proc. 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA): City Malik M, Jaffar MA, Naqvi MR: Comparison of Brain Tumor Detection in MRI Images Using Straightforward Image Processing Techniques and Deep Learning Techniques. Proc. 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA): City
4.
Zurück zum Zitat Schobert IT, Savic LJ: Current Trends in Non-Invasive Imaging of Interactions in the Liver Tumor Microenvironment Mediated by Tumor Metabolism. Cancers 13:3645, 2021PubMedPubMedCentral Schobert IT, Savic LJ: Current Trends in Non-Invasive Imaging of Interactions in the Liver Tumor Microenvironment Mediated by Tumor Metabolism. Cancers 13:3645, 2021PubMedPubMedCentral
5.
Zurück zum Zitat Sternberg SR: Biomedical image processing. Computer 16:22-34, 1983 Sternberg SR: Biomedical image processing. Computer 16:22-34, 1983
7.
Zurück zum Zitat Razmjooy N, et al.: Computer-aided diagnosis of skin cancer: A review. Current medical imaging 16:781-793, 2020PubMed Razmjooy N, et al.: Computer-aided diagnosis of skin cancer: A review. Current medical imaging 16:781-793, 2020PubMed
8.
Zurück zum Zitat Talo M, Yildirim O, Baloglu UB, Aydin G, Acharya UR: Convolutional neural networks for multi-class brain disease detection using MRI images. Computerized Medical Imaging and Graphics 78:101673, 2019PubMed Talo M, Yildirim O, Baloglu UB, Aydin G, Acharya UR: Convolutional neural networks for multi-class brain disease detection using MRI images. Computerized Medical Imaging and Graphics 78:101673, 2019PubMed
9.
Zurück zum Zitat Gudigar A, Raghavendra U, Hegde A, Kalyani M, Ciaccio EJ, Acharya UR: Brain pathology identification using computer aided diagnostic tool: A systematic review. Computer methods and programs in biomedicine 187:105205, 2020PubMed Gudigar A, Raghavendra U, Hegde A, Kalyani M, Ciaccio EJ, Acharya UR: Brain pathology identification using computer aided diagnostic tool: A systematic review. Computer methods and programs in biomedicine 187:105205, 2020PubMed
10.
Zurück zum Zitat Haq EU, Huang J, Kang L, Haq HU, Zhan T: Image-based state-of-the-art techniques for the identification and classification of brain diseases: a review. Medical & Biological Engineering & Computing:1–18, 2020 Haq EU, Huang J, Kang L, Haq HU, Zhan T: Image-based state-of-the-art techniques for the identification and classification of brain diseases: a review. Medical & Biological Engineering & Computing:1–18, 2020
11.
Zurück zum Zitat Lin W, et al.: Bidirectional Mapping of Brain MRI and PET With 3D Reversible GAN for the Diagnosis of Alzheimer’s Disease. Frontiers in Neuroscience 15:357, 2021 Lin W, et al.: Bidirectional Mapping of Brain MRI and PET With 3D Reversible GAN for the Diagnosis of Alzheimer’s Disease. Frontiers in Neuroscience 15:357, 2021
12.
Zurück zum Zitat Fernandes SL, Tanik UJ, Rajinikanth V, Karthik KA: A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians. Neural Computing and Applications 32:15897-15908, 2020 Fernandes SL, Tanik UJ, Rajinikanth V, Karthik KA: A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians. Neural Computing and Applications 32:15897-15908, 2020
13.
Zurück zum Zitat Tandel GS, Balestrieri A, Jujaray T, Khanna NN, Saba L, Suri JS: Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm. Computers in Biology and Medicine 122:103804, 2020PubMed Tandel GS, Balestrieri A, Jujaray T, Khanna NN, Saba L, Suri JS: Multiclass magnetic resonance imaging brain tumor classification using artificial intelligence paradigm. Computers in Biology and Medicine 122:103804, 2020PubMed
14.
Zurück zum Zitat Zhao X, Ang CKE, Acharya UR, Cheong KH: Application of Artificial Intelligence techniques for the detection of Alzheimer’s disease using structural MRI images. Biocybernetics and Biomedical Engineering, 2021 Zhao X, Ang CKE, Acharya UR, Cheong KH: Application of Artificial Intelligence techniques for the detection of Alzheimer’s disease using structural MRI images. Biocybernetics and Biomedical Engineering, 2021
15.
