Skip to main content
Erschienen in: BMC Infectious Diseases 1/2020

Open Access 01.12.2020 | Case report

Pneumatocele formation in a fatal adult pneumonia patient coinfected with Streptococcus pyogenes emm-type 3 and influenza A: a case report

verfasst von: Masahiro Sano, Aya Shimamoto, Nozomi Ueki, Motohiro Sekino, Hiroshi Nakaoka, Masahiro Takaki, Yoshiro Yamashita, Takeshi Tanaka, Konosuke Morimoto, Katsunori Yanagihara, Masahiro Nakashima, Kazuto Ashizawa, Koya Ariyoshi

Erschienen in: BMC Infectious Diseases | Ausgabe 1/2020

Abstract

Background

A pneumatocele is a transient thin-walled lesion and rare complication in adult pneumonia.
A variety of infectious pathogens have been reported in children with pneumatoceles. We report the first case of adult pneumonia with pneumatocele formation that is likely caused by Streptococcus pyogenes and coinfection with influenza A virus.

Case presentation

A 64-year-old Japanese man presented with a one-week history of fever, sore throat, and arthralgia. He was referred to our university hospital for respiratory distress. He required mechanical ventilation in the intensive care unit (ICU). Bacterial culture detected S. pyogenes in the bronchoscopic aspirates, which was not detected in blood. Although a rapid influenza antigen test was negative, an influenza A polymerase chain reaction (PCR) test was positive. Therefore, he was diagnosed with coinfection of influenza A and group A streptococcus (GAS) pneumonia complicated by probable streptococcal toxic shock syndrome. A chest radiograph on admission showed diffuse patchy opacification and consolidation in the bilateral lung fields.
Multiple thin-walled cysts appeared in both middle lung fields on computed tomography (CT). On the following day, the bilateral cysts had turned into a mass-like opacity. The patient died despite intensive care. An autopsy was performed. The pathology investigation revealed multiple hematomas formed by bleeding in pneumatoceles.

Conclusions

There have been no previous reports of a pneumatocele complicated by S. pyogenes in an adult patient coinfected with influenza A. Further molecular investigation revealed that the S. pyogenes isolate had the sequence type of emm3.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ICU
Intensive care unit
CT
Computed tomography
CRP
C-reactive protein
PCR
Polymerase chain reaction
GAS
Group A streptococcus
DNA
Deoxyribonucleic acid
GCS
Glasgow Coma Scale
EVM
Eye response, Verbal response, Motor response
GGO
Ground glass opacity
CHDF
Continuous hemodiafiltration
ECMO
Extracorporeal membrane oxygenation
PMX-DHP
Polymyxin B-immobilized fiber column direct hemoperfusion
STSS
Streptococcal toxic shock syndrome
ARDS
Acute respiratory distress syndrome
DAD
Diffuse alveolar damage
CFR
Case fatality ratio

Background

A pneumatocele is a transient thin-walled lesion containing air in the interstitium of the lung secondary to the partial obstruction of the bronchial lumen and is usually seen in pediatric pneumonia. It is a rare complication in adult pneumonia, and often causes medical emergency such as tension pneumothorax [17]. A variety of infectious pathogens have been reported in children with pneumatoceles, such as Staphylococcus aureus [8], coagulase-negative Staphylococcus [8], Streptococcus pneumoniae [8], Haemophilus influenzae [8], Klebsiella pneumoniae [8], Pseudomonas aeruginosa [8], Pneumocystis jirovecii [9], Enterobacter gergoviae [10], Mycobacterium tuberculosis [11], Enterobacter cloacae [12], Escherichia coli [2], and hydrocarbon-induced pneumonia [8, 13]. The highly pathogenic Streptococcus species S. pyogenes, or group A Streptococcus (GAS), is not an uncommon cause of acute community-acquired pneumonia [14]. It is often characterized by the rapid onset of dyspnea and fever, with the predominant symptom of chest pain and is associated with high rates of pleural effusion and empyema [15]. A 6-year-old boy with a pneumatocele involving S. pyogenes was reported in 1961 [16], but to our knowledge, no adult case of pneumatocele involving S. pyogenes has previously been reported.

