Skip to main content
Erschienen in: CNS Drugs 2/2009

01.02.2009 | Leading Article

Pharmacological Manipulation of Kynurenic Acid

Potential in the Treatment of Psychiatric Disorders

verfasst von: Dr Sophie Erhardt, Sara K. Olsson, Göran Engberg

Erschienen in: CNS Drugs | Ausgabe 2/2009

Einloggen, um Zugang zu erhalten

Abstract

The kynurenine pathway constitutes the main route of tryptophan degradation and generates the production of several neuroactive compounds; quinolinic acid is an excitotoxic NMDA receptor agonist, 3-hydroxykynurenine is a free-radical generator and kynurenic acid (KYNA) is an antagonist at glutamate and nicotinic receptors. In low micromolar concentrations, KYNA blocks the glycine site of the NMDA receptor and the nicotinic α7* acetylcholine receptor. Knowledge regarding kynurenine metabolites and their involvement in neurophysiological processes has increased dramatically in recent years. In particular, endogenous KYNA appears to tightly control firing of midbrain dopamine neurons and to be involved in cognitive functions. Thus, decreased endogenous levels of rat brain KYNA have been found to reduce firing of these neurons, and mice with a targeted deletion of kynurenine aminotransferase II display low endogenous brain KYNA levels concomitant with an increased performance in cognitive tests. It is also suggested that kynurenines participate in the pathophysiology of psychiatric disorders. Thus, elevated levels of KYNA have been found in the CSF as well as in the post-mortem brain of patients with schizophrenia. Advantages in understanding how kynurenines can be pharmacologically manipulated may provide new possibilities in the treatment of psychiatric disorders, such as schizophrenia.
Literatur
1.
Zurück zum Zitat Erhardt S, Schwieler L, Engberg G. Kynurenic acid and schizophrenia. Adv Exp Med Biol 2003; 527: 155–65PubMedCrossRef Erhardt S, Schwieler L, Engberg G. Kynurenic acid and schizophrenia. Adv Exp Med Biol 2003; 527: 155–65PubMedCrossRef
2.
Zurück zum Zitat Erhardt S, Schwieler L, Nilsson L, et al. The kynurenic acid hypothesis of schizophrenia. Physiol Behav 2007 Sep 10; 92(1–2): 203–9PubMedCrossRef Erhardt S, Schwieler L, Nilsson L, et al. The kynurenic acid hypothesis of schizophrenia. Physiol Behav 2007 Sep 10; 92(1–2): 203–9PubMedCrossRef
3.
Zurück zum Zitat Stone TW. Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 1993 Sep; 45(3): 309–79PubMed Stone TW. Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 1993 Sep; 45(3): 309–79PubMed
4.
Zurück zum Zitat Perkins MN, Stone TW. An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res 1982 Sep 9; 247(1): 184–7PubMedCrossRef Perkins MN, Stone TW. An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res 1982 Sep 9; 247(1): 184–7PubMedCrossRef
5.
Zurück zum Zitat Liebig J. Uber kynurensäure. Justus Liebigs Ann Chem 1853; 86: 125–6CrossRef Liebig J. Uber kynurensäure. Justus Liebigs Ann Chem 1853; 86: 125–6CrossRef
6.
Zurück zum Zitat Ellinger A. Die entstehung der Kynurensaure. Z Physiol Chem 1904; 43: 325–37CrossRef Ellinger A. Die entstehung der Kynurensaure. Z Physiol Chem 1904; 43: 325–37CrossRef
7.
Zurück zum Zitat Beadle GW, Mitchell HK, Nyc JF. Kynurenine as an intermediate in the formation of nicotinic acid from tryptophane by neurospora. Proc Natl Acad Sci U S A 1947 Jun; 33(6): 155–8PubMedCrossRef Beadle GW, Mitchell HK, Nyc JF. Kynurenine as an intermediate in the formation of nicotinic acid from tryptophane by neurospora. Proc Natl Acad Sci U S A 1947 Jun; 33(6): 155–8PubMedCrossRef
8.
Zurück zum Zitat Wolf H. Studies on tryptophan metabolism in man: the effect of hormones and vitamin B6 on urinary excretion of metabolites of the kynurenine pathway. Scand J Clin Lab Invest 1974; 136: 1–186 Wolf H. Studies on tryptophan metabolism in man: the effect of hormones and vitamin B6 on urinary excretion of metabolites of the kynurenine pathway. Scand J Clin Lab Invest 1974; 136: 1–186
9.
Zurück zum Zitat Mehler AH, Knox WE. The conversion of tryptophan to kynurenine in liver: II. The enzymatic hydrolysis of formylkynurenine. J Biol Chem 1950 Nov; 187(1): 431–8PubMed Mehler AH, Knox WE. The conversion of tryptophan to kynurenine in liver: II. The enzymatic hydrolysis of formylkynurenine. J Biol Chem 1950 Nov; 187(1): 431–8PubMed
10.
Zurück zum Zitat Moroni F. Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. Eur J Pharmacol 1999 Jun 30; 375(1–3): 87–100PubMedCrossRef Moroni F. Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. Eur J Pharmacol 1999 Jun 30; 375(1–3): 87–100PubMedCrossRef
11.
Zurück zum Zitat Moroni F, Russi P, Lombardi G, et al. Presence of kynurenic acid in the mammalian brain. J Neurochem 1988 Jul; 51(1): 177–80PubMedCrossRef Moroni F, Russi P, Lombardi G, et al. Presence of kynurenic acid in the mammalian brain. J Neurochem 1988 Jul; 51(1): 177–80PubMedCrossRef
12.
Zurück zum Zitat Turski WA, Nakamura M, Todd WP, et al. Identification and quantification of kynurenic acid in human brain tissue. Brain Res 1988 Jun 28; 454(1–2): 164–9PubMedCrossRef Turski WA, Nakamura M, Todd WP, et al. Identification and quantification of kynurenic acid in human brain tissue. Brain Res 1988 Jun 28; 454(1–2): 164–9PubMedCrossRef
13.
Zurück zum Zitat Okuno E, Nakamura M, Schwarcz R. Two kynurenine aminotransferases in human brain. Brain Res 1991 Mar 1; 542(2): 307–12PubMedCrossRef Okuno E, Nakamura M, Schwarcz R. Two kynurenine aminotransferases in human brain. Brain Res 1991 Mar 1; 542(2): 307–12PubMedCrossRef
14.
Zurück zum Zitat Schmidt W, Guidetti P, Okuno E, et al. Characterization of human brain kynurenine aminotransferases using [3H]-kynurenine as a substrate. Neuroscience 1993 Jul; 55(1): 177–84PubMedCrossRef Schmidt W, Guidetti P, Okuno E, et al. Characterization of human brain kynurenine aminotransferases using [3H]-kynurenine as a substrate. Neuroscience 1993 Jul; 55(1): 177–84PubMedCrossRef
15.
Zurück zum Zitat Guidetti P, Okuno E, Schwarcz R. Characterization of rat brain kynurenine aminotransferases I and II. J Neurosci Res 1997 Nov 1; 50(3): 457–65PubMedCrossRef Guidetti P, Okuno E, Schwarcz R. Characterization of rat brain kynurenine aminotransferases I and II. J Neurosci Res 1997 Nov 1; 50(3): 457–65PubMedCrossRef
16.
Zurück zum Zitat Yu P, Li Z, Zhang L, et al. Characterization of kynurenine aminotransferase III, a novel member of a phylogenetically conserved KAT family. Gene 2006 Jan 3; 365: 111–8PubMedCrossRef Yu P, Li Z, Zhang L, et al. Characterization of kynurenine aminotransferase III, a novel member of a phylogenetically conserved KAT family. Gene 2006 Jan 3; 365: 111–8PubMedCrossRef
17.
