Skip to main content
Erschienen in: Lasers in Medical Science 3/2016

01.04.2016 | Original Article

Photodynamic inactivation of Klebsiella pneumoniae biofilms and planktonic cells by 5-aminolevulinic acid and 5-aminolevulinic acid methyl ester

verfasst von: Chengcheng Liu, Yingli Zhou, Li Wang, Lei Han, Jin’e Lei, Hafiz Muhammad Ishaq, Sean P. Nair, Jiru Xu

Erschienen in: Lasers in Medical Science | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Abstract

The treatment of Klebsiella pneumoniae, particularly extended-spectrum β-lactamase (ESBL)-producing K. pneumoniae, is currently a great challenge. Photodynamic antimicrobial chemotherapy is a promising approach for killing antibiotic-resistant bacteria. The aim of this study was to evaluate the capacity of 5-aminolevulinic acid (5-ALA) and its derivative 5-ALA methyl ester (MAL) in the presence of white light to cause photodynamic inactivation (PDI) of K. pneumoniae planktonic and biofilm cells. In the presence of white light, 5-ALA and MAL inactivated planktonic cells in a concentration-dependent manner. Biofilms were also sensitive to 5-ALA and MAL-mediated PDI. The mechanisms by which 5-ALA and MAL caused PDI of ESBL-producing K. pneumonia were also investigated. Exposure of K. pneumonia to light in the presence of either 5-ALA or MAL induced cleavage of genomic DNA and the rapid release of intracellular biopolymers. Intensely denatured cytoplasmic contents and aggregated ribosomes were also detected by transmission electron microscopy. Scanning electron microscopy showed that PDI of biofilms caused aggregated bacteria to detach and that the bacterial cell envelope was damaged. This study provides insights into 5-ALA and MAL-mediated PDI of ESBL-producing K. pneumoniae.
Literatur
2.
Zurück zum Zitat Pitout JDD, Laupland KB (2008) Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 8(3):159–166CrossRefPubMed Pitout JDD, Laupland KB (2008) Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 8(3):159–166CrossRefPubMed
3.
Zurück zum Zitat Bradford PA (2001) Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14(4):933–951CrossRefPubMedPubMedCentral Bradford PA (2001) Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14(4):933–951CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Vardakas KZ et al (2012) Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum β-lactamases: a systematic review and meta-analysis. J Antimicrob Chemother. doi:10.1093/jac/dks301 PubMed Vardakas KZ et al (2012) Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum β-lactamases: a systematic review and meta-analysis. J Antimicrob Chemother. doi:10.​1093/​jac/​dks301 PubMed
5.
Zurück zum Zitat Denis TGS et al (2011) All you need is light: antimicrobial photoinactivation as an evolving and emerging discovery strategy against infectious disease. Virulence 2(6):509–520CrossRef Denis TGS et al (2011) All you need is light: antimicrobial photoinactivation as an evolving and emerging discovery strategy against infectious disease. Virulence 2(6):509–520CrossRef
8.
Zurück zum Zitat Wood S et al (2006) Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms. J Antimicrob Chemother 57(4):680–684CrossRefPubMed Wood S et al (2006) Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms. J Antimicrob Chemother 57(4):680–684CrossRefPubMed
9.
Zurück zum Zitat Komerik N, Wilson M (2002) Factors influencing the susceptibility of gram-negative bacteria to toluidine blue O-mediated lethal photosensitization. J Appl Microbiol 92(4):618–623CrossRefPubMed Komerik N, Wilson M (2002) Factors influencing the susceptibility of gram-negative bacteria to toluidine blue O-mediated lethal photosensitization. J Appl Microbiol 92(4):618–623CrossRefPubMed
10.
Zurück zum Zitat Haidaris CG et al (2013) Effective photodynamic therapy against microbial populations in human deep tissue abscess aspirates. Laser Surg Med 45(8):509–516 Haidaris CG et al (2013) Effective photodynamic therapy against microbial populations in human deep tissue abscess aspirates. Laser Surg Med 45(8):509–516
11.
Zurück zum Zitat Rossoni RD et al (2010) Comparison of the efficacy of rose bengal and erythrosine in photodynamic therapy against Enterobacteriaceae. Laser Med Sci 25(4):581–596CrossRef Rossoni RD et al (2010) Comparison of the efficacy of rose bengal and erythrosine in photodynamic therapy against Enterobacteriaceae. Laser Med Sci 25(4):581–596CrossRef