Case report

Clinical history

A 64-year-old Japanese man with a history of diabetes (HbA1c: 7.1%), hypertension, hyperlipidemia and gastric ulcer presented with a one-week history of fever up to 39.9 °C, sore throat, and arthralgia. He visited a local doctor and was prescribed an antipyretic after the confirmation of a negative rapid antigen test for influenza. Since his general condition continued to worsen for 4 days, he was referred to our university hospital for respiratory distress.

Physical examination/laboratory data/images

His vital signs were a respiratory rate of 35/min, pulse rate of 130/min, blood pressure of 63/40 mmHg, body temperature of 37.2 °C, and oxygen saturation of 40% on room air. His state of consciousness with the Glasgow Coma Scale (GCS) was E3V4M5 (opened eyes in response to voice, confused/disoriented and localized to painful stimuli). Physical examination revealed an inflamed pharynx with swelling of the uvula and apparent coarse crackles in the right chest. Blood tests revealed leukopenia with a nuclear shift to the left, elevated C-reactive protein (CRP) and procalcitonin, severe respiratory failure (arterial blood gas pH 7.342, PaCO2 26.0 mmHg, PaO2 37.7 mmHg, HCO3 13.7 mmol/l), renal failure and metabolic acidosis (Table 1). A chest radiograph on admission demonstrated diffuse ground glass opacities (GGOs) and consolidation in the bilateral lung fields (Fig. 1a). Chest computed tomography (CT) showed widespread GGOs and consolidation in the dorsal lungs (Fig. 1b). He required mechanical ventilation (positive end-expiratory pressure: from day 1 to 2, 18 to 15 cmH2O; from day 3 to 8, 12 to 10 cmH2O; and from day 9, 8 cmH2O) in the intensive care unit (ICU).
Table 1
Laboratory Data on Admission(normal range)
Haematology
 Hb(11.4-14.8)
14.0g/dl
 WBC(5000-8000)
2300/μl
 Seg(40-60)
74.0%
 Lymp(30.3-40.5)
21.0%
 Mono(3.8-5.5)
1.0%
 Eosino(0-4.5)
0.0%
 Baso(0-1.9)
2.0%
 At-Ly(0-2.0)
1.0%
 Plt(18.0-35.0)
16.9×104/dl
Coagulation
 PT-INR(0.84-1.14)
1.06
 APTT(24.0-36.0)
38.2sec
 AT-III(79-121)
105%
Arterial blood gas (O2 face mask 12L/min)
 pH(7.35-7.45)
7.342
 PaCO2(35.0-45.0)
26.0mmHg
 PaO2(80.0-100.0)
37.7mmHg
 HCO3-(20.0-26.0)
13.7mmol/l
Biochemistry
 Na(135-148)
136mmol/l
 K(3.50-5.30)
3.7mmol/l
 Cl(98-106)
105mmol/l
 BUN(8-22)
98mg/dl
 Cre(0.4-0.7)
4.41mg/dl
 TP(6.7-8.3)
6.8g/dl
 Alb(4.0-5.0)
2.9g/dl
 T.bil(0.3-1.2)
0.4mg/dl
 AST(13-30)
126U/l
 ALT(10-42)
41U/l
 ALP(106-322)
433U/l
 LDH(124-222)
1363U/l
 CK(59-248)
671U/I
 γGTP(13-64)
35U/l
 Glucose(73-109)
374mg/dl
 HbA1c(4.9-6.0)
7.1%
Immunoserology
 Rapid influenza antigen
negative
 Procalcitonin(<0.06)
3.3ng/ml
 CRP(0-0.14)
13.8mg/dl
Culture
 Sputum
Streptococcs pyogenes 1× 106
 Blood
negative