Zurück zum Zitat Ceresoli-Borroni G, Guidetti P, Schwarcz R. Acute and chronic changes in kynurenate formation following an intrastriatal quinolinate injection in rats. J Neural Transm 1999; 106(3–4): 229–42PubMedCrossRef Ceresoli-Borroni G, Guidetti P, Schwarcz R. Acute and chronic changes in kynurenate formation following an intrastriatal quinolinate injection in rats. J Neural Transm 1999; 106(3–4): 229–42PubMedCrossRef
18.
Zurück zum Zitat Okuno E, Schmidt W, Parks DA, et al. Measurement of rat brain kynurenine aminotransferase at physiological kynurenine concentrations. J Neurochem 1991 Aug; 57(2): 533–40PubMedCrossRef Okuno E, Schmidt W, Parks DA, et al. Measurement of rat brain kynurenine aminotransferase at physiological kynurenine concentrations. J Neurochem 1991 Aug; 57(2): 533–40PubMedCrossRef
19.
Zurück zum Zitat Du F, Schmidt W, Okuno E, et al. Localization of kynurenine aminotransferase immunoreactivity in the rat hippocampus. J Comp Neurol 1992 Jul 15; 321(3): 477–87PubMedCrossRef Du F, Schmidt W, Okuno E, et al. Localization of kynurenine aminotransferase immunoreactivity in the rat hippocampus. J Comp Neurol 1992 Jul 15; 321(3): 477–87PubMedCrossRef
20.
Zurück zum Zitat Guidetti P, Amori L, Sapko MT, et al. Mitochondrial aspartate aminotransferase: a third kynurenate-producing enzyme in the mammalian brain. J Neurochem 2007 Jul; 102(1): 103–11PubMedCrossRef Guidetti P, Amori L, Sapko MT, et al. Mitochondrial aspartate aminotransferase: a third kynurenate-producing enzyme in the mammalian brain. J Neurochem 2007 Jul; 102(1): 103–11PubMedCrossRef
21.
Zurück zum Zitat Fukui S, Schwarcz R, Rapoport SI, et al. Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem 1991 Jun; 56(6): 2007–17PubMedCrossRef Fukui S, Schwarcz R, Rapoport SI, et al. Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem 1991 Jun; 56(6): 2007–17PubMedCrossRef
22.
Zurück zum Zitat Christensen HN. Organic ion transport during seven decades: the amino acids. Biochim Biophys Acta 1984 Sep 3; 779(3): 255–69PubMedCrossRef Christensen HN. Organic ion transport during seven decades: the amino acids. Biochim Biophys Acta 1984 Sep 3; 779(3): 255–69PubMedCrossRef
23.
Zurück zum Zitat Speciale C, Hares K, Schwarcz R, et al. High-affinity uptake of L-kynurenine by a Na+-independent transporter of neutral amino acids in astrocytes. J Neurosci 1989 Jun; 9(6): 2066–72PubMed Speciale C, Hares K, Schwarcz R, et al. High-affinity uptake of L-kynurenine by a Na+-independent transporter of neutral amino acids in astrocytes. J Neurosci 1989 Jun; 9(6): 2066–72PubMed
24.
Zurück zum Zitat Swartz KJ, During MJ, Freese A, et al. Cerebral synthesis and release of kynurenic acid: an endogenous antagonist of excitatory amino acid receptors. J Neurosci 1990 Sep; 10(9): 2965–73PubMed Swartz KJ, During MJ, Freese A, et al. Cerebral synthesis and release of kynurenic acid: an endogenous antagonist of excitatory amino acid receptors. J Neurosci 1990 Sep; 10(9): 2965–73PubMed
25.
Zurück zum Zitat Gramsbergen JB, Hodgkins PS, Rassoulpour A, et al. Brain-specific modulation of kynurenic acid synthesis in the rat. J Neurochem 1997 Jul; 69(1): 290–8PubMedCrossRef Gramsbergen JB, Hodgkins PS, Rassoulpour A, et al. Brain-specific modulation of kynurenic acid synthesis in the rat. J Neurochem 1997 Jul; 69(1): 290–8PubMedCrossRef
26.
Zurück zum Zitat Moroni F, Russi P, Carla V, et al. Kynurenic acid is present in the rat brain and its content increases during development and aging processes. Neurosci Lett 1988 Nov 22; 94(1–2): 145–50PubMedCrossRef Moroni F, Russi P, Carla V, et al. Kynurenic acid is present in the rat brain and its content increases during development and aging processes. Neurosci Lett 1988 Nov 22; 94(1–2): 145–50PubMedCrossRef
27.
Zurück zum Zitat Gramsbergen JB, Schmidt W, Turski WA, et al. Age-related changes in kynurenic acid production in rat brain. Brain Res 1992 Aug 14; 588(1): 1–5PubMedCrossRef Gramsbergen JB, Schmidt W, Turski WA, et al. Age-related changes in kynurenic acid production in rat brain. Brain Res 1992 Aug 14; 588(1): 1–5PubMedCrossRef
28.
Zurück zum Zitat Takahashi H, Kaihara M, Price JM. The conversion of kynurenic acid to quinaldic acid by humans and rats. J Biol Chem 1956; 223: 705–8PubMed Takahashi H, Kaihara M, Price JM. The conversion of kynurenic acid to quinaldic acid by humans and rats. J Biol Chem 1956; 223: 705–8PubMed
29.
Zurück zum Zitat Turski WA, Schwarcz R. On the disposition of intra-hippocampally injected kynurenic acid in the rat. Exp Brain Res 1988; 71(3): 563–7PubMedCrossRef Turski WA, Schwarcz R. On the disposition of intra-hippocampally injected kynurenic acid in the rat. Exp Brain Res 1988; 71(3): 563–7PubMedCrossRef
30.
Zurück zum Zitat Chang YF, Cauley RK, Chang JD, et al. L-alpha-aminoadipate inhibits kynurenate synthesis in rat brain hippocampus and tissue culture. Neurochem Res 1997 Jul; 22(7): 825–9PubMedCrossRef Chang YF, Cauley RK, Chang JD, et al. L-alpha-aminoadipate inhibits kynurenate synthesis in rat brain hippocampus and tissue culture. Neurochem Res 1997 Jul; 22(7): 825–9PubMedCrossRef
31.
Zurück zum Zitat Russi P, Alesiani M, Lombardi G, et al. Nicotinylalanine increases the formation of kynurenic acid in the brain and antagonizes convulsions. J Neurochem 1992 Dec; 59(6): 2076–80PubMedCrossRef Russi P, Alesiani M, Lombardi G, et al. Nicotinylalanine increases the formation of kynurenic acid in the brain and antagonizes convulsions. J Neurochem 1992 Dec; 59(6): 2076–80PubMedCrossRef
32.
Zurück zum Zitat Speciale C, Wu HQ, Cini M, et al. (R,S)-3,4-dichloro-benzoylalanine (FCE 28833A) causes a large and persistent increase in brain kynurenic acid levels in rats. Eur J Pharmacol 1996 Nov 21; 315(3): 263–7PubMedCrossRef Speciale C, Wu HQ, Cini M, et al. (R,S)-3,4-dichloro-benzoylalanine (FCE 28833A) causes a large and persistent increase in brain kynurenic acid levels in rats. Eur J Pharmacol 1996 Nov 21; 315(3): 263–7PubMedCrossRef
33.