12.
Zurück zum Zitat Harris F, Pierpoint L (2012) Photodynamic therapy based on 5-aminolevulinic acid and its use as an antimicrobial agent. Med Res Rev 32(6):1292–1327CrossRefPubMed Harris F, Pierpoint L (2012) Photodynamic therapy based on 5-aminolevulinic acid and its use as an antimicrobial agent. Med Res Rev 32(6):1292–1327CrossRefPubMed
13.
Zurück zum Zitat Li X et al (2013) Effects of 5-aminolevulinic acid-mediated photodynamic therapy on antibiotic-resistant staphylococcal biofilm: an in vitro study. J Surg Res 184(2):1013–1021CrossRefPubMed Li X et al (2013) Effects of 5-aminolevulinic acid-mediated photodynamic therapy on antibiotic-resistant staphylococcal biofilm: an in vitro study. J Surg Res 184(2):1013–1021CrossRefPubMed
14.
Zurück zum Zitat Fotinos N et al (2008) Effects on gram-negative and gram-positive bacteria mediated by 5-aminolevulinic acid and 5-aminolevulinic acid derivatives. Animicrob Agents Chemother 52(4):1366–1373CrossRef Fotinos N et al (2008) Effects on gram-negative and gram-positive bacteria mediated by 5-aminolevulinic acid and 5-aminolevulinic acid derivatives. Animicrob Agents Chemother 52(4):1366–1373CrossRef
15.
Zurück zum Zitat Nitzan Y et al (2004) ALA induced photodynamic effects on gram positive and negative bacteria. Photochem Photobiol Sci 3:430–435CrossRefPubMed Nitzan Y et al (2004) ALA induced photodynamic effects on gram positive and negative bacteria. Photochem Photobiol Sci 3:430–435CrossRefPubMed
16.
Zurück zum Zitat Yow CMN, Fung K, Wong KC (2011) Photodynamic inactivation of multi-drug resistant pathogens in Hong Kong. Hong Kong Med J 17(Suppl 2):S24–28 Yow CMN, Fung K, Wong KC (2011) Photodynamic inactivation of multi-drug resistant pathogens in Hong Kong. Hong Kong Med J 17(Suppl 2):S24–28
17.
Zurück zum Zitat Peng Z et al (2011) Quaternized chitosan inhibits icaA transcription and biofilm formation by Staphylococcus on a titanium surface. Antimicrob Agents Chemother 55(2):860–866CrossRefPubMedPubMedCentral Peng Z et al (2011) Quaternized chitosan inhibits icaA transcription and biofilm formation by Staphylococcus on a titanium surface. Antimicrob Agents Chemother 55(2):860–866CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Chen CZ, Cooper SL (2002) Interactions between dendrimer biocides and bacterial membranes. Biomaterials 23(16):3359–3368CrossRefPubMed Chen CZ, Cooper SL (2002) Interactions between dendrimer biocides and bacterial membranes. Biomaterials 23(16):3359–3368CrossRefPubMed
19.
Zurück zum Zitat Je JY, Kim SK (2006) Antimicrobial action of novel chitin derivative. Biochim Biophys Acta 1760(1):104–109CrossRefPubMed Je JY, Kim SK (2006) Antimicrobial action of novel chitin derivative. Biochim Biophys Acta 1760(1):104–109CrossRefPubMed
20.
Zurück zum Zitat Spesia MB et al (2009) Mechanistic insight of the photodynamic inactivation of Escherichia coli by a tetracationic zinc(II) phthalocyanine derivative. Photodiagn Photodyn Ther 6(1):52–61CrossRef Spesia MB et al (2009) Mechanistic insight of the photodynamic inactivation of Escherichia coli by a tetracationic zinc(II) phthalocyanine derivative. Photodiagn Photodyn Ther 6(1):52–61CrossRef
21.
Zurück zum Zitat Spesia MB, Duraniti EN (2013) Photodynamic inactivation mechanism of Streptococcus mitis sensitized by zinc (II) 2, 9, 16, 23-tetrakis [2-(N, N, N-trimethylamino) ethoxy] phthalocyanine. J Photochem Photobiol B 125(5):179–187CrossRefPubMed Spesia MB, Duraniti EN (2013) Photodynamic inactivation mechanism of Streptococcus mitis sensitized by zinc (II) 2, 9, 16, 23-tetrakis [2-(N, N, N-trimethylamino) ethoxy] phthalocyanine. J Photochem Photobiol B 125(5):179–187CrossRefPubMed
22.
Zurück zum Zitat Caminos DA et al (2008) Mechanisms of Escherichia coli photodynamic inactivation by an amphiphilic tricationic porphyrin and 5, 10, 15, 20-tetra (4-N, N, N-trimethylammoniumphenyl) porphyrin. Photochem Photobiol Sci 7:1071–1078CrossRefPubMed Caminos DA et al (2008) Mechanisms of Escherichia coli photodynamic inactivation by an amphiphilic tricationic porphyrin and 5, 10, 15, 20-tetra (4-N, N, N-trimethylammoniumphenyl) porphyrin. Photochem Photobiol Sci 7:1071–1078CrossRefPubMed
23.
