Skip to main content
Erschienen in: BMC Medical Genetics 1/2019

Open Access 01.12.2019 | Research article

Prevalence of CCR5delta32 in Northeastern Iran

verfasst von: Amir Tajbakhsh, Mostafa Fazeli, Mehdi Rezaee, Faezeh Ghasemi, Mastoureh Momen Heravi, Aida Gholoobi, Zahra Meshkat

Erschienen in: BMC Medical Genetics | Ausgabe 1/2019

Abstract

Background

A 32-base pair deletion (∆32) in the open reading frame (ORF) of C-C motif chemokine receptor 5 (CCR5) seems to be a protective variant against immune system diseases, especially human immunodeficiency virus type 1 (HIV-1). We aimed to assess the frequency of CCR5∆32 in the healthy Iranian population.

Methods

In this study, 400 normal samples from Khorasan, northeastern Iran, were randomly selected. The frequency of CCR5∆32 carriers was investigated using PCR analysis. Allele prevalence and the fit to the Hardy-Weinberg equilibrium were analyzed.

Results

The prevalence of CCR5∆32 in the northeastern population of Iran was 0.016. Four hundred samples were studied, among which one with CCR5∆32/∆32 and 11 with CCR5Wild/∆32 genotype were detected.

Conclusion

This study was the first investigation for an assessment of the prevalence of CCR5∆32 in northeastern Iran. The low prevalence of CCR5∆32 allele in the Iranian population may result in the increased susceptibility to HIV-1. In addition, this prevalence is the same as that of reported in East Asia, while is lower than that in the Europeans.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AVC
Aplaviroc
CCR5
C-C chemokine receptor 5
CCR5∆32
A 32-nucleotide deletion in the exon of CCR5 gene
CCR5 ∆32/∆32
Heterozygote genotype for CCR5Δ32
CRISPR-Cas9
Clustered regularly interspaced short palindromic repeats-associated protein nuclease-9
HIV
Human immunodeficiency virus
HIV-1
HIV type 1
HTLV
Human T-cell lymphotropic virus
MVC
Maraviroc
ORF
Open reading frame
R5-tropic
CCR5-tropic
VVC
Vicriviroc

Background

Genetic mutations play an important role in the susceptibility and the progression of various human diseases in populations [1]. Chemokines are low-molecular-weight cytokines, which bring leukocytes to the sites of inflammation, infection, or injury. The interaction of chemokines with their receptors can locally control the progression, recruitment, and induction of lymphocytes. Therefore, the chemokine receptors are utmost important in the immune response against pathogens and inflammatory responses [2]. C-C chemokine receptor 5 (CCR5) is a seven passed transmembrane G-protein-coupled receptor of which variations could elucidate the reason for high susceptibility or the resistance of individuals to a specific infectious disease [2, 3]. The CCR5 is a co-receptor involved in the human immunodeficiency virus (HIV) entry into the target cells in the initial phases of infection. The HIV type 1 (HIV-1) attaches to CCR5 on monocytes and macrophages through the infection process [2].
The genetic variations of chemokine and chemokine receptor genes are paramount in their structures and functions. A 32-nucleotide deletion in the exon of CCR5 gene (CCR5∆32) has a considerable influence on the attachment capability of HIV-1 to CCR5, leading to a defective phenotype of the receptor [3]. The CCR5∆32 causes a frame shift and premature stop codon which results in dysfunction of CCR5 [4]. Meanwhile, the CCR5∆32 gene produces a truncated CCR5, which cannot be transported to the cell membrane [5] (Fig. 1). The absence of CCR5 on the cell surface prevents the cellular entry of CCR5-tropic (R5-tropic) HIV-1 strains into the cells [6]. The individuals with homozygote genotype for CCR5Δ32 (CCR5∆32/∆32) are protected against repeated exposure to HIV-1 infection. The CCR5∆32/∆32 causes resistance to HIV infection, while the CCR5Δ32 heterozygote genotype (CCR5Wild/∆32) considerably hinders the onset of AIDS but is not quite protected against it [7]. The CCR5Wild/∆32 genotype is significantly associated with slower HIV-1 disease progression and better response to treatment compared to the wild-type genotype [8]. The CCR5Wild/∆32 T-cells express lower CCR5 than normal T-cells, resulting in lower HIV infection [9, 10]. In addition, a study showed that the CCR5Wild/∆32 genotype caused 2–4 years slower development of AIDS following HIV-1 infection compared to the CCR5Wild/Wild genotype [5]. Moreover, it is also shown that the HIV-1 viral load was 6- to 8-fold lower in CCR5Wild/∆32 compared to CCR5Wild/Wild [5, 11]. Therefore, the CCR5 is an excellent target to develop novel therapeutics for HIV treatment. As there are different frequencies of CCR5∆32 worldwide, we aim to assess the prevalence of the CCR5Δ32 in northeastern Iran (Khorasan Province) for the first time and specify the origin of these genotypes in Iran compared to other countries.

Methods

Study population

In this line, we received 400 blood samples of HIV-negative healthy subjects of the Mashhad cohort study (Grant number: 85134; Mashhad University of Medical Sciences, Khorasan northeastern Iran) [12]. The MASHAD cohort study has begun in 2010 in the north-eastern Iran. Individuals were collected from three regions. In this line, each region was separated into nine sites centered [12]. There were 27 clusters in the Mashhad cohort study, which 15 samples of each cluster were randomly selected by the technique of stratified cluster random sampling. In this regard, these samples were almost age- and sex-matched that were included in this study [12]. It is worth mention that we selected healthy individuals without HIV infection or cardiovascular events. Thus, cardiovascular events are not a limitation of our study. For the purpose of this study, the following key data were also extracted from Mashhad cohort study [12]. The extraction of DNA from blood samples was done using Genomic DNA Extraction Kit (Genet Bio Company; Korea).