Zurück zum Zitat Saba T, Mohamed AS, El-Affendi M, Amin J, Sharif M: Brain tumor detection using fusion of hand crafted and deep learning features. Cognitive Systems Research 59:221-230, 2020 Saba T, Mohamed AS, El-Affendi M, Amin J, Sharif M: Brain tumor detection using fusion of hand crafted and deep learning features. Cognitive Systems Research 59:221-230, 2020
16.
Zurück zum Zitat Rauschecker AM, et al.: Artificial intelligence system approaching neuroradiologist-level differential diagnosis accuracy at brain MRI. Radiology 295:626-637, 2020PubMed Rauschecker AM, et al.: Artificial intelligence system approaching neuroradiologist-level differential diagnosis accuracy at brain MRI. Radiology 295:626-637, 2020PubMed
17.
Zurück zum Zitat Dosovitskiy A, et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:201011929, 2020 Dosovitskiy A, et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:​201011929, 2020
19.
Zurück zum Zitat Bahadure NB, Ray AK, Thethi HP: Image analysis for MRI based brain tumor detection and feature extraction using biologically inspired BWT and SVM. International journal of biomedical imaging 2017, 2017 Bahadure NB, Ray AK, Thethi HP: Image analysis for MRI based brain tumor detection and feature extraction using biologically inspired BWT and SVM. International journal of biomedical imaging 2017, 2017
20.
Zurück zum Zitat Lahmiri S: Glioma detection based on multi-fractal features of segmented brain MRI by particle swarm optimization techniques. Biomedical Signal Processing and Control 31:148-155, 2017 Lahmiri S: Glioma detection based on multi-fractal features of segmented brain MRI by particle swarm optimization techniques. Biomedical Signal Processing and Control 31:148-155, 2017
21.
Zurück zum Zitat Gudigar A, Raghavendra U, Ciaccio EJ, Arunkumar N, Abdulhay E, Acharya UR: Automated categorization of multi-class brain abnormalities using decomposition techniques with MRI images: a comparative study. IEEE Access 7:28498-28509, 2019 Gudigar A, Raghavendra U, Ciaccio EJ, Arunkumar N, Abdulhay E, Acharya UR: Automated categorization of multi-class brain abnormalities using decomposition techniques with MRI images: a comparative study. IEEE Access 7:28498-28509, 2019
22.
Zurück zum Zitat Ahmed S, et al.: Ensembles of patch-based classifiers for diagnosis of Alzheimer diseases. IEEE Access 7:73373-73383, 2019 Ahmed S, et al.: Ensembles of patch-based classifiers for diagnosis of Alzheimer diseases. IEEE Access 7:73373-73383, 2019
23.
Zurück zum Zitat Nayak DR, Dash R, Majhi B, Acharya UR: Application of fast curvelet Tsallis entropy and kernel random vector functional link network for automated detection of multiclass brain abnormalities. Computerized Medical Imaging and Graphics 77:101656, 2019PubMed Nayak DR, Dash R, Majhi B, Acharya UR: Application of fast curvelet Tsallis entropy and kernel random vector functional link network for automated detection of multiclass brain abnormalities. Computerized Medical Imaging and Graphics 77:101656, 2019PubMed
24.
Zurück zum Zitat Talo M, Baloglu UB, Yıldırım Ö, Acharya UR: Application of deep transfer learning for automated brain abnormality classification using MR images. Cognitive Systems Research 54:176-188, 2019 Talo M, Baloglu UB, Yıldırım Ö, Acharya UR: Application of deep transfer learning for automated brain abnormality classification using MR images. Cognitive Systems Research 54:176-188, 2019
25.
Zurück zum Zitat Gudigar A, Raghavendra U, San TR, Ciaccio EJ, Acharya UR: Application of multiresolution analysis for automated detection of brain abnormality using MR images: A comparative study. Future Generation Computer Systems 90:359-367, 2019 Gudigar A, Raghavendra U, San TR, Ciaccio EJ, Acharya UR: Application of multiresolution analysis for automated detection of brain abnormality using MR images: A comparative study. Future Generation Computer Systems 90:359-367, 2019
26.