Zurück zum Zitat Schwieler L, Erhardt S, Erhardt C, et al. Prostaglandin-mediated control of rat brain kynurenic acid synthesis: opposite actions by COX-1 and COX-2 isoforms. J Neural Transm 2005 Jul; 112(7): 863–72PubMedCrossRef Schwieler L, Erhardt S, Erhardt C, et al. Prostaglandin-mediated control of rat brain kynurenic acid synthesis: opposite actions by COX-1 and COX-2 isoforms. J Neural Transm 2005 Jul; 112(7): 863–72PubMedCrossRef
34.
Zurück zum Zitat Schwieler L, Erhardt S, Nilsson L, et al. Effects of COX-1 and COX-2 inhibitors on the firing of rat midbrain dopaminergic neurons: possible involvement of endogenous kynurenic acid. Synapse 2006 Apr; 59(5): 290–8PubMedCrossRef Schwieler L, Erhardt S, Nilsson L, et al. Effects of COX-1 and COX-2 inhibitors on the firing of rat midbrain dopaminergic neurons: possible involvement of endogenous kynurenic acid. Synapse 2006 Apr; 59(5): 290–8PubMedCrossRef
35.
Zurück zum Zitat Edwards SR, Mather LE, Lin Y, et al. Glutamate and kynurenate in the rat central nervous system following treatments with tail ischaemia or diclofenac. J Pharm Pharmacol 2000 Jan; 52(1): 59–66PubMedCrossRef Edwards SR, Mather LE, Lin Y, et al. Glutamate and kynurenate in the rat central nervous system following treatments with tail ischaemia or diclofenac. J Pharm Pharmacol 2000 Jan; 52(1): 59–66PubMedCrossRef
36.
Zurück zum Zitat Speciale C, Wu HQ, Gramsbergen JB, et al. Determination of extracellular kynurenic acid in the striatum of un-anesthetized rats: effect of aminooxyacetic acid. Neurosci Lett 1990 Aug 14; 116(1–2): 198–203PubMedCrossRef Speciale C, Wu HQ, Gramsbergen JB, et al. Determination of extracellular kynurenic acid in the striatum of un-anesthetized rats: effect of aminooxyacetic acid. Neurosci Lett 1990 Aug 14; 116(1–2): 198–203PubMedCrossRef
37.
Zurück zum Zitat Parsons CG, Danysz W, Quack G, et al. Novel systemically active antagonists of the glycine site of the N-methyl-D-aspartate receptor: electrophysiological, biochemical and behavioral characterization. J Pharmacol Exp Ther 1997 Dec; 283(3): 1264–75PubMed Parsons CG, Danysz W, Quack G, et al. Novel systemically active antagonists of the glycine site of the N-methyl-D-aspartate receptor: electrophysiological, biochemical and behavioral characterization. J Pharmacol Exp Ther 1997 Dec; 283(3): 1264–75PubMed
38.
Zurück zum Zitat Kessler M, Terramani T, Lynch G, et al. A glycine site associated with N-methyl-D-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem 1989 Apr; 52(4): 1319–28PubMedCrossRef Kessler M, Terramani T, Lynch G, et al. A glycine site associated with N-methyl-D-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem 1989 Apr; 52(4): 1319–28PubMedCrossRef
39.
Zurück zum Zitat Prescott C, Weeks AM, Staley KJ, et al. Kynurenic acid has a dual action on AMPA receptor responses. Neurosci Lett 2006 Jul 10; 402(1–2): 108–12PubMedCrossRef Prescott C, Weeks AM, Staley KJ, et al. Kynurenic acid has a dual action on AMPA receptor responses. Neurosci Lett 2006 Jul 10; 402(1–2): 108–12PubMedCrossRef
40.
Zurück zum Zitat Hilmas C, Pereira EF, Alkondon M, et al. The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 2001 Oct 1; 21(19): 7463–73PubMed Hilmas C, Pereira EF, Alkondon M, et al. The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 2001 Oct 1; 21(19): 7463–73PubMed
41.
Zurück zum Zitat Alkondon M, Pereira EF, Yu P, et al. Targeted deletion of the kynurenine aminotransferase II gene reveals a critical role of endogenous kynurenic acid in the regulation of synaptic transmission via alpha7 nicotinic receptors in the hippocampus. J Neurosci 2004 May 12; 24(19): 4635–48PubMedCrossRef Alkondon M, Pereira EF, Yu P, et al. Targeted deletion of the kynurenine aminotransferase II gene reveals a critical role of endogenous kynurenic acid in the regulation of synaptic transmission via alpha7 nicotinic receptors in the hippocampus. J Neurosci 2004 May 12; 24(19): 4635–48PubMedCrossRef
42.
Zurück zum Zitat Alkondon M, Pereira EF, Potter MC, et al. Strain-specific nicotinic modulation of glutamatergic transmission in the CA1 field of the rat hippocampus: August Copenhagen Irish versus Sprague-Dawley. J Neurophysiol 2007 Feb; 97(2): 1163–70PubMedCrossRef Alkondon M, Pereira EF, Potter MC, et al. Strain-specific nicotinic modulation of glutamatergic transmission in the CA1 field of the rat hippocampus: August Copenhagen Irish versus Sprague-Dawley. J Neurophysiol 2007 Feb; 97(2): 1163–70PubMedCrossRef
43.
Zurück zum Zitat Stone TW. Kynurenic acid blocks nicotinic synaptic transmission to hippocampal interneurons in young rats. Eur J Neurosci 2007 May; 25(9): 2656–65PubMedCrossRef Stone TW. Kynurenic acid blocks nicotinic synaptic transmission to hippocampal interneurons in young rats. Eur J Neurosci 2007 May; 25(9): 2656–65PubMedCrossRef
44.
Zurück zum Zitat Foster AC, Vezzani A, French ED, et al. Kynurenic acid blocks neurotoxicity and seizures induced in rats by the related brain metabolite quinolinic acid. Neurosci Lett 1984 Aug 10; 48(3): 273–8PubMedCrossRef Foster AC, Vezzani A, French ED, et al. Kynurenic acid blocks neurotoxicity and seizures induced in rats by the related brain metabolite quinolinic acid. Neurosci Lett 1984 Aug 10; 48(3): 273–8PubMedCrossRef
45.
Zurück zum Zitat Hajos M, Engberg G. Kynurenic acid blocks chemogenic nociception. J Pharm Pharmacol 1990 May; 42(5): 373–4PubMedCrossRef Hajos M, Engberg G. Kynurenic acid blocks chemogenic nociception. J Pharm Pharmacol 1990 May; 42(5): 373–4PubMedCrossRef
46.
Zurück zum Zitat Hajos M, Engberg G. A role of excitatory amino acids in the activation of locus coeruleus neurons following cutaneous thermal stimuli. Brain Res 1990 Jun 25; 521(1–2): 325–8PubMedCrossRef Hajos M, Engberg G. A role of excitatory amino acids in the activation of locus coeruleus neurons following cutaneous thermal stimuli. Brain Res 1990 Jun 25; 521(1–2): 325–8PubMedCrossRef
47.
Zurück zum Zitat Nozaki K, Beal MF. Neuroprotective effects of L-kynurenine on hypoxia-ischemia and NMDA lesions in neonatal rats. J Cereb Blood Flow Metab 1992 May; 12(3): 400–7PubMedCrossRef Nozaki K, Beal MF. Neuroprotective effects of L-kynurenine on hypoxia-ischemia and NMDA lesions in neonatal rats. J Cereb Blood Flow Metab 1992 May; 12(3): 400–7PubMedCrossRef
48.
Zurück zum Zitat Carpenedo R, Chiarugi A, Russi P, et al. Inhibitors of kynurenine hydroxylase and kynureninase increase cerebral formation of kynurenate and have sedative and anti-convulsant activities. Neuroscience 1994 Jul; 61(2): 237–43PubMedCrossRef Carpenedo R, Chiarugi A, Russi P, et al. Inhibitors of kynurenine hydroxylase and kynureninase increase cerebral formation of kynurenate and have sedative and anti-convulsant activities. Neuroscience 1994 Jul; 61(2): 237–43PubMedCrossRef
49.
