Skip to main content
Erschienen in: Lasers in Medical Science 1/2023

01.12.2023 | Original Article

Photothermal treatment of glioblastoma cells based on plasmonic nanoparticles

verfasst von: Bahareh Khaksar Jalali, Somayeh Salmani Shik, Latifeh Karimzadeh–Bardeei, Esmaeil Heydari, Mohammad Hossein Majles Ara

Erschienen in: Lasers in Medical Science | Ausgabe 1/2023

Einloggen, um Zugang zu erhalten

Abstract

Photothermal therapy based on plasmonic gold nanoparticles is considered a promising approach for cancer treatment. Here, we investigate the in vitro photothermal effect of 30-nm gold nanoparticles, optically excited with a 532-nm continuous laser, on the U87MG malignant glioblastoma cells, and demonstrate the role of nanoparticle concentration and exposure power density in achieving its optimum performance. Laser-induced collective oscillation of electrons in plasmonic gold nanoparticles is employed to generate localized heat to denature tumor cells. Optical spectroscopy is used to measure the plasmonic band of nanoparticles and select the excitation laser light. The MTT assay for the IC50 viability assessment is performed to evaluate the live and metabolically active cells after treatment with plasmonic nanoparticles. The quantitative data is statistically analyzed using analysis of variance followed by Tukey’s post hoc test. The viability test demonstrates that the metabolic activity of treated U87MG was decreased compared with untreated cells, leading to the determination of the IC50 as 92 \(\frac{\upmu \textrm{g}}{\textrm{mL}}\). A 532-nm laser light was selected for the excitation of gold nanoparticles since the maximum plasmonic band is at 524 nm. The viability tests show that although cells have natural photothermal agents, their absorption efficiency is very low; therefore, the laser-induced plasmonic effect is necessary to observe photothermal effects. The optimal condition was achieved when the nanoparticle concentration was 92 \(\frac{\upmu \textrm{g}}{\textrm{mL}}\), and the exposure power density was 96 \(\frac{\textrm{mW}}{{\textrm{cm}}^2}\). Thus, it is demonstrated that plasmonic nanoparticle concentration and laser exposure power density are among the key parameters in the photothermal treatment of cancer cells, and higher concentrations of Au-NPs and laser power density lead to less cell viability in the selected range due to the excitation of gold nanoparticles’ localized surface plasmon resonance.
Literatur
1.
Zurück zum Zitat Beliveau A, Thomas G, Gong J, Wen Q, Jain A (2016) Aligned nanotopography promotes a migratory state in glioblastoma multiforme tumor cells. Sci Rep 6:26143CrossRefPubMedPubMedCentral Beliveau A, Thomas G, Gong J, Wen Q, Jain A (2016) Aligned nanotopography promotes a migratory state in glioblastoma multiforme tumor cells. Sci Rep 6:26143CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Agnihotri S, Burrell KE, Wolf A, Jalali S, Hawkins C, Rutka JT, Zadeh G (2013) Glioblastoma, a brief review of history, molecular genetics, animal models and novel therapeutic strategies. Arch Immunol Ther Exp(Warsz) 61:25–41CrossRefPubMed Agnihotri S, Burrell KE, Wolf A, Jalali S, Hawkins C, Rutka JT, Zadeh G (2013) Glioblastoma, a brief review of history, molecular genetics, animal models and novel therapeutic strategies. Arch Immunol Ther Exp(Warsz) 61:25–41CrossRefPubMed
3.
Zurück zum Zitat Sadri A, Changizi V, Eivazadeh N (2015) Evaluation of glioblastoma (U87) treatment with ZnO nanoparticle and X-ray in spheroid culture model using MTT assay. Radiat Phys Chem 115:17–21CrossRef Sadri A, Changizi V, Eivazadeh N (2015) Evaluation of glioblastoma (U87) treatment with ZnO nanoparticle and X-ray in spheroid culture model using MTT assay. Radiat Phys Chem 115:17–21CrossRef
4.
