Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 1/2004

01.01.2004 | Original Article

Positron flight in human tissues and its influence on PET image spatial resolution

verfasst von: Alejandro Sánchez-Crespo, Pedro Andreo, Stig A. Larsson

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 1/2004

Einloggen, um Zugang zu erhalten

Abstract

The influence of the positron distance of flight in various human tissues on the spatial resolution in positron emission tomography (PET) was assessed for positrons from carbon-11, nitrogen-13, oxygen-15, fluorine-18, gallium-68 and rubidium-82. The investigation was performed using the Monte Carlo code PENELOPE to simulate the transport of positrons within human compact bone, adipose, soft and lung tissue. The simulations yielded 3D distributions of annihilation origins that were projected on the image plane in order to assess their impact on PET spatial resolution. The distributions obtained were cusp-shaped with long tails rather than Gaussian shaped, thus making conventional full width at half maximum (FWHM) measures uncertain. The full width at 20% of the maximum amplitude (FW20M) of the annihilation distributions yielded more appropriate values for root mean square addition of spatial resolution loss components. Large differences in spatial resolution losses due to the positron flight in various human tissues were found for the selected radionuclides. The contribution to image blur was found to be up to three times larger in lung tissue than in soft tissue or fat and five times larger than in bone tissue. For 18F, the spatial resolution losses were 0.54 mm in soft tissue and 1.52 mm in lung tissue, compared with 4.10 and 10.5 mm, respectively, for 82Rb. With lung tissue as a possible exception, the image blur due to the positron flight in all human tissues has a minor impact as long as PET cameras with a spatial resolution of 5–7 mm are used in combination with 18F-labelled radiopharmaceuticals. However, when ultra-high spatial resolution PET cameras, with 3–4 mm spatial resolution, are applied, especially in combination with other radionuclides, the positron flight may enter as a limiting factor for the total PET spatial resolution—particularly in lung tissue.
Literatur
1.
Zurück zum Zitat Chatziioannou AF, Cherry SR, Shao Y, Silverman RW, Meadors K, Farquhar TH, Pedarsani M, Pheps ME. Performance evaluation of microPET: a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med 1999; 40:1164–1175.PubMed Chatziioannou AF, Cherry SR, Shao Y, Silverman RW, Meadors K, Farquhar TH, Pedarsani M, Pheps ME. Performance evaluation of microPET: a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med 1999; 40:1164–1175.PubMed
2.
Zurück zum Zitat Melcher Cl. Scintillation crystals for PET. J Nucl Med 2000; 41:1051–1055.PubMed Melcher Cl. Scintillation crystals for PET. J Nucl Med 2000; 41:1051–1055.PubMed
3.
Zurück zum Zitat Brix G, Zaers J, Adam LE, Bellemann ME, Ostertag H, Trojan H, Haberkorn U, Doll J, Oberdoifer F, Lorenz WJ. Performance evaluation of a whole-body PET scanner using the NEMA protocol. National Electrical Manufacturers Association. J Nucl Med 1997; 38:1614–1623.PubMed Brix G, Zaers J, Adam LE, Bellemann ME, Ostertag H, Trojan H, Haberkorn U, Doll J, Oberdoifer F, Lorenz WJ. Performance evaluation of a whole-body PET scanner using the NEMA protocol. National Electrical Manufacturers Association. J Nucl Med 1997; 38:1614–1623.PubMed
4.
Zurück zum Zitat Adam LE, Karp JS, Daube-Witherspoon ME, Smith RJ. Performance of a whole-body PET scanner using curve-plate NaI(Tl) detectors. J Nucl Med 2001; 42:1821–1830.PubMed Adam LE, Karp JS, Daube-Witherspoon ME, Smith RJ. Performance of a whole-body PET scanner using curve-plate NaI(Tl) detectors. J Nucl Med 2001; 42:1821–1830.PubMed
5.
Zurück zum Zitat Moses WW, Virador PRG, Derenzo SE, Huesman RH, Budinger TF. Design of a High-resolution, high-sensitivity PET camera for human brains and small animals. IEEE Trans Nucl Sci 1997; NS-44:1487–1491. Moses WW, Virador PRG, Derenzo SE, Huesman RH, Budinger TF. Design of a High-resolution, high-sensitivity PET camera for human brains and small animals. IEEE Trans Nucl Sci 1997; NS-44:1487–1491.
6.
Zurück zum Zitat Budinger TH. PET instrumentation: what are the limits? Semin Nucl Med 1998; 3:247–267. Budinger TH. PET instrumentation: what are the limits? Semin Nucl Med 1998; 3:247–267.
7.