Diagnosis

Bronchoscopic aspirates were positive for influenza A by polymerase chain reaction (PCR) at the time of admission and on the 4th day of hospitalization. Bacterial culture detected S. pyogenes in the aspirates, which was not detected in blood cultures repeated four times. He was diagnosed with coinfection of influenza A and GAS pneumonia complicated by probable streptococcal toxic shock syndrome (STSS). Because he had hypotension, renal dysfunction and acute respiratory distress syndrome (ARDS) without S. pyogenes bacteremia accompanied by concurrent or sequential infection with influenza A. We actually do not know which infection occurred first: influenza A or GAS pneumonia. Deoxyribonucleic acid (DNA) was extracted from the isolated S. pyogenes and tested by PCR targeting the emm region, which revealed the sequence type of emm3. Furthermore, the virulence genes SpeA and SpeB (but not SpeC) were detected.

Hospital course

Empirical intravenous antibiotic therapy was immediately initiated as follows: meropenem 1 g q12 h, linezolid 600 mg q12 h, levofloxacin 500 mg q48 h and peramivir 600 mg once. Hydrocortisone sodium succinate at 200 mg/day and pressor agents, including noradrenaline and pitressin, were administered to maintain hemodynamics. He was further supported with continuous hemodiafiltration (CHDF), extracorporeal membrane oxygenation (ECMO) and polymyxin B-immobilized fiber column direct hemoperfusion (PMX-DHP). On day 8, the administered antimicrobial agents were downgraded to ampicillin-sulbactam, clindamycin and levofloxacin following sensitivity results (Table 2). Because the patient’s condition was still fragile, we did not narrow the antibiotic spectrum. Follow-up chest radiographs (day 5; Fig. 1c) revealed improvement of GGOs and consolidation in the upper and middle lung fields. On day 11, multiple thin-walled cysts appeared in both middle lung fields on CT (Fig. 1e). The thin-walled cysts in both upper lobes contained a small amount of fluid (Fig. 1d). On the following day, the bilateral cysts had turned into a mass-like opacity (Fig. 1f) Chest radiograph on day 15 and CT on day 16 showed enlargement of the cysts and exacerbation of GGOs and consolidation in the background of the lungs (Fig. 1g). Fluid in the cysts showed high attenuation, suggesting bleeding (Fig. 1h). On day 22, multiple organ failure was considered irreversible, and the use of ECMO was terminated. The patient died on day 26. An autopsy was performed. The pathology investigation revealed multiple hematomas formed by bleeding in pneumatoceles on the surface and infiltration of massive inflammatory cells and erythrocytes in the necrotic lung tissue. In addition, vascular destruction was observed. Diffuse alveolar damage (DAD) was widely observed in images of the lungs. The boundary between the hematoma and granulation tissue was unclear, and no covering was found (Fig. 2). No bacteria grew in the cultures of the lung lesions.
Table 2
Streptococcus pyogenes (1×106) MIC(μg/ml)* *Minimum inhibitory concentration
Daptomysin
≦0.25
PenicillinG
≦0.015
Ampicillin
≦0.5
Ampicillin-sulbactam
≦0.5
Cefotaxime
≦0.5
Ceftazidime
≦0.5
Ceftriaxone
≦0.5
Cefepime
≦0.5
Meropenem
≦0.06
Clarithromycin
≦0.5
Clindamycin
≦0.12
Vancomycin
0.5
Levofloxacin
≦0.5
Linezolid
≦1

Discussion and conclusion

To our knowledge, this is the first case report of fatal adult pneumonia with pneumatocele formation in which coinfection consisting of S. pyogenes infection and influenza A is thought to have played a role in the pathology.