Zurück zum Zitat Wu HQ, Guidetti P, Goodman JH, et al. Kynurenergic manipulations influence excitatory synaptic function and excitotoxic vulnerability in the rat hippocampus in vivo. Neuroscience 2000; 97(2): 243–51PubMedCrossRef Wu HQ, Guidetti P, Goodman JH, et al. Kynurenergic manipulations influence excitatory synaptic function and excitotoxic vulnerability in the rat hippocampus in vivo. Neuroscience 2000; 97(2): 243–51PubMedCrossRef
50.
Zurück zum Zitat Connick JH, Heywood GC, Sills GJ, et al. Nicotinylalanine increases cerebral kynurenic acid content and has anti-convulsant activity. Gen Pharmacol 1992 Mar; 23(2): 235–9PubMedCrossRef Connick JH, Heywood GC, Sills GJ, et al. Nicotinylalanine increases cerebral kynurenic acid content and has anti-convulsant activity. Gen Pharmacol 1992 Mar; 23(2): 235–9PubMedCrossRef
51.
Zurück zum Zitat Erhardt S, Hajos M, Lindberg A, et al. Nicotine-induced excitation of locus coeruleus neurons is blocked by elevated levels of endogenous kynurenic acid. Synapse 2000 Aug; 37(2): 104–8PubMedCrossRef Erhardt S, Hajos M, Lindberg A, et al. Nicotine-induced excitation of locus coeruleus neurons is blocked by elevated levels of endogenous kynurenic acid. Synapse 2000 Aug; 37(2): 104–8PubMedCrossRef
52.
Zurück zum Zitat Erhardt S, Oberg H, Engberg G. Pharmacologically elevated levels of endogenous kynurenic acid prevent nicotine-induced activation of nigral dopamine neurons. Naunyn Schmiedebergs Arch Pharmacol 2001 Jan; 363(1): 21–7PubMedCrossRef Erhardt S, Oberg H, Engberg G. Pharmacologically elevated levels of endogenous kynurenic acid prevent nicotine-induced activation of nigral dopamine neurons. Naunyn Schmiedebergs Arch Pharmacol 2001 Jan; 363(1): 21–7PubMedCrossRef
53.
Zurück zum Zitat Erhardt S, Oberg H, Mathe JM, et al. Pharmacological elevation of endogenous kynurenic acid levels activates nigral dopamine neurons. Amino Acids 2001; 20(4): 353–62PubMedCrossRef Erhardt S, Oberg H, Mathe JM, et al. Pharmacological elevation of endogenous kynurenic acid levels activates nigral dopamine neurons. Amino Acids 2001; 20(4): 353–62PubMedCrossRef
54.
Zurück zum Zitat Erhardt S, Schwieler L, Emanuelsson C, et al. Endogenous kynurenic acid disrupts prepulse inhibition. Biol Psychiatry 2004 Aug 15; 56(4): 255–60PubMedCrossRef Erhardt S, Schwieler L, Emanuelsson C, et al. Endogenous kynurenic acid disrupts prepulse inhibition. Biol Psychiatry 2004 Aug 15; 56(4): 255–60PubMedCrossRef
55.
Zurück zum Zitat Erhardt S, Engberg G. Excitation of nigral dopamine neurons by the GABA(A) receptor agonist muscimol is mediated via release of glutamate. Life Sci 2000 Sep 1; 67(15): 1901–11PubMedCrossRef Erhardt S, Engberg G. Excitation of nigral dopamine neurons by the GABA(A) receptor agonist muscimol is mediated via release of glutamate. Life Sci 2000 Sep 1; 67(15): 1901–11PubMedCrossRef
56.
Zurück zum Zitat Erhardt S, Engberg G. Increased phasic activity of dopaminergic neurones in the rat ventral tegmental area following pharmacologically elevated levels of endogenous kynurenic acid. Acta Physiol Scand 2002 May; 175(1): 45–53PubMedCrossRef Erhardt S, Engberg G. Increased phasic activity of dopaminergic neurones in the rat ventral tegmental area following pharmacologically elevated levels of endogenous kynurenic acid. Acta Physiol Scand 2002 May; 175(1): 45–53PubMedCrossRef
57.
Zurück zum Zitat Nilsson LK, Schwieler L, Engberg G, et al. Activation of noradrenergic locus coeruleus neurons by clozapine and haloperidol: involvement of glutamatergic mechanisms. Int J Neuropsychopharmacol 2005; 8(3): 329–39PubMedCrossRef Nilsson LK, Schwieler L, Engberg G, et al. Activation of noradrenergic locus coeruleus neurons by clozapine and haloperidol: involvement of glutamatergic mechanisms. Int J Neuropsychopharmacol 2005; 8(3): 329–39PubMedCrossRef
58.
Zurück zum Zitat Nilsson LK, Linderholm KR, Erhardt S. Subchronic treatment with kynurenine and probenecid: effects on prepulse inhibition and firing of midbrain dopamine neurons. J Neural Transm 2006 May; 113(5): 557–71PubMedCrossRef Nilsson LK, Linderholm KR, Erhardt S. Subchronic treatment with kynurenine and probenecid: effects on prepulse inhibition and firing of midbrain dopamine neurons. J Neural Transm 2006 May; 113(5): 557–71PubMedCrossRef
59.
Zurück zum Zitat Erhardt S, Schwieler L, Engberg G. Excitatory and inhibitory responses of dopamine neurons in the ventral tegmental area to nicotine. Synapse 2002 Mar 15; 43(4): 227–37PubMedCrossRef Erhardt S, Schwieler L, Engberg G. Excitatory and inhibitory responses of dopamine neurons in the ventral tegmental area to nicotine. Synapse 2002 Mar 15; 43(4): 227–37PubMedCrossRef
60.
Zurück zum Zitat Schwarcz R, Du F, Schmidt W, et al. Kynurenic acid: a potential pathogen in brain disorders. Ann N Y Acad Sci 1992 May 11; 648: 140–53PubMedCrossRef Schwarcz R, Du F, Schmidt W, et al. Kynurenic acid: a potential pathogen in brain disorders. Ann N Y Acad Sci 1992 May 11; 648: 140–53PubMedCrossRef
61.
Zurück zum Zitat Stone TW. Kynurenines in the CNS: from endogenous obscurity to therapeutic importance. Prog Neurobiol 2001 Jun; 64(2): 185–218PubMedCrossRef Stone TW. Kynurenines in the CNS: from endogenous obscurity to therapeutic importance. Prog Neurobiol 2001 Jun; 64(2): 185–218PubMedCrossRef
62.
Zurück zum Zitat Schwieler L, Linderholm KR, Nilsson-Todd LK, et al. Clozapine interacts with the glycine site of the NMDA receptor: electrophysiological studies of dopamine neurons in the rat ventral tegmental area. Life Sci 2008; 83(5–6): 170–5PubMedCrossRef Schwieler L, Linderholm KR, Nilsson-Todd LK, et al. Clozapine interacts with the glycine site of the NMDA receptor: electrophysiological studies of dopamine neurons in the rat ventral tegmental area. Life Sci 2008; 83(5–6): 170–5PubMedCrossRef
63.
Zurück zum Zitat Curatolo L, Caccia C, Speciale C, et al. Modulation of extracellular kynurenic acid content by excitatory amino acids in primary cultures of rat astrocytes. Adv Exp Med Biol 1996; 398: 273–6PubMedCrossRef Curatolo L, Caccia C, Speciale C, et al. Modulation of extracellular kynurenic acid content by excitatory amino acids in primary cultures of rat astrocytes. Adv Exp Med Biol 1996; 398: 273–6PubMedCrossRef
64.