Zurück zum Zitat Derenzo SE. Precision measurement of annihilation point distributions for medically important positron emitters. In: Positron annihilation. Sendai, Japan: The Japan Institute of Metals; 1979:819–823. Derenzo SE. Precision measurement of annihilation point distributions for medically important positron emitters. In: Positron annihilation. Sendai, Japan: The Japan Institute of Metals; 1979:819–823.
8.
Zurück zum Zitat Cho ZH, Chan JK, Eriksson L, Singh M, Graham S, MacDonald NS, Yano Y. Positron ranges obtained from biomedical important positron-emitting radionuclides. J Nucl Med 1975; 16:1174–1176.PubMed Cho ZH, Chan JK, Eriksson L, Singh M, Graham S, MacDonald NS, Yano Y. Positron ranges obtained from biomedical important positron-emitting radionuclides. J Nucl Med 1975; 16:1174–1176.PubMed
9.
Zurück zum Zitat Palmer MR, Brownell GL Annihilation density distribution calculations for medically important positron emitters. IEEE Trans Med Imaging 1993; 11:373–378.CrossRef Palmer MR, Brownell GL Annihilation density distribution calculations for medically important positron emitters. IEEE Trans Med Imaging 1993; 11:373–378.CrossRef
10.
Zurück zum Zitat Levin CS, Hoffman EJ. Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol 1999; 44:781–799.PubMed Levin CS, Hoffman EJ. Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol 1999; 44:781–799.PubMed
11.
Zurück zum Zitat Baró J, Sempau J, Férnandez-Varea JM, Salvat F. PENELOPE: an algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nucl Instrum Meth 1995; B100:31–46. Baró J, Sempau J, Férnandez-Varea JM, Salvat F. PENELOPE: an algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nucl Instrum Meth 1995; B100:31–46.
12.
Zurück zum Zitat Sampau J, Acosta E, Baró J, Fernández-Varea JM, Salvat F. An algorithm for Monte Carlo simulation of coupled electron-photon transport. Nucl Instrum Meth 1997; B132:377–390. Sampau J, Acosta E, Baró J, Fernández-Varea JM, Salvat F. An algorithm for Monte Carlo simulation of coupled electron-photon transport. Nucl Instrum Meth 1997; B132:377–390.
13.
Zurück zum Zitat Salvat F, Fernández-Varea JM, Acosta E, Sempau J. PENELOPE, a code system for Monte Carlo simulation of electron and photon transport. OECD/NEA 5–7 November 2001, NEA/NSC/DOC(2001)19. ISBN: 92–64–18475–9 Salvat F, Fernández-Varea JM, Acosta E, Sempau J. PENELOPE, a code system for Monte Carlo simulation of electron and photon transport. OECD/NEA 5–7 November 2001, NEA/NSC/DOC(2001)19. ISBN: 92–64–18475–9
14.
Zurück zum Zitat ICRU. International Commission on Radiation Units and Measurements. Photon, electron, proton and neutron interaction data for body tissues. 1992: Report 46. ICRU. International Commission on Radiation Units and Measurements. Photon, electron, proton and neutron interaction data for body tissues. 1992: Report 46.
15.
Zurück zum Zitat ICRP. International Commission on Radiological Protection. Reference man: anatomical, physiological and metabolic characteristics. ICRP Publication 23. New York: Pergamon Press, 1975. ICRP. International Commission on Radiological Protection. Reference man: anatomical, physiological and metabolic characteristics. ICRP Publication 23. New York: Pergamon Press, 1975.
16.
Zurück zum Zitat Cross WG, Ing H, Freedman N. A short atlas of beta-ray spectra. Phys Med Biol 1983; 28:1251–1260.CrossRef Cross WG, Ing H, Freedman N. A short atlas of beta-ray spectra. Phys Med Biol 1983; 28:1251–1260.CrossRef
17.
Zurück zum Zitat Bielajew AF, Hirayama H, Nelson WR, Rogers DWO. History, overview and recent improvements of EGS4. Report NRCC/PIRS-0436, June 1994. Bielajew AF, Hirayama H, Nelson WR, Rogers DWO. History, overview and recent improvements of EGS4. Report NRCC/PIRS-0436, June 1994.
18.
Zurück zum Zitat Haber SF, Derenzo SE, Uber D. Application of mathematical removal of positron range blurring in positron emission tomography. IEEE Trans Nucl Sci 1990; NS37:1293–1299.CrossRef Haber SF, Derenzo SE, Uber D. Application of mathematical removal of positron range blurring in positron emission tomography. IEEE Trans Nucl Sci 1990; NS37:1293–1299.CrossRef
Metadaten
Titel
Positron flight in human tissues and its influence on PET image spatial resolution
verfasst von
Alejandro Sánchez-Crespo
Pedro Andreo
Stig A. Larsson
Publikationsdatum
01.01.2004
Verlag
Springer-Verlag
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 1/2004
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-003-1330-y

Weitere Artikel der Ausgabe 1/2004

European Journal of Nuclear Medicine and Molecular Imaging 1/2004 Zur Ausgabe