Zurück zum Zitat Neshasteh-Riz A, Zeinizade E, Safa M, Mousavizadeh K (2018) Cabazitaxel inhibits proliferation and potentiates the radiation response of U87MG glioblastoma cells. Cell Biol Int 42:815–822CrossRefPubMed Neshasteh-Riz A, Zeinizade E, Safa M, Mousavizadeh K (2018) Cabazitaxel inhibits proliferation and potentiates the radiation response of U87MG glioblastoma cells. Cell Biol Int 42:815–822CrossRefPubMed
5.
Zurück zum Zitat Baek SK, Makkouk AR, Krasieva T, Sun C-H, Madsen SJ, Hirschberg H (2011) Photothermal treatment of glioma; an in vitro study of macrophage-mediated delivery of gold nanoshells. J Neurooncol 104:439–448CrossRefPubMedPubMedCentral Baek SK, Makkouk AR, Krasieva T, Sun C-H, Madsen SJ, Hirschberg H (2011) Photothermal treatment of glioma; an in vitro study of macrophage-mediated delivery of gold nanoshells. J Neurooncol 104:439–448CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Stylli SS, Kaye AH, MacGregor LHM, Rajendra P (2005) Photodynamic therapy of high grade glioma – long term survival. J Clin Neurosci 12:389–398CrossRefPubMed Stylli SS, Kaye AH, MacGregor LHM, Rajendra P (2005) Photodynamic therapy of high grade glioma – long term survival. J Clin Neurosci 12:389–398CrossRefPubMed
7.
Zurück zum Zitat Kanavos P (2006) The rising burden of cancer in the developing world. Ann Oncol 17:viii15–viii23CrossRefPubMed Kanavos P (2006) The rising burden of cancer in the developing world. Ann Oncol 17:viii15–viii23CrossRefPubMed
8.
Zurück zum Zitat Huang X, El-Sayed MA (2011) Plasmonic photo-thermal therapy (PPTT). Alexandria J Med 47:1–9CrossRef Huang X, El-Sayed MA (2011) Plasmonic photo-thermal therapy (PPTT). Alexandria J Med 47:1–9CrossRef
9.
Zurück zum Zitat Phung DC, Nguyen HT, Phuong Tran TT, Jin SG, Yong CS, Truong DH, Tran TH, Kim JO (2019) Combined hyperthermia and chemotherapy as a synergistic anticancer treatment. J Pharm Investig 49:519–526CrossRef Phung DC, Nguyen HT, Phuong Tran TT, Jin SG, Yong CS, Truong DH, Tran TH, Kim JO (2019) Combined hyperthermia and chemotherapy as a synergistic anticancer treatment. J Pharm Investig 49:519–526CrossRef
10.
Zurück zum Zitat Elsayed IH, Huang X, Elsayed MA (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239:129–135CrossRefPubMed Elsayed IH, Huang X, Elsayed MA (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239:129–135CrossRefPubMed
11.
Zurück zum Zitat Mendes R, Pedrosa P, Lima JC, Fernandes AR, Baptista PV (2017) Photothermal enhancement of chemotherapy in breast cancer by visible irradiation of gold Nanoparticles. Sci Rep 7:10872CrossRefPubMedPubMedCentral Mendes R, Pedrosa P, Lima JC, Fernandes AR, Baptista PV (2017) Photothermal enhancement of chemotherapy in breast cancer by visible irradiation of gold Nanoparticles. Sci Rep 7:10872CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Kumar P, Srivastava R (2017) Nanomedicine for cancer therapy. Springer International Publishing, ChamCrossRef Kumar P, Srivastava R (2017) Nanomedicine for cancer therapy. Springer International Publishing, ChamCrossRef
13.
Zurück zum Zitat Heydari E (2019) Nanoplasmonic biodetection based on bright-field imaging of resonantly coupled gold-silver nanoparticles. PhotonNanostruc Fundam Appl 36:100708CrossRef Heydari E (2019) Nanoplasmonic biodetection based on bright-field imaging of resonantly coupled gold-silver nanoparticles. PhotonNanostruc Fundam Appl 36:100708CrossRef
14.
Zurück zum Zitat Kumar AVP, Dubey SK, Tiwari S, Puri A, Hejmady S, Gorain B, Kesharwani P (2021) Recent advances in nanoparticles mediated photothermal therapy induced tumor regression. Int J Pharm 606:120848CrossRefPubMed Kumar AVP, Dubey SK, Tiwari S, Puri A, Hejmady S, Gorain B, Kesharwani P (2021) Recent advances in nanoparticles mediated photothermal therapy induced tumor regression. Int J Pharm 606:120848CrossRefPubMed
15.