Zurück zum Zitat Guillemin GJ, Kerr SJ, Smythe GA, et al. Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem 2001 Aug; 78(4): 842–53PubMedCrossRef Guillemin GJ, Kerr SJ, Smythe GA, et al. Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem 2001 Aug; 78(4): 842–53PubMedCrossRef
65.
Zurück zum Zitat Kiss C, Ceresoli-Borroni G, Guidetti P, et al. Kynurenate production by cultured human astrocytes. J Neural Transm 2003 Jan; 11(1): 1–14 Kiss C, Ceresoli-Borroni G, Guidetti P, et al. Kynurenate production by cultured human astrocytes. J Neural Transm 2003 Jan; 11(1): 1–14
66.
Zurück zum Zitat Coyle JT, Schwarcz R. Mind glue: implications of glial cell biology for psychiatry. Arch Gen Psychiatry 2000 Jan; 57(1): 90–3PubMedCrossRef Coyle JT, Schwarcz R. Mind glue: implications of glial cell biology for psychiatry. Arch Gen Psychiatry 2000 Jan; 57(1): 90–3PubMedCrossRef
67.
Zurück zum Zitat Newman EA. New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci 2003 Oct; 26(10): 536–42PubMedCrossRef Newman EA. New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci 2003 Oct; 26(10): 536–42PubMedCrossRef
68.
Zurück zum Zitat Rassoulpour A, Wu HQ, Ferre S, et al. Nanomolar concentrations of kynurenic acid reduce extracellular dopamine levels in the striatum. J Neurochem 2005 May; 93(3): 762–5PubMedCrossRef Rassoulpour A, Wu HQ, Ferre S, et al. Nanomolar concentrations of kynurenic acid reduce extracellular dopamine levels in the striatum. J Neurochem 2005 May; 93(3): 762–5PubMedCrossRef
69.
Zurück zum Zitat Linderholm KR, Andersson A, Olsson S, et al. Activation of rat ventral tegmental area dopamine neurons by endogenous kynurenic acid: a pharmacological analysis. Neuro-pharmacology 2007 Dec; 53(8): 918–24 Linderholm KR, Andersson A, Olsson S, et al. Activation of rat ventral tegmental area dopamine neurons by endogenous kynurenic acid: a pharmacological analysis. Neuro-pharmacology 2007 Dec; 53(8): 918–24
70.
Zurück zum Zitat French ED, Mura A, Wang T. MK-801, phencyclidine (PCP), and PCP-like drugs increase burst firing in rat A10 dopamine neurons: comparison to competitive NMDA antagonists. Synapse 1993 Feb; 13(2): 108–16PubMedCrossRef French ED, Mura A, Wang T. MK-801, phencyclidine (PCP), and PCP-like drugs increase burst firing in rat A10 dopamine neurons: comparison to competitive NMDA antagonists. Synapse 1993 Feb; 13(2): 108–16PubMedCrossRef
71.
Zurück zum Zitat French ED. Phencyclidine and the midbrain dopamine system: electrophysiology and behavior. Neurotoxicol Teratol 1994 Jul–Aug; 16(4): 355–62PubMedCrossRef French ED. Phencyclidine and the midbrain dopamine system: electrophysiology and behavior. Neurotoxicol Teratol 1994 Jul–Aug; 16(4): 355–62PubMedCrossRef
72.
Zurück zum Zitat Baran H, Jellinger K, Deecke L. Kynurenine metabolism in Alzheimer’s disease. J Neural Transm 1999; 106(2): 165–81PubMedCrossRef Baran H, Jellinger K, Deecke L. Kynurenine metabolism in Alzheimer’s disease. J Neural Transm 1999; 106(2): 165–81PubMedCrossRef
73.
Zurück zum Zitat Ogawa T, Matson WR, Beal MF, et al. Kynurenine pathway abnormalities in Parkinson’s disease. Neurology 1992 Sep; 4(9): 1702–6CrossRef Ogawa T, Matson WR, Beal MF, et al. Kynurenine pathway abnormalities in Parkinson’s disease. Neurology 1992 Sep; 4(9): 1702–6CrossRef
74.
Zurück zum Zitat Beal MF, Matson WR, Storey E, et al. Kynurenic acid concentrations are reduced in Huntington’s disease cerebral cortex. J Neurol Sci 1992 Mar; 108(1): 80–7PubMedCrossRef Beal MF, Matson WR, Storey E, et al. Kynurenic acid concentrations are reduced in Huntington’s disease cerebral cortex. J Neurol Sci 1992 Mar; 108(1): 80–7PubMedCrossRef
75.
Zurück zum Zitat Yamamoto H, Murakami H, Horiguchi K, et al. Studies on cerebrospinal fluid kynurenic acid concentrations in epileptic children. Brain Dev 1995 Sep–Oct; 17(5): 327–9PubMedCrossRef Yamamoto H, Murakami H, Horiguchi K, et al. Studies on cerebrospinal fluid kynurenic acid concentrations in epileptic children. Brain Dev 1995 Sep–Oct; 17(5): 327–9PubMedCrossRef
76.
Zurück zum Zitat Ilzecka J, Kocki T, Stelmasiak Z, et al. Endogenous protectant kynurenic acid in amyotrophic lateral sclerosis. Acta Neurol Scand 2003 Jun; 107(6): 412–8PubMedCrossRef Ilzecka J, Kocki T, Stelmasiak Z, et al. Endogenous protectant kynurenic acid in amyotrophic lateral sclerosis. Acta Neurol Scand 2003 Jun; 107(6): 412–8PubMedCrossRef
77.
Zurück zum Zitat Demitrack MA, Heyes MP, Altemus M, et al. Cerebrospinal fluid levels of kynurenine pathway metabolites in patients with eating disorders: relation to clinical and biochemical variable. Biol Psychiatry 1995 Apr 15; 37(8): 512–20PubMedCrossRef Demitrack MA, Heyes MP, Altemus M, et al. Cerebrospinal fluid levels of kynurenine pathway metabolites in patients with eating disorders: relation to clinical and biochemical variable. Biol Psychiatry 1995 Apr 15; 37(8): 512–20PubMedCrossRef
78.
Zurück zum Zitat Erhardt S, Blennow K, Nordin C, et al. Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci Lett 2001 Nov 2; 313(1–2): 96–8PubMedCrossRef Erhardt S, Blennow K, Nordin C, et al. Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci Lett 2001 Nov 2; 313(1–2): 96–8PubMedCrossRef
79.
Zurück zum Zitat Nilsson LK, Linderholm KR, Engberg G, et al. Elevated levels of kynurenic acid in the cerebrospinal fluid of male patients with schizophrenia. Schizophr Res 2005 Dec 15; 80(2–3): 315–22PubMedCrossRef Nilsson LK, Linderholm KR, Engberg G, et al. Elevated levels of kynurenic acid in the cerebrospinal fluid of male patients with schizophrenia. Schizophr Res 2005 Dec 15; 80(2–3): 315–22PubMedCrossRef
80.
Zurück zum Zitat Schwarcz R, Rassoulpour A, Wu HQ, et al. Increased cortical kynurenate content in schizophrenia. Biol Psychiatry 2001 Oct 1; 5(7): 521–30CrossRef Schwarcz R, Rassoulpour A, Wu HQ, et al. Increased cortical kynurenate content in schizophrenia. Biol Psychiatry 2001 Oct 1; 5(7): 521–30CrossRef
81.