Zurück zum Zitat Acharya UR, et al.: Automated detection of Alzheimer’s disease using brain MRI images–a study with various feature extraction techniques. Journal of Medical Systems 43:1-14, 2019 Acharya UR, et al.: Automated detection of Alzheimer’s disease using brain MRI images–a study with various feature extraction techniques. Journal of Medical Systems 43:1-14, 2019
27.
Zurück zum Zitat Koh JEW, et al.: Automated detection of Alzheimer's disease using bi-directional empirical model decomposition. Pattern Recognition Letters 135:106-113, 2020 Koh JEW, et al.: Automated detection of Alzheimer's disease using bi-directional empirical model decomposition. Pattern Recognition Letters 135:106-113, 2020
28.
Zurück zum Zitat Mehmood A, Maqsood M, Bashir M, Shuyuan Y: A deep siamese convolution neural network for multi-class classification of alzheimer disease. Brain sciences 10:84, 2020PubMedPubMedCentral Mehmood A, Maqsood M, Bashir M, Shuyuan Y: A deep siamese convolution neural network for multi-class classification of alzheimer disease. Brain sciences 10:84, 2020PubMedPubMedCentral
29.
Zurück zum Zitat Ghassemi N, Shoeibi A, Rouhani M: Deep neural network with generative adversarial networks pre-training for brain tumor classification based on MR images. Biomedical Signal Processing and Control 57:101678, 2020 Ghassemi N, Shoeibi A, Rouhani M: Deep neural network with generative adversarial networks pre-training for brain tumor classification based on MR images. Biomedical Signal Processing and Control 57:101678, 2020
30.
Zurück zum Zitat Afshar P, Mohammadi A, Plataniotis KN: BayesCap: A Bayesian Approach to Brain Tumor Classification Using Capsule Networks. IEEE Signal Processing Letters 27:2024-2028, 2020 Afshar P, Mohammadi A, Plataniotis KN: BayesCap: A Bayesian Approach to Brain Tumor Classification Using Capsule Networks. IEEE Signal Processing Letters 27:2024-2028, 2020
31.
Zurück zum Zitat Poyraz AK, Dogan S, Akbal E, Tuncer T: Automated brain disease classification using exemplar deep features. Biomedical Signal Processing and Control 73:103448, 2022 Poyraz AK, Dogan S, Akbal E, Tuncer T: Automated brain disease classification using exemplar deep features. Biomedical Signal Processing and Control 73:103448, 2022
32.
Zurück zum Zitat El-Latif AAA, Chelloug SA, Alabdulhafith M, Hammad M: Accurate Detection of Alzheimer’s Disease Using Lightweight Deep Learning Model on MRI Data. Diagnostics 13:1216, 2023PubMedPubMedCentral El-Latif AAA, Chelloug SA, Alabdulhafith M, Hammad M: Accurate Detection of Alzheimer’s Disease Using Lightweight Deep Learning Model on MRI Data. Diagnostics 13:1216, 2023PubMedPubMedCentral
33.
Zurück zum Zitat Muezzinoglu T, et al.: PatchResNet: Multiple Patch Division–Based Deep Feature Fusion Framework for Brain Tumor Classification Using MRI Images. Journal of Digital Imaging:1–15, 2023 Muezzinoglu T, et al.: PatchResNet: Multiple Patch Division–Based Deep Feature Fusion Framework for Brain Tumor Classification Using MRI Images. Journal of Digital Imaging:1–15, 2023
34.
Zurück zum Zitat Gupta RK, Bharti S, Kunhare N, Sahu Y, Pathik N: Brain tumor detection and classification using cycle generative adversarial networks. Interdisciplinary Sciences: Computational Life Sciences 14:485-502, 2022PubMed Gupta RK, Bharti S, Kunhare N, Sahu Y, Pathik N: Brain tumor detection and classification using cycle generative adversarial networks. Interdisciplinary Sciences: Computational Life Sciences 14:485-502, 2022PubMed
35.