Zurück zum Zitat Norouzi H, Khoshgard K, Akbarzadeh F (2018) In vitro outlook of gold nanoparticles in photo-thermal therapy: a literature review. Lasers Med Sci 33:917–926CrossRefPubMed Norouzi H, Khoshgard K, Akbarzadeh F (2018) In vitro outlook of gold nanoparticles in photo-thermal therapy: a literature review. Lasers Med Sci 33:917–926CrossRefPubMed
16.
Zurück zum Zitat Riley RS, Day ES (2017) Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9:1–16CrossRef Riley RS, Day ES (2017) Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9:1–16CrossRef
17.
Zurück zum Zitat Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1:13–28CrossRef Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1:13–28CrossRef
18.
Zurück zum Zitat Xia K, Zhang L, Huang Y, Lu Z (2015) Preparation of gold nanorods and their applications in photothermal therapy. J Nanosci Nanotechnol 15:63–73CrossRefPubMed Xia K, Zhang L, Huang Y, Lu Z (2015) Preparation of gold nanorods and their applications in photothermal therapy. J Nanosci Nanotechnol 15:63–73CrossRefPubMed
19.
Zurück zum Zitat AL Barram LFA (2021) Laser enhancement of cancer cell destruction by photothermal therapy conjugated glutathione (GSH)-coated small-sized gold nanoparticles. Lasers Med Sci 36:325–337CrossRefPubMed AL Barram LFA (2021) Laser enhancement of cancer cell destruction by photothermal therapy conjugated glutathione (GSH)-coated small-sized gold nanoparticles. Lasers Med Sci 36:325–337CrossRefPubMed
20.
Zurück zum Zitat Simon J, Udayan S, Bindiya ES, Bhat SG, Nampoori VPN, Kailasnath M (2021) Optical characterization and tunable antibacterial properties of gold nanoparticles with common proteins. Anal Biochem 612:113975CrossRefPubMed Simon J, Udayan S, Bindiya ES, Bhat SG, Nampoori VPN, Kailasnath M (2021) Optical characterization and tunable antibacterial properties of gold nanoparticles with common proteins. Anal Biochem 612:113975CrossRefPubMed
21.
Zurück zum Zitat Sindhwani S, Syed AM, Ngai J, Kingston BR, Maiorino L, Rothschild J, MacMillan P, Zhang Y, Rajesh NU, Hoang T, Wu JLY, Wilhelm S, Zilman A, Gadde S, Sulaiman A, Ouyang B, Lin Z, Wang L, Egeblad M, Chan WCW (2020) The entry of nanoparticles into solid tumours. Nat Mater 19:566–575CrossRefPubMed Sindhwani S, Syed AM, Ngai J, Kingston BR, Maiorino L, Rothschild J, MacMillan P, Zhang Y, Rajesh NU, Hoang T, Wu JLY, Wilhelm S, Zilman A, Gadde S, Sulaiman A, Ouyang B, Lin Z, Wang L, Egeblad M, Chan WCW (2020) The entry of nanoparticles into solid tumours. Nat Mater 19:566–575CrossRefPubMed
22.
Zurück zum Zitat Zhang Y, Yang M, Park J-H, Singelyn J, Ma H, Sailor MJ, Ruoslahti E, Ozkan M, Ozkan C (2009) A surface-charge study on cellular-uptake behavior of F3-peptide-conjugated iron oxide nanoparticles. Small 5:1990–1996CrossRefPubMedPubMedCentral Zhang Y, Yang M, Park J-H, Singelyn J, Ma H, Sailor MJ, Ruoslahti E, Ozkan M, Ozkan C (2009) A surface-charge study on cellular-uptake behavior of F3-peptide-conjugated iron oxide nanoparticles. Small 5:1990–1996CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Mohanraj VJ, Chen Y (2007) Nanoparticles - a review. Trop J Pharm Res 5:561–573CrossRef Mohanraj VJ, Chen Y (2007) Nanoparticles - a review. Trop J Pharm Res 5:561–573CrossRef
24.
Zurück zum Zitat Norouzi M, Yathindranath V, Thliveris JA, Kopec BM, Siahaan TJ, Miller DW (2020) Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: a combinational approach for enhanced delivery of nanoparticles. Sci Rep 10:11292CrossRefPubMedPubMedCentral Norouzi M, Yathindranath V, Thliveris JA, Kopec BM, Siahaan TJ, Miller DW (2020) Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: a combinational approach for enhanced delivery of nanoparticles. Sci Rep 10:11292CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3:1941–1949CrossRefPubMed Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3:1941–1949CrossRefPubMed
26.