Zurück zum Zitat Muller N, Schwarz M. Schizophrenia as an inflammation-mediated dysbalance of glutamatergic neurotransmission. Neurotox Res 2006 Oct; 10(2): 131–48PubMedCrossRef Muller N, Schwarz M. Schizophrenia as an inflammation-mediated dysbalance of glutamatergic neurotransmission. Neurotox Res 2006 Oct; 10(2): 131–48PubMedCrossRef
82.
Zurück zum Zitat Swartz KJ, Matson WR, MacGarvey U, et al. Measurement of kynurenic acid in mammalian brain extracts and cerebrospinal fluid by high-performance liquid chromato-graphy with fluorometric and coulometric electrode array detection. Anal Biochem 1990 Mar; 185(2): 363–76PubMedCrossRef Swartz KJ, Matson WR, MacGarvey U, et al. Measurement of kynurenic acid in mammalian brain extracts and cerebrospinal fluid by high-performance liquid chromato-graphy with fluorometric and coulometric electrode array detection. Anal Biochem 1990 Mar; 185(2): 363–76PubMedCrossRef
83.
Zurück zum Zitat Carlsson A, Waters N, Holm-Waters S, et al. Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 2001; 41: 237–60PubMedCrossRef Carlsson A, Waters N, Holm-Waters S, et al. Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 2001; 41: 237–60PubMedCrossRef
84.
Zurück zum Zitat Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 1991 Oct; 148(10): 1301–8PubMed Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 1991 Oct; 148(10): 1301–8PubMed
85.
Zurück zum Zitat Albers GW, Clark WM, Atkinson RP, et al. Dose escalation study of the NMDA glycine-site antagonist licostinel in acute ischemic stroke. Stroke 1999 Mar; 30(3): 508–13PubMedCrossRef Albers GW, Clark WM, Atkinson RP, et al. Dose escalation study of the NMDA glycine-site antagonist licostinel in acute ischemic stroke. Stroke 1999 Mar; 30(3): 508–13PubMedCrossRef
86.
Zurück zum Zitat Geyer MA, Krebs-Thomson K, Braff DL, et al. Pharmacological studies of prepulse inhibition models of sensori-motor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl) 2001 Jul; 156(2–3): 117–54CrossRef Geyer MA, Krebs-Thomson K, Braff DL, et al. Pharmacological studies of prepulse inhibition models of sensori-motor gating deficits in schizophrenia: a decade in review. Psychopharmacology (Berl) 2001 Jul; 156(2–3): 117–54CrossRef
87.
Zurück zum Zitat Grace AA. Regulation of spontaneous activity and oscillatory spike firing in rat midbrain dopamine neurons recorded in vitro. Synapse 1991 Mar; 7(3): 221–34PubMedCrossRef Grace AA. Regulation of spontaneous activity and oscillatory spike firing in rat midbrain dopamine neurons recorded in vitro. Synapse 1991 Mar; 7(3): 221–34PubMedCrossRef
88.
Zurück zum Zitat Davis KL, Kahn RS, Ko G, et al. Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 1991 Nov; 14(11): 1474–86 Davis KL, Kahn RS, Ko G, et al. Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 1991 Nov; 14(11): 1474–86
89.
Zurück zum Zitat Jentsch JD, Roth RH. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1999 Mar; 20(3): 201–25PubMedCrossRef Jentsch JD, Roth RH. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1999 Mar; 20(3): 201–25PubMedCrossRef
90.
Zurück zum Zitat Abi-Dargham A, Laruelle M. Mechanisms of action of second generation antipsychotic drugs in schizophrenia: insights from brain imaging studies. Eur Psychiatry 2005 Jan; 20(1): 15–27PubMedCrossRef Abi-Dargham A, Laruelle M. Mechanisms of action of second generation antipsychotic drugs in schizophrenia: insights from brain imaging studies. Eur Psychiatry 2005 Jan; 20(1): 15–27PubMedCrossRef
91.
Zurück zum Zitat Olsson SK, Andersson AS, Linderholm KR, et al. Elevated levels of kynurenic acid change the dopaminergic response to amphetamine: implications for schizophrenia. Int J Neuropsychopharmacol. Epub 2008 Sep 17 Olsson SK, Andersson AS, Linderholm KR, et al. Elevated levels of kynurenic acid change the dopaminergic response to amphetamine: implications for schizophrenia. Int J Neuropsychopharmacol. Epub 2008 Sep 17
92.
Zurück zum Zitat Laruelle M, Abi-Dargham A. Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies. J Psychopharmacol 1999 Dec; 13(4): 358–71PubMedCrossRef Laruelle M, Abi-Dargham A. Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies. J Psychopharmacol 1999 Dec; 13(4): 358–71PubMedCrossRef
93.
Zurück zum Zitat Nilsson LK, Nordin C, Jönsson EG, et al. Cerebrospinal fluid kynurenic acid in male patients with schizophrenia: correlation with monoamine metabolites. Acta Neuropsychiatrica 2007; 19(1): 45–52CrossRef Nilsson LK, Nordin C, Jönsson EG, et al. Cerebrospinal fluid kynurenic acid in male patients with schizophrenia: correlation with monoamine metabolites. Acta Neuropsychiatrica 2007; 19(1): 45–52CrossRef
94.
Zurück zum Zitat Nilsson LK, Nordin C, Jonsson EG, et al. Cerebrospinal fluid kynurenic acid in male and female controls: correlation with monoamine metabolites and influences of confounding factors. J Psychiatr Res 2007 Jan–Feb; 41(1–2): 144–51PubMedCrossRef Nilsson LK, Nordin C, Jonsson EG, et al. Cerebrospinal fluid kynurenic acid in male and female controls: correlation with monoamine metabolites and influences of confounding factors. J Psychiatr Res 2007 Jan–Feb; 41(1–2): 144–51PubMedCrossRef
95.
Zurück zum Zitat Miller CL, Llenos IC, Dulay JR, et al. Expression of the kynurenine pathway enzyme tryptophan 2,3-dioxygenase is increased in the frontal cortex of individuals with schizophrenia. Neurobiol Dis 2004 Apr; 15(3): 618–29PubMedCrossRef Miller CL, Llenos IC, Dulay JR, et al. Expression of the kynurenine pathway enzyme tryptophan 2,3-dioxygenase is increased in the frontal cortex of individuals with schizophrenia. Neurobiol Dis 2004 Apr; 15(3): 618–29PubMedCrossRef
96.
Zurück zum Zitat Roberts GW, Colter N, Lofthouse R, et al. Gliosis in schizophrenia: a survey. Biol Psychiatry 1986 Sep; 21(11): 1043–50PubMedCrossRef Roberts GW, Colter N, Lofthouse R, et al. Gliosis in schizophrenia: a survey. Biol Psychiatry 1986 Sep; 21(11): 1043–50PubMedCrossRef
97.
Zurück zum Zitat Roberts GW, Colter N, Lofthouse R, et al. Is there gliosis in schizophrenia? Investigation of the temporal lobe. Biol Psychiatry 1987 Dec; 22(12): 1459–68PubMedCrossRef Roberts GW, Colter N, Lofthouse R, et al. Is there gliosis in schizophrenia? Investigation of the temporal lobe. Biol Psychiatry 1987 Dec; 22(12): 1459–68PubMedCrossRef
98.
Zurück zum Zitat Arnold SE, Franz BR, Trojanowski JQ, et al. Glial fibrillary acidic protein-immunoreactive astrocytosis in elderly patients with schizophrenia and dementia. Acta Neuropathol 1996; 91(3): 269–77PubMedCrossRef Arnold SE, Franz BR, Trojanowski JQ, et al. Glial fibrillary acidic protein-immunoreactive astrocytosis in elderly patients with schizophrenia and dementia. Acta Neuropathol 1996; 91(3): 269–77PubMedCrossRef
99.