Zurück zum Zitat Dalal N, Triggs B: Histograms of oriented gradients for human detection. Proc. 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05): City Dalal N, Triggs B: Histograms of oriented gradients for human detection. Proc. 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05): City
36.
Zurück zum Zitat Tuncer T, Dogan S, Subasi A: A new fractal pattern feature generation function based emotion recognition method using EEG. Chaos, Solitons & Fractals 144:110671, 2021 Tuncer T, Dogan S, Subasi A: A new fractal pattern feature generation function based emotion recognition method using EEG. Chaos, Solitons & Fractals 144:110671, 2021
37.
Zurück zum Zitat Silva DJ, Amaral JS, Amaral VS: Broad multi-parameter dimensioning of magnetocaloric systems using statistical learning classifiers. Frontiers in Energy Research 8:121, 2020 Silva DJ, Amaral JS, Amaral VS: Broad multi-parameter dimensioning of magnetocaloric systems using statistical learning classifiers. Frontiers in Energy Research 8:121, 2020
39.
Zurück zum Zitat Kang J, Gwak J: Deep Learning-Based Brain Tumor Classification in MRI images using Ensemble of Deep Features. Journal of the Korea Society of Computer and Information 26:37-44, 2021 Kang J, Gwak J: Deep Learning-Based Brain Tumor Classification in MRI images using Ensemble of Deep Features. Journal of the Korea Society of Computer and Information 26:37-44, 2021
41.
Zurück zum Zitat Scarpace L, et al.: Radiology data from the cancer genome atlas glioblastoma multiforme [TCGA-GBM] collection. The Cancer Imaging Archive 11:1, 2016 Scarpace L, et al.: Radiology data from the cancer genome atlas glioblastoma multiforme [TCGA-GBM] collection. The Cancer Imaging Archive 11:1, 2016
42.
Zurück zum Zitat Clark K, et al.: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. Journal of digital imaging 26:1045-1057, 2013PubMedPubMedCentral Clark K, et al.: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. Journal of digital imaging 26:1045-1057, 2013PubMedPubMedCentral
43.
Zurück zum Zitat Pedano N, et al.: Radiology data from the cancer genome atlas low grade glioma [TCGA-LGG] collection. The Cancer Imaging Archive 2, 2016 Pedano N, et al.: Radiology data from the cancer genome atlas low grade glioma [TCGA-LGG] collection. The Cancer Imaging Archive 2, 2016
44.
Zurück zum Zitat Nagabushanam P, Thomas George S, Radha S: EEG signal classification using LSTM and improved neural network algorithms. Soft Computing 24:9981-10003, 2020 Nagabushanam P, Thomas George S, Radha S: EEG signal classification using LSTM and improved neural network algorithms. Soft Computing 24:9981-10003, 2020
45.
Zurück zum Zitat Goutte C, Gaussier E: A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. Proc. European conference on information retrieval: City Goutte C, Gaussier E: A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. Proc. European conference on information retrieval: City
46.
Zurück zum Zitat Khodatars M, et al.: Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: a review. Computers in Biology and Medicine 139:104949, 2021PubMed Khodatars M, et al.: Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: a review. Computers in Biology and Medicine 139:104949, 2021PubMed
47.
Zurück zum Zitat Puspaningrum EY, Wahid RR, Amaliyah RP: Alzheimer’s Disease Stage Classification using Deep Convolutional Neural Networks on Oversampled Imbalance Data. Proc. 2020 6th Information Technology International Seminar (ITIS): City Puspaningrum EY, Wahid RR, Amaliyah RP: Alzheimer’s Disease Stage Classification using Deep Convolutional Neural Networks on Oversampled Imbalance Data. Proc. 2020 6th Information Technology International Seminar (ITIS): City
48.
Zurück zum Zitat Acharya H, Mehta R, Singh DK: Alzheimer Disease Classification Using Transfer Learning. Proc. 2021 5th International Conference on Computing Methodologies and Communication (ICCMC): City Acharya H, Mehta R, Singh DK: Alzheimer Disease Classification Using Transfer Learning. Proc. 2021 5th International Conference on Computing Methodologies and Communication (ICCMC): City
49.