Zurück zum Zitat Cheng Y, Morshed R, Cheng S-H, Tobias A, Auffinger B, Wainwright DA, Zhang L, Yunis C, Han Y, Chen C-T, Lo L-W, Aboody KS, Ahmed AU, Lesniak MS (2013) Nanoparticle-programmed self-destructive neural stem cells for glioblastoma targeting and therapy. Small 9:4123–4129CrossRefPubMed Cheng Y, Morshed R, Cheng S-H, Tobias A, Auffinger B, Wainwright DA, Zhang L, Yunis C, Han Y, Chen C-T, Lo L-W, Aboody KS, Ahmed AU, Lesniak MS (2013) Nanoparticle-programmed self-destructive neural stem cells for glioblastoma targeting and therapy. Small 9:4123–4129CrossRefPubMed
27.
Zurück zum Zitat Adnan NNM, Cheng YY, Ong NMN, Kamaruddin TT, Rozlan E, Schmidt TW, Duong HTT, Boyer C (2016) Effect of gold nanoparticle shapes for phototherapy and drug delivery. Polym Chem 7:2888–2903CrossRef Adnan NNM, Cheng YY, Ong NMN, Kamaruddin TT, Rozlan E, Schmidt TW, Duong HTT, Boyer C (2016) Effect of gold nanoparticle shapes for phototherapy and drug delivery. Polym Chem 7:2888–2903CrossRef
28.
Zurück zum Zitat Khan NU, Lin J, Younas MR, Liu X, Shen L (2021) Synthesis of gold nanorods and their performance in the field of cancer cell imaging and photothermal therapy. Cancer Nanotechnol 12:1–33CrossRef Khan NU, Lin J, Younas MR, Liu X, Shen L (2021) Synthesis of gold nanorods and their performance in the field of cancer cell imaging and photothermal therapy. Cancer Nanotechnol 12:1–33CrossRef
29.
Zurück zum Zitat Raghvendra R, Kanthadeivi A, Sathesh KA, Aarrthy MA (2014) Diagnostics and therapeutic application of gold nanoparticles. Int J Pharm Pharm Sci 6:74–87 Raghvendra R, Kanthadeivi A, Sathesh KA, Aarrthy MA (2014) Diagnostics and therapeutic application of gold nanoparticles. Int J Pharm Pharm Sci 6:74–87
30.
Zurück zum Zitat Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120CrossRefPubMed Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120CrossRefPubMed
31.
Zurück zum Zitat Baranov MV, Kumar M, Sacanna S, Thutupalli S, Bogaart G (2021) Modulation of immune responses by particle size and shape. Front Immunol 11:3854CrossRef Baranov MV, Kumar M, Sacanna S, Thutupalli S, Bogaart G (2021) Modulation of immune responses by particle size and shape. Front Immunol 11:3854CrossRef
32.
Zurück zum Zitat Singh P, Pandit S, Mokkapati VRSS, Garg A, Ravikumar V, Mijakovic I (2018) Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci 19:1979CrossRefPubMedPubMedCentral Singh P, Pandit S, Mokkapati VRSS, Garg A, Ravikumar V, Mijakovic I (2018) Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci 19:1979CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23:217–228CrossRefPubMed Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23:217–228CrossRefPubMed
34.
Zurück zum Zitat Rau L-R, Huang W-Y, Liaw J-W, Tsai S-W (2016) Photothermal effects of laser-activated surface plasmonic gold nanoparticles on the apoptosis and osteogenesis of osteoblast-like cells. Int J Nanomedicine 11:3461–3473CrossRefPubMedPubMedCentral Rau L-R, Huang W-Y, Liaw J-W, Tsai S-W (2016) Photothermal effects of laser-activated surface plasmonic gold nanoparticles on the apoptosis and osteogenesis of osteoblast-like cells. Int J Nanomedicine 11:3461–3473CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Shakeri-Zadeh A, Zareyi H, Sheervalilou R, Laurent S, Ghaznavi H, Samadian H (2021) Gold nanoparticle-mediated bubbles in cancer nanotechnology. J Control Release 330:49–60CrossRefPubMed Shakeri-Zadeh A, Zareyi H, Sheervalilou R, Laurent S, Ghaznavi H, Samadian H (2021) Gold nanoparticle-mediated bubbles in cancer nanotechnology. J Control Release 330:49–60CrossRefPubMed
Metadaten
Titel
Photothermal treatment of glioblastoma cells based on plasmonic nanoparticles
verfasst von
Bahareh Khaksar Jalali
Somayeh Salmani Shik
Latifeh Karimzadeh–Bardeei
Esmaeil Heydari
Mohammad Hossein Majles Ara
Publikationsdatum
01.12.2023
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 1/2023
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-023-03783-5

Weitere Artikel der Ausgabe 1/2023

Lasers in Medical Science 1/2023 Zur Ausgabe