Zurück zum Zitat Arnold SE, Trojanowski JQ, Gur RE, et al. Absence of neurodegeneration and neural injury in the cerebral cortex in a sample of elderly patients with schizophrenia. Arch Gen Psychiatry 1998 Mar; 55(3): 225–32PubMedCrossRef Arnold SE, Trojanowski JQ, Gur RE, et al. Absence of neurodegeneration and neural injury in the cerebral cortex in a sample of elderly patients with schizophrenia. Arch Gen Psychiatry 1998 Mar; 55(3): 225–32PubMedCrossRef
100.
Zurück zum Zitat Falkai P, Honer WG, David S, et al. No evidence for astrogliosis in brains of schizophrenic patients: a post-mortem study. Neuropathol Appl Neurobiol 1999 Feb; 25(1): 48–53PubMedCrossRef Falkai P, Honer WG, David S, et al. No evidence for astrogliosis in brains of schizophrenic patients: a post-mortem study. Neuropathol Appl Neurobiol 1999 Feb; 25(1): 48–53PubMedCrossRef
101.
Zurück zum Zitat Rothermundt M, Ponath G, Glaser T, et al. S100B serum levels and long-term improvement of negative symptoms in patients with schizophrenia. Neuropsychopharmacology 2004 May; 29(5): 1004–11PubMedCrossRef Rothermundt M, Ponath G, Glaser T, et al. S100B serum levels and long-term improvement of negative symptoms in patients with schizophrenia. Neuropsychopharmacology 2004 May; 29(5): 1004–11PubMedCrossRef
102.
Zurück zum Zitat Rothermundt M, Falkai P, Ponath G, et al. Glial cell dysfunction in schizophrenia indicated by increased S100B in the CSF. Mol Psychiatry 2004 Oct; 9(10): 897–9PubMedCrossRef Rothermundt M, Falkai P, Ponath G, et al. Glial cell dysfunction in schizophrenia indicated by increased S100B in the CSF. Mol Psychiatry 2004 Oct; 9(10): 897–9PubMedCrossRef
103.
Zurück zum Zitat Buka SL, Tsuang MT, Torrey EF, et al. Maternal infections and subsequent psychosis among offspring. Arch Gen Psychiatry 2001 Nov; 58(11): 1032–7PubMedCrossRef Buka SL, Tsuang MT, Torrey EF, et al. Maternal infections and subsequent psychosis among offspring. Arch Gen Psychiatry 2001 Nov; 58(11): 1032–7PubMedCrossRef
104.
Zurück zum Zitat Mortensen PB, Norgaard-Pedersen B, Waltoft BL, et al. Toxoplasma gondii as a risk factor for early-onset schizophrenia: analysis of filter paper blood samples obtained at birth. Biol Psychiatry 2007 Mar 1; 61(5): 688–93PubMedCrossRef Mortensen PB, Norgaard-Pedersen B, Waltoft BL, et al. Toxoplasma gondii as a risk factor for early-onset schizophrenia: analysis of filter paper blood samples obtained at birth. Biol Psychiatry 2007 Mar 1; 61(5): 688–93PubMedCrossRef
105.
Zurück zum Zitat Karlsson H. Viruses and schizophrenia, connection or coincidence. Neuroreport 2003; 14(4): 535–42PubMedCrossRef Karlsson H. Viruses and schizophrenia, connection or coincidence. Neuroreport 2003; 14(4): 535–42PubMedCrossRef
106.
Zurück zum Zitat Brown AS, Begg MD, Gravenstein S, et al. Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry 2004 Aug; 61(8): 774–80PubMedCrossRef Brown AS, Begg MD, Gravenstein S, et al. Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry 2004 Aug; 61(8): 774–80PubMedCrossRef
107.
Zurück zum Zitat Fatemi SH, Reutiman TJ, Folsom TD, et al. The role of cerebellar genes in pathology of autism and schizophrenia. Cerebellum 2007 May 16: 1–16CrossRef Fatemi SH, Reutiman TJ, Folsom TD, et al. The role of cerebellar genes in pathology of autism and schizophrenia. Cerebellum 2007 May 16: 1–16CrossRef
108.
Zurück zum Zitat Asp L, Beraki S, Aronsson F, et al. Gene expression changes in brains of mice exposed to a maternal virus infection. Neuroreport 2005 Jul 13; 1(10): 1111–5CrossRef Asp L, Beraki S, Aronsson F, et al. Gene expression changes in brains of mice exposed to a maternal virus infection. Neuroreport 2005 Jul 13; 1(10): 1111–5CrossRef
109.
Zurück zum Zitat Shi L, Fatemi SH, Sidwell RW, et al. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci 2003; 23(1): 297–302PubMed Shi L, Fatemi SH, Sidwell RW, et al. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci 2003; 23(1): 297–302PubMed
110.
Zurück zum Zitat Holtze M, Asp L, Schwieler L, et al. Induction of the kynurenine pathway by neurotropic influenza A virus infection. J Neurosci Res 2008 Jul 24; 86(16): 3674–83PubMedCrossRef Holtze M, Asp L, Schwieler L, et al. Induction of the kynurenine pathway by neurotropic influenza A virus infection. J Neurosci Res 2008 Jul 24; 86(16): 3674–83PubMedCrossRef
111.
Zurück zum Zitat Morris RG, Davis S, Butcher SP. Hippocampal synaptic plasticity and NMDA receptors: a role in information storage? Philos Trans R Soc Lond B Biol Sci 1990 Aug 29; 329(1253): 187–204PubMedCrossRef Morris RG, Davis S, Butcher SP. Hippocampal synaptic plasticity and NMDA receptors: a role in information storage? Philos Trans R Soc Lond B Biol Sci 1990 Aug 29; 329(1253): 187–204PubMedCrossRef
112.
Zurück zum Zitat Oliver MW, Kessler M, Larson J, et al. Glycine site associated with the NMDA receptor modulates long-term potentiation. Synapse 1990; 5(4): 265–70PubMedCrossRef Oliver MW, Kessler M, Larson J, et al. Glycine site associated with the NMDA receptor modulates long-term potentiation. Synapse 1990; 5(4): 265–70PubMedCrossRef
113.
Zurück zum Zitat Ohno M, Yamamoto T, Watanabe S. Intrahippocampal administration of a glycine site antagonist impairs working memory performance of rats. Eur J Pharmacol 1994 Feb 21; 253(1–2): 183–7PubMedCrossRef Ohno M, Yamamoto T, Watanabe S. Intrahippocampal administration of a glycine site antagonist impairs working memory performance of rats. Eur J Pharmacol 1994 Feb 21; 253(1–2): 183–7PubMedCrossRef
114.
Zurück zum Zitat Lee I, Kesner RP. Differential contribution of NMDA receptors in hippocampal subregions to spatial working memory. Nat Neurosci 2002 Feb; 5(2): 162–8PubMedCrossRef Lee I, Kesner RP. Differential contribution of NMDA receptors in hippocampal subregions to spatial working memory. Nat Neurosci 2002 Feb; 5(2): 162–8PubMedCrossRef
115.
Zurück zum Zitat Levin ED, Simon BB. Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology (Berl) 1998 Aug; 138(3–4): 217–30CrossRef Levin ED, Simon BB. Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology (Berl) 1998 Aug; 138(3–4): 217–30CrossRef
116.
Zurück zum Zitat Heyes MP, Saito K, Crowley JS, et al. Quinolinic acid and kynurenine pathway metabolism in inflammatory and noninflammatory neurological disease. Brain 1992 Oct; 115(Pt 5): 1249–73PubMedCrossRef Heyes MP, Saito K, Crowley JS, et al. Quinolinic acid and kynurenine pathway metabolism in inflammatory and noninflammatory neurological disease. Brain 1992 Oct; 115(Pt 5): 1249–73PubMedCrossRef
117.