S. pyogenes pneumonia and its genetic characteristics

Nelson et al. summarized the case fatality ratio (CFR) for 1509 patients with GAS pneumonia of all ages and revealed a CFR of 27.9% for elderly individuals aged 65 years and older, which was much higher than 4.4 and 13.8% for children under 10 years of age and younger adults, respectively [17]. Although there was no evidence of bacteremia, our patient was elderly, and we detected virulence genes, including the streptococcal pyrogenic exotoxin genes SpeA and SpeB, which stimulate T cells as superantigens, resulting in nonspecific T cell overactivation and massive cytokine release. This process causes tissue damage, organ failure, and septic shock. The isolates in our case were inferred to carry emm3. There seems to be a tendency for serotypes 1 and 3 to be associated with life-threatening infections [17]. Matthias et al. analyzed a large number (n = 719) of S. pyogenes infections, including meningitis, erysipelas, necrotizing fasciitis, endocarditis, osteomyelitis and pneumonia, and recognized emm3 as significantly associated with complications of respiratory distress in patients [18]. Despite the negative results of the rapid influenza antigen test, the more sensitive influenza type A PCR was repeatedly positive. We considered this to have had a pathogenic effect. A recently published paper reviewed that underlying influenza A virus infection provokes invasion of GAS, which leads to a fatal condition more often than influenza A infection alone in their mouse model [19].

Necrotizing pneumonia or pneumatoceles and the timing of its appearance

According to a previous report, pneumatoceles appear 5–6 days after hospitalization in both children and adults [20]. However, in our case, cystic lesions were not present on day 5 and were noted first on day 11. They were initially assumed to be cavities caused by the toxins produced by S. pyogenes destroying the lung tissue, but later CT scan findings indicated thin-walled smooth-edged lesions. Pneumatoceles are considered to form as a consequence of the drainage of necrotic lung parenchyma, coupled with check valve and bronchiolar obstruction, which are caused by edematous luminal narrowing with inflammation [21]. Autopsy investigation showed pneumatoceles containing fluid, with necrosis around the pneumatoceles, fibrotic thickening of the alveolar septum and hyaline membranes in the air space. These findings indicate that the pathology was in the proliferative phase of DAD. We believe that this complex pathology arose because this patient survived substantially longer under modern life-support technology, such as CHDF and ECMO. This case report has some caveats. First, we investigated only SpeA, SpeB, and SpeC and no other Spe genes, such as Spe G, H, I, J, K, L, and M.
Second, we need to consider the correlation between hematoma and CHDF, which affects coagulation dysfunction.