Zurück zum Zitat Fu’adah Y, Wijayanto I, Pratiwi N, Taliningsih F, Rizal S, Pramudito M: Automated Classification of Alzheimer’s Disease Based on MRI Image Processing using Convolutional Neural Network (CNN) with AlexNet Architecture. Proc. Journal of Physics: Conference Series: City Fu’adah Y, Wijayanto I, Pratiwi N, Taliningsih F, Rizal S, Pramudito M: Automated Classification of Alzheimer’s Disease Based on MRI Image Processing using Convolutional Neural Network (CNN) with AlexNet Architecture. Proc. Journal of Physics: Conference Series: City
50.
Zurück zum Zitat Subramoniam M: Deep learning based prediction of Alzheimer's disease from magnetic resonance images. arXiv preprint arXiv:210104961, 2021 Subramoniam M: Deep learning based prediction of Alzheimer's disease from magnetic resonance images. arXiv preprint arXiv:​210104961, 2021
51.
Zurück zum Zitat Liang S, Gu Y: Computer-Aided Diagnosis of Alzheimer’s Disease through Weak Supervision Deep Learning Framework with Attention Mechanism. Sensors 21:220, 2021 Liang S, Gu Y: Computer-Aided Diagnosis of Alzheimer’s Disease through Weak Supervision Deep Learning Framework with Attention Mechanism. Sensors 21:220, 2021
52.
Zurück zum Zitat Alshammari M, Mezher M: A Modified Convolutional Neural Networks For MRI-based Images For Detection and Stage Classification Of Alzheimer Disease. Proc. 2021 National Computing Colleges Conference (NCCC): City Alshammari M, Mezher M: A Modified Convolutional Neural Networks For MRI-based Images For Detection and Stage Classification Of Alzheimer Disease. Proc. 2021 National Computing Colleges Conference (NCCC): City
53.
Zurück zum Zitat Murugan S, et al.: DEMNET: a deep learning model for early diagnosis of Alzheimer diseases and dementia from MR images. IEEE Access 9:90319-90329, 2021 Murugan S, et al.: DEMNET: a deep learning model for early diagnosis of Alzheimer diseases and dementia from MR images. IEEE Access 9:90319-90329, 2021
54.
Zurück zum Zitat Saleh A, Sukaik R, Abu-Naser SS: Brain Tumor Classification Using Deep Learning. Proc. 2020 International Conference on Assistive and Rehabilitation Technologies (iCareTech): City Saleh A, Sukaik R, Abu-Naser SS: Brain Tumor Classification Using Deep Learning. Proc. 2020 International Conference on Assistive and Rehabilitation Technologies (iCareTech): City
55.
Zurück zum Zitat Kang J, Ullah Z, Gwak J: Mri-based brain tumor classification using ensemble of deep features and machine learning classifiers. Sensors 21:2222, 2021PubMedPubMedCentral Kang J, Ullah Z, Gwak J: Mri-based brain tumor classification using ensemble of deep features and machine learning classifiers. Sensors 21:2222, 2021PubMedPubMedCentral
56.
Zurück zum Zitat Shoaib M, Elshamy M, Taha T, El-Fishawy A, Abd El-Samie F: Practical Implementation for Brain Tumor Classification with Convolutional Neural Network: EasyChair, 2021 Shoaib M, Elshamy M, Taha T, El-Fishawy A, Abd El-Samie F: Practical Implementation for Brain Tumor Classification with Convolutional Neural Network: EasyChair, 2021
57.
Zurück zum Zitat Khan I, Ahsan K, Hasan MA, Sattar A: Brain Tumor Analysis Using Deep Neural Network. Proc. 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS): City Khan I, Ahsan K, Hasan MA, Sattar A: Brain Tumor Analysis Using Deep Neural Network. Proc. 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS): City
58.
Zurück zum Zitat Raghavendra U, et al.: Feature‐versus deep learning‐based approaches for the automated detection of brain tumor with magnetic resonance images: A comparative study. International Journal of Imaging Systems and Technology, 2021 Raghavendra U, et al.: Feature‐versus deep learning‐based approaches for the automated detection of brain tumor with magnetic resonance images: A comparative study. International Journal of Imaging Systems and Technology, 2021
59.