Zurück zum Zitat Atlas A, Gisslen M, Nordin C, et al. Acute psychotic symptoms in HIV-1 infected patients are associated with increased levels of kynurenic acid in cerebrospinal fluid. Brain Behav Immun 2007 Jan; 21(1): 86–91PubMedCrossRef Atlas A, Gisslen M, Nordin C, et al. Acute psychotic symptoms in HIV-1 infected patients are associated with increased levels of kynurenic acid in cerebrospinal fluid. Brain Behav Immun 2007 Jan; 21(1): 86–91PubMedCrossRef
119.
Zurück zum Zitat Baran H, Cairns N, Lubec B, et al. Increased kynurenic acid levels and decreased brain kynurenine aminotrans-ferase I in patients with Down syndrome. Life Sci 1996; 58(21): 1891–9PubMedCrossRef Baran H, Cairns N, Lubec B, et al. Increased kynurenic acid levels and decreased brain kynurenine aminotrans-ferase I in patients with Down syndrome. Life Sci 1996; 58(21): 1891–9PubMedCrossRef
120.
Zurück zum Zitat Chess AC, Simoni MK, Alling TE, et al. Elevations of endogenous kynurenic acid produce spatial working memory deficits. Schizophr Bull 2007 May; 33(3): 797–804PubMedCrossRef Chess AC, Simoni MK, Alling TE, et al. Elevations of endogenous kynurenic acid produce spatial working memory deficits. Schizophr Bull 2007 May; 33(3): 797–804PubMedCrossRef
121.
Zurück zum Zitat Shepard PD, Joy B, Clerkin L, et al. Micromolar brain levels of kynurenic acid are associated with a disruption of auditory sensory gating in the rat. Neuropsychopharmacology 2003 Aug; 28(8): 1454–62PubMedCrossRef Shepard PD, Joy B, Clerkin L, et al. Micromolar brain levels of kynurenic acid are associated with a disruption of auditory sensory gating in the rat. Neuropsychopharmacology 2003 Aug; 28(8): 1454–62PubMedCrossRef
122.
Zurück zum Zitat Silver H, Feldman P, Bilker W, et al. Working memory deficit as a core neuropsychological dysfunction in schizophrenia. Am J Psychiatry 2003 Oct; 160(10): 1809–16PubMedCrossRef Silver H, Feldman P, Bilker W, et al. Working memory deficit as a core neuropsychological dysfunction in schizophrenia. Am J Psychiatry 2003 Oct; 160(10): 1809–16PubMedCrossRef
126.
Zurück zum Zitat Coyle JT, Tsai G. The NMDA receptor glycine modulatory site: a therapeutic target for improving cognition and reducing negative symptoms in schizophrenia. Psychopharmacology (Berl) 2004 Jun; 174(1): 32–8CrossRef Coyle JT, Tsai G. The NMDA receptor glycine modulatory site: a therapeutic target for improving cognition and reducing negative symptoms in schizophrenia. Psychopharmacology (Berl) 2004 Jun; 174(1): 32–8CrossRef
127.
Zurück zum Zitat Goff DC, Tsai G, Levitt J, et al. A placebo-controlled trial of D-cycloserine added to conventional neuroleptics in patients with schizophrenia. Arch Gen Psychiatry 1999 Jan; 5(1): 21–7CrossRef Goff DC, Tsai G, Levitt J, et al. A placebo-controlled trial of D-cycloserine added to conventional neuroleptics in patients with schizophrenia. Arch Gen Psychiatry 1999 Jan; 5(1): 21–7CrossRef
128.
Zurück zum Zitat Schwieler L, Erhardt S. Inhibitory action of clozapine on rat ventral tegmental area dopamine neurons following increased levels of endogenous kynurenic acid. Neuropsychopharmacology 2003 Oct; 28(10): 1770–7PubMedCrossRef Schwieler L, Erhardt S. Inhibitory action of clozapine on rat ventral tegmental area dopamine neurons following increased levels of endogenous kynurenic acid. Neuropsychopharmacology 2003 Oct; 28(10): 1770–7PubMedCrossRef
129.
Zurück zum Zitat Schwieler L, Engberg G, Erhardt S. Clozapine modulates midbrain dopamine neuron firing via interaction with the NMDA receptor complex. Synapse 2004 May; 52(2): 114–22PubMedCrossRef Schwieler L, Engberg G, Erhardt S. Clozapine modulates midbrain dopamine neuron firing via interaction with the NMDA receptor complex. Synapse 2004 May; 52(2): 114–22PubMedCrossRef
130.
Zurück zum Zitat Javitt DC, Duncan L, Balla A, et al. Inhibition of system A-mediated glycine transport in cortical synaptosomes by therapeutic concentrations of clozapine: implications for mechanisms of action. Mol Psychiatry 2005 Mar; 10(3): 275–87PubMedCrossRef Javitt DC, Duncan L, Balla A, et al. Inhibition of system A-mediated glycine transport in cortical synaptosomes by therapeutic concentrations of clozapine: implications for mechanisms of action. Mol Psychiatry 2005 Mar; 10(3): 275–87PubMedCrossRef
131.
Zurück zum Zitat Pellicciari R, Rizzo RC, Costantino G, et al. Modulators of the kynurenine pathway of tryptophan metabolism: synthesis and preliminary biological evaluation of (S)-4-(ethylsulfonyl)benzoylalanine, a potent and selective kynurenine aminotransferase II (KAT II) inhibitor. ChemMedChem 2006 May; 1(5): 528–31PubMedCrossRef Pellicciari R, Rizzo RC, Costantino G, et al. Modulators of the kynurenine pathway of tryptophan metabolism: synthesis and preliminary biological evaluation of (S)-4-(ethylsulfonyl)benzoylalanine, a potent and selective kynurenine aminotransferase II (KAT II) inhibitor. ChemMedChem 2006 May; 1(5): 528–31PubMedCrossRef
133.
Zurück zum Zitat Muller N, Riedel M, Scheppach C, et al. Beneficial anti-psychotic effects of celecoxib add-on therapy compared to risperidone alone in schizophrenia. Am J Psychiatry 2002 Jun; 15(6): 1029–34CrossRef Muller N, Riedel M, Scheppach C, et al. Beneficial anti-psychotic effects of celecoxib add-on therapy compared to risperidone alone in schizophrenia. Am J Psychiatry 2002 Jun; 15(6): 1029–34CrossRef
134.
Zurück zum Zitat Muller N, Riedel M, Schwarz MJ. Psychotropic effects of COX-2 inhibitors: a possible new approach for the treatment of psychiatric disorders. Pharmacopsychiatry 2004 Nov; 37(6): 266–9PubMedCrossRef Muller N, Riedel M, Schwarz MJ. Psychotropic effects of COX-2 inhibitors: a possible new approach for the treatment of psychiatric disorders. Pharmacopsychiatry 2004 Nov; 37(6): 266–9PubMedCrossRef
Metadaten
Titel
Pharmacological Manipulation of Kynurenic Acid
Potential in the Treatment of Psychiatric Disorders
verfasst von
Dr Sophie Erhardt
Sara K. Olsson
Göran Engberg
Publikationsdatum
01.02.2009
Verlag
Springer International Publishing
Erschienen in
CNS Drugs / Ausgabe 2/2009
Print ISSN: 1172-7047
Elektronische ISSN: 1179-1934
DOI
https://doi.org/10.2165/00023210-200923020-00001

Weitere Artikel der Ausgabe 2/2009

CNS Drugs 2/2009 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.