Acknowledgements

We thank the patient’s family for granting permission to publish this report.
The overall study design was approved by the Ethical Committee of Nagasaki University Hospital 2020.
Written informed consent was obtained from the patient’s wife for publication of this case report and accompanying images. A copy of the written consent is available for review by the Editor of this journal.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat McGarry T, Giosa R, Rohman M, Huang CT. Pneumatocele formation in adult pneumonia. Chest. 1987;92(4):717–20.CrossRef McGarry T, Giosa R, Rohman M, Huang CT. Pneumatocele formation in adult pneumonia. Chest. 1987;92(4):717–20.CrossRef
2.
Zurück zum Zitat Colling J, Allaouchiche B, Floccard B, Pilleul F, Monneuse O, Tissot E. Pneumatocele formation in adult Escherichia coli pneumonia revealed by pneumothorax. J Inf Secur. 2005;51(3):e109–11. Colling J, Allaouchiche B, Floccard B, Pilleul F, Monneuse O, Tissot E. Pneumatocele formation in adult Escherichia coli pneumonia revealed by pneumothorax. J Inf Secur. 2005;51(3):e109–11.
3.
Zurück zum Zitat Kim SH, Chung YT, Lee KD, et al. Infected pneumatocele following anaerobic pneumonia in adult. Korean J Intern Med. 2005;20(4):343–5.CrossRef Kim SH, Chung YT, Lee KD, et al. Infected pneumatocele following anaerobic pneumonia in adult. Korean J Intern Med. 2005;20(4):343–5.CrossRef
4.
Zurück zum Zitat Takata S, Yoshioka Y, Naitou H, Kouzuma K, Kinuwaki E. A case of pulmonary tuberculosis with multiple pneumatoceles in adult. Nihon Kokyuki Gakkai Zasshi. 2009;47(2):128–32.PubMed Takata S, Yoshioka Y, Naitou H, Kouzuma K, Kinuwaki E. A case of pulmonary tuberculosis with multiple pneumatoceles in adult. Nihon Kokyuki Gakkai Zasshi. 2009;47(2):128–32.PubMed
5.
Zurück zum Zitat Ryou SH, Bae JW, Baek HJ, et al. Pulmonary Pneumatocele in a pneumonia patient infected with extended-Spectrum beta-lactamase producing Proteus mirabilis. Tuberc Respir Dis (Seoul). 2015;78(4):371–4.CrossRef Ryou SH, Bae JW, Baek HJ, et al. Pulmonary Pneumatocele in a pneumonia patient infected with extended-Spectrum beta-lactamase producing Proteus mirabilis. Tuberc Respir Dis (Seoul). 2015;78(4):371–4.CrossRef
6.
Zurück zum Zitat Sanchez-Toril F, Robles A, Lopez M, Berbegal J, Pasquau F, del Campo F. Pneumatocele as a form of presentation of Pneumocystis carinii pneumonia. Med Clin (Barc). 1991;96(16):621–3. Sanchez-Toril F, Robles A, Lopez M, Berbegal J, Pasquau F, del Campo F. Pneumatocele as a form of presentation of Pneumocystis carinii pneumonia. Med Clin (Barc). 1991;96(16):621–3.
7.
Zurück zum Zitat Hunt JP, Buechter KJ, Fakhry SM. Acinetobacter calcoaceticus pneumonia and the formation of pneumatoceles. J Trauma. 2000;48(5):964–70.CrossRef Hunt JP, Buechter KJ, Fakhry SM. Acinetobacter calcoaceticus pneumonia and the formation of pneumatoceles. J Trauma. 2000;48(5):964–70.CrossRef
8.
Zurück zum Zitat Amitai I, Mogle P, Godfrey S, Aviad I. Pneumatocele in infants and children. Report of 12 cases. Clin Pediatr (Phila). 1983;22(6):420–2.CrossRef Amitai I, Mogle P, Godfrey S, Aviad I. Pneumatocele in infants and children. Report of 12 cases. Clin Pediatr (Phila). 1983;22(6):420–2.CrossRef
9.
Zurück zum Zitat Holland ET, Saulsbury FT. Chronic Pneumocystis carinii pneumonia associated with extensive pneumatocele formation in a child with human immunodeficiency virus infection. Pediatr Pulmonol. 2003;35(2):144–6.CrossRef Holland ET, Saulsbury FT. Chronic Pneumocystis carinii pneumonia associated with extensive pneumatocele formation in a child with human immunodeficiency virus infection. Pediatr Pulmonol. 2003;35(2):144–6.CrossRef
10.
Zurück zum Zitat Kesieme EB, Kesieme CN, Akpede GO, et al. Tension Pneumatocele due to Enterobacter gergoviae Pneumonia: A Case Report. Case Rep Med. 2012;2012:808630.CrossRef Kesieme EB, Kesieme CN, Akpede GO, et al. Tension Pneumatocele due to Enterobacter gergoviae Pneumonia: A Case Report. Case Rep Med. 2012;2012:808630.CrossRef
11.