Zurück zum Zitat Hsieh KL-C, Lo C-M, Hsiao C-J: Computer-aided grading of gliomas based on local and global MRI features. Computer methods and programs in biomedicine 139:31–38, 2017 Hsieh KL-C, Lo C-M, Hsiao C-J: Computer-aided grading of gliomas based on local and global MRI features. Computer methods and programs in biomedicine 139:31–38, 2017
60.
Zurück zum Zitat Anaraki AK, Ayati M, Kazemi F: Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms. biocybernetics and biomedical engineering 39:63–74, 2019 Anaraki AK, Ayati M, Kazemi F: Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms. biocybernetics and biomedical engineering 39:63–74, 2019
61.
Zurück zum Zitat Sert E, Özyurt F, Doğantekin A: A new approach for brain tumor diagnosis system: Single image super resolution based maximum fuzzy entropy segmentation and convolutional neural network. Medical hypotheses 133:109413, 2019PubMed Sert E, Özyurt F, Doğantekin A: A new approach for brain tumor diagnosis system: Single image super resolution based maximum fuzzy entropy segmentation and convolutional neural network. Medical hypotheses 133:109413, 2019PubMed
62.
Zurück zum Zitat Banerjee S, Mitra S, Masulli F, Rovetta S: Brain tumor detection and classification from multi-sequence MRI: Study using convnets. Proc. International MICCAI brainlesion workshop: City Banerjee S, Mitra S, Masulli F, Rovetta S: Brain tumor detection and classification from multi-sequence MRI: Study using convnets. Proc. International MICCAI brainlesion workshop: City
63.
Zurück zum Zitat Cha S: Update on brain tumor imaging: from anatomy to physiology. American Journal of Neuroradiology 27:475-487, 2006PubMedPubMedCentral Cha S: Update on brain tumor imaging: from anatomy to physiology. American Journal of Neuroradiology 27:475-487, 2006PubMedPubMedCentral
64.
Zurück zum Zitat Kim R, et al.: Prognosis prediction of non-enhancing T2 high signal intensity lesions in glioblastoma patients after standard treatment: application of dynamic contrast-enhanced MR imaging. European radiology 27:1176-1185, 2017PubMed Kim R, et al.: Prognosis prediction of non-enhancing T2 high signal intensity lesions in glioblastoma patients after standard treatment: application of dynamic contrast-enhanced MR imaging. European radiology 27:1176-1185, 2017PubMed
65.
Zurück zum Zitat Gharzeddine K, Hatzoglou V, Holodny AI, Young RJ: MR perfusion and MR spectroscopy of brain neoplasms. Radiologic Clinics 57:1177-1188, 2019PubMed Gharzeddine K, Hatzoglou V, Holodny AI, Young RJ: MR perfusion and MR spectroscopy of brain neoplasms. Radiologic Clinics 57:1177-1188, 2019PubMed
66.
Zurück zum Zitat Frisoni GB, Fox NC, Jack CR, Scheltens P, Thompson PM: The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology 6:67-77, 2010PubMedPubMedCentral Frisoni GB, Fox NC, Jack CR, Scheltens P, Thompson PM: The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology 6:67-77, 2010PubMedPubMedCentral
68.
Zurück zum Zitat Arbabshirani MR, Plis S, Sui J, Calhoun VD: Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. Neuroimage 145:137-165, 2017PubMed Arbabshirani MR, Plis S, Sui J, Calhoun VD: Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. Neuroimage 145:137-165, 2017PubMed
Metadaten
Titel
PFP-HOG: Pyramid and Fixed-Size Patch-Based HOG Technique for Automated Brain Abnormality Classification with MRI
verfasst von
Ela Kaplan
Wai Yee Chan
Hasan Baki Altinsoy
Mehmet Baygin
Prabal Datta Barua
Subrata Chakraborty
Sengul Dogan
Turker Tuncer
U. Rajendra Acharya
Publikationsdatum
03.08.2023
Verlag
Springer International Publishing
Erschienen in
Journal of Imaging Informatics in Medicine / Ausgabe 6/2023
Print ISSN: 2948-2925
Elektronische ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-023-00889-8

Weitere Artikel der Ausgabe 6/2023

Journal of Digital Imaging 6/2023 Zur Ausgabe

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.