Zurück zum Zitat Fotinos N et al (2006) 5-Aminolevulinic acid derivatives in photomedicine: characteristics, application and perspectives. Photochem Photobiol 82(4):994–1015CrossRefPubMed Fotinos N et al (2006) 5-Aminolevulinic acid derivatives in photomedicine: characteristics, application and perspectives. Photochem Photobiol 82(4):994–1015CrossRefPubMed
24.
Zurück zum Zitat Demidova T, Hamblin M (2005) Effects of cell-photosensitizer binding and cell density on microbial photoinactivation. Antimicrob Agents Chemother 49(6):2329–2335CrossRefPubMedPubMedCentral Demidova T, Hamblin M (2005) Effects of cell-photosensitizer binding and cell density on microbial photoinactivation. Antimicrob Agents Chemother 49(6):2329–2335CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Sutherland IW (2001) The biofilm matrix-an immobilized but dynamic microbial environment. Trends Microbiol 9(5):222–227CrossRefPubMed Sutherland IW (2001) The biofilm matrix-an immobilized but dynamic microbial environment. Trends Microbiol 9(5):222–227CrossRefPubMed
26.
Zurück zum Zitat Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135–138CrossRefPubMed Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358(9276):135–138CrossRefPubMed
27.
Zurück zum Zitat Lee C et al (2004) 5-Aminolaevulinic acid mediated photodynamic antimicrobial chemotherapy on Pseudomonas aeruginosa planktonic and biofilm cultures. J Photochem Photobiol B 75(1–2):21–25CrossRefPubMed Lee C et al (2004) 5-Aminolaevulinic acid mediated photodynamic antimicrobial chemotherapy on Pseudomonas aeruginosa planktonic and biofilm cultures. J Photochem Photobiol B 75(1–2):21–25CrossRefPubMed
28.
Zurück zum Zitat Mah TFC, Toole GAO’ (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9(1):34–39CrossRefPubMed Mah TFC, Toole GAO’ (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9(1):34–39CrossRefPubMed
29.
Zurück zum Zitat Gad F et al (2004) Effects of growth phase and extracellular slime on photodynamic inactivation of gram-positive pathogenic bacteria. Antimicrob Agents Chemother 48(6):2173–2178CrossRefPubMedPubMedCentral Gad F et al (2004) Effects of growth phase and extracellular slime on photodynamic inactivation of gram-positive pathogenic bacteria. Antimicrob Agents Chemother 48(6):2173–2178CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Bertoloni G et al (2000) Photosensitizing activity of hematoporphyrin on Staphylococcus aureus cells. Biochim Biophys Acta 1475(2):169–174CrossRefPubMed Bertoloni G et al (2000) Photosensitizing activity of hematoporphyrin on Staphylococcus aureus cells. Biochim Biophys Acta 1475(2):169–174CrossRefPubMed
31.
Zurück zum Zitat Capella M, Coelho AM, Menezes S (1996) Effect of glucose on photodynamic action of methylene blue in Escherichia coli cells. Photochem Photobiol 64(1):205–210CrossRefPubMed Capella M, Coelho AM, Menezes S (1996) Effect of glucose on photodynamic action of methylene blue in Escherichia coli cells. Photochem Photobiol 64(1):205–210CrossRefPubMed
32.
Zurück zum Zitat Choi SS, Lee HK, Chae HS (2012) Comparison of in vitro photodynamic antimicrobial activity of protoporphyrin IX between endoscopic white light and newly developed narrowband endoscopic light against Helicobacter pylori 26695. J Photochem Photobiol B 117(5):55–60CrossRefPubMed Choi SS, Lee HK, Chae HS (2012) Comparison of in vitro photodynamic antimicrobial activity of protoporphyrin IX between endoscopic white light and newly developed narrowband endoscopic light against Helicobacter pylori 26695. J Photochem Photobiol B 117(5):55–60CrossRefPubMed
33.
Zurück zum Zitat Nitzan Y, Ashkenazi H (2001) Photoinactivation of Acinetobacter baumannii and Escherichia coli B by cationic hydrophilic porphyrin at various light wavelengths. Curr Microbiol 42(6):408–414CrossRefPubMed Nitzan Y, Ashkenazi H (2001) Photoinactivation of Acinetobacter baumannii and Escherichia coli B by cationic hydrophilic porphyrin at various light wavelengths. Curr Microbiol 42(6):408–414CrossRefPubMed
Metadaten
Titel
Photodynamic inactivation of Klebsiella pneumoniae biofilms and planktonic cells by 5-aminolevulinic acid and 5-aminolevulinic acid methyl ester
verfasst von
Chengcheng Liu
Yingli Zhou
Li Wang
Lei Han
Jin’e Lei
Hafiz Muhammad Ishaq
Sean P. Nair
Jiru Xu
Publikationsdatum
01.04.2016
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 3/2016
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-016-1891-1

Weitere Artikel der Ausgabe 3/2016

Lasers in Medical Science 3/2016 Zur Ausgabe