Zurück zum Zitat Kao HC, Chiu CH, Lin TY, Wang CR. Pneumonia with pneumatocele formation caused by mycobacterium tuberculosis: report of one case. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi. 1998;39(1):55–7.PubMed Kao HC, Chiu CH, Lin TY, Wang CR. Pneumonia with pneumatocele formation caused by mycobacterium tuberculosis: report of one case. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi. 1998;39(1):55–7.PubMed
12.
Zurück zum Zitat Glustein JZ, Kaplan M. Enterobacter cloacae causing pneumatocele in a neonate. Acta Paediatr. 1994;83(9):990–1.CrossRef Glustein JZ, Kaplan M. Enterobacter cloacae causing pneumatocele in a neonate. Acta Paediatr. 1994;83(9):990–1.CrossRef
13.
Zurück zum Zitat Makrygianni EA, Palamidou F, Kaditis AG. Respiratory complications following hydrocarbon aspiration in children. Pediatr Pulmonol. 2016;51(6):560–9.CrossRef Makrygianni EA, Palamidou F, Kaditis AG. Respiratory complications following hydrocarbon aspiration in children. Pediatr Pulmonol. 2016;51(6):560–9.CrossRef
15.
Zurück zum Zitat Birch C, Gowardman J. Streptoccocus pyogenes: a forgotten cause of severe community-acquired pneumonia. Anaesth Intensive Care. 2000;28(1):87–90.CrossRef Birch C, Gowardman J. Streptoccocus pyogenes: a forgotten cause of severe community-acquired pneumonia. Anaesth Intensive Care. 2000;28(1):87–90.CrossRef
16.
Zurück zum Zitat Kevy SV, Lowe BA. Streptococcal pneumonia and empyema in childhood. N Engl J Med. 1961;264:738–43.CrossRef Kevy SV, Lowe BA. Streptococcal pneumonia and empyema in childhood. N Engl J Med. 1961;264:738–43.CrossRef
17.
Zurück zum Zitat Nelson GE, Pondo T, Toews KA, et al. Epidemiology of invasive group a streptococcal infections in the United States, 2005-2012. Clin Infect Dis. 2016;63(4):478–86.CrossRef Nelson GE, Pondo T, Toews KA, et al. Epidemiology of invasive group a streptococcal infections in the United States, 2005-2012. Clin Infect Dis. 2016;63(4):478–86.CrossRef
18.
Zurück zum Zitat Imohl M, Fitzner C, Perniciaro S, van der Linden M. Epidemiology and distribution of 10 superantigens among invasive Streptococcus pyogenes disease in Germany from 2009 to 2014. PLoS One. 2017;12(7):e0180757.CrossRef Imohl M, Fitzner C, Perniciaro S, van der Linden M. Epidemiology and distribution of 10 superantigens among invasive Streptococcus pyogenes disease in Germany from 2009 to 2014. PLoS One. 2017;12(7):e0180757.CrossRef
19.
Zurück zum Zitat Okamoto S, Nagase S. Pathogenic mechanisms of invasive group a Streptococcus infections by influenza virus-group a Streptococcus superinfection. Microbiol Immunol. 2018;62(3):141–9.CrossRef Okamoto S, Nagase S. Pathogenic mechanisms of invasive group a Streptococcus infections by influenza virus-group a Streptococcus superinfection. Microbiol Immunol. 2018;62(3):141–9.CrossRef
20.
Zurück zum Zitat Armstrong P. Basic patterns in lung diseases. In: Armstrong P, Wilson AG, Dee P, Hansell DM, editors. Imaging of diseases of the chest. 3rd ed. Spain: Mosby; 2000. p. 115. Armstrong P. Basic patterns in lung diseases. In: Armstrong P, Wilson AG, Dee P, Hansell DM, editors. Imaging of diseases of the chest. 3rd ed. Spain: Mosby; 2000. p. 115.
21.
Zurück zum Zitat Ko KS, Lee KS, Kim Y, Kim SJ, Kwon OJ, Kim JS. Reversible cystic disease associated with pulmonary tuberculosis: radiologic findings. Radiology. 1997;204(1):165–9.CrossRef Ko KS, Lee KS, Kim Y, Kim SJ, Kwon OJ, Kim JS. Reversible cystic disease associated with pulmonary tuberculosis: radiologic findings. Radiology. 1997;204(1):165–9.CrossRef
Metadaten
Titel
Pneumatocele formation in a fatal adult pneumonia patient coinfected with Streptococcus pyogenes emm-type 3 and influenza A: a case report
verfasst von
Masahiro Sano
Aya Shimamoto
Nozomi Ueki
Motohiro Sekino
Hiroshi Nakaoka
Masahiro Takaki
Yoshiro Yamashita
Takeshi Tanaka
Konosuke Morimoto
Katsunori Yanagihara
Masahiro Nakashima
Kazuto Ashizawa
Koya Ariyoshi
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Infectious Diseases / Ausgabe 1/2020
Elektronische ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-020-05595-2

Weitere Artikel der Ausgabe 1/2020

BMC Infectious Diseases 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.