Genotyping

The samples were genotyped by amplification of the region containing CCR5Δ32 using PCR assay. PCR genotyping was experimented as described previously [9]. The forward and reverse primers were as follows, respectively: (5′-AGGTCTTCATTACACCTGCAGC-3′), and (5′-CTTCTCATTTCGACACCGAAGC-3′). It is noteworthy that genotypes were detected according to the final size of PCR products, of which 169 bp and 137 bp products were related to the wild type and the CCR5∆32 genotypes, respectively. Each PCR reaction was experimented in 25 μl containing 5–10 ng of the purified DNA sample (1500 μmol), 1 unit of Taq DNA polymerase (CinnaGen Company; Iran), 2.5 μl PCR Buffer (10X) (300 μmol), 10 pmol/μl of the reverse primer, and 10 pmol/μl of the forward primer for detecting the CCR5∆32. The PCR reaction was used the Applied Biosystems PCR (Life Technologies Company; United States), under the following thermal conditions: initial denaturation for 3 min at 95 °C; 35–40 cycles at 94 °C for 30 s, 58 °C for 30 s, 72 °C for 30 s, and finally elongation at 72 °C for 7 min. In the following, PCR products (7 μl) were electrophoresed on a 2.5% agarose gel (Invitrogen Company; United States) stained with DNA Green Viewer (Pars Tous Company; Iran) using an electrophoresis analyzer (Consort BVBA Company; Germany) and SYNGENE U; GENIUS gel documentation system.

Statistical analysis

The genotyping data were analysed via the SPSS 20.0 (IBM Inc., Chicago, IL, USA). The genotype and the allele frequencies of CCR5D32 variant were calculated using gene count and the χ2 test. Moreover, Hardy–Weinberg Equilibrium (HWE) assumption was investigated by the Pearson χ2 distribution. In this study, P-values of p ≤ 0.05 were considered to be statistically significant.

Results

The demographics of study subjects are summerized in Table 1. The 169-bp band represented the wild-type alleles and the 137-bp band represented the mutant genotype (Fig. 2). Totally, 12 mutant alleles (11 heterozygotes and one homozygote) were detected among all the samples (Table 2). The prevalence of CCR5∆32 allele was 0.016. Although, in this study, all the samples were randomly selected based on the statically selection, data analysis was indicated that allele and genotype distribution of our samples were not in the HWE (P-value = 0.020).
Table 1
The characteristics of study samples
 
Wild type
Mutantb
Heterozygote
Total
Sexa
46.1 (m), 53.9 (f)
100.0 (f)
45.5 (m), 54.5 (f)
45.9 (m), 54.1 (f)
Age (yr)
46.09 ± 7.25
37.00
46.45 ± 8.12
46.1 ± 7.27
Weight (Kg)
71.92 ± 13.27
61.2
77.11 ± 11.8
72.04 ± 13.2
Height (m)
1.62 ± .09
1.51
1.64 ± .10
1.62 ± .1
BMI
27.5 ± 4.79
26.84
29.21 ± 6.29
27.5 ± 4.8
Inflammatory marker
 Hs-CRP
1.64 (3.11–1.00)
0.75
1.45 (3.40–0.87)
1.62 (3.10–1.00)
Smoking
 Non-smokera
63.5
100.0
81.8
64.1
 Ex-smokera
10.0
0.0
18.2
9.7
 Current smokera
26.5
0.0
0.0
26.2
Diabetes
 Diabetic conditiona
15.4
0.0
20.0
15.5
Biochemical parameters
 Glucose (mg/dL)
82.0 (92.0–74.5)
71.00
82.0 (96.0–74.0)
82.0 (92.0–74.5)
 Cholesterol (mg/dL)
187.00 (214.00–163.00)
175.00
182.00 (233.00–153.00)
187.00 (214.00–163.00
 HDL (mg/dL)
41.5 ± 9.0
39.30
41.43 ± 10.82
41.5 ± 9.0
 Triglyceride (mg/dL)
116.0 (172.0–81.50)
74.00
92.00 (210.00–74.00)
115.0 (172.0–81.50)
 LDL (mg/dL)
118.88 (141.6–95.75)
102.06
121.88 (160.80–84.00)
118.92 (141.6–95.75)
The results showed as mean ± SD and median (IQ3-IQ1) for normal and abnormal distribution data, respectively. a The numbers represent percentage of prevalence; b mutant group have only one subject
Table 2
The results of the genotyping samples
Genotype form
Genotype frequency (number (%))
Allele frequency
Normal homozygote CCR5 Wild/ Wild
Heterozygote
CCR5 Wild/∆32
Mutant homozygote CCR5∆32/ ∆32
Total
Wild
∆32
Observed
388 (97%)
11 (2.75%)
1 (0.25%)
400
0.983
0.016
Observed Frequencies
0.97
0.027
0.002
1
Expected
387.105
12.788
0.105
400
Expected Frequencies
0.967
0.031
0.0002
1
X2=
0.002
0.250
7.573
 
Overall X2=
7.825337719
Overall (P-value) = 0.020

Discussion

Chemokine receptor CCR5 plays a critical role in the entrance of HIV to the host cells and accordingly in the progression of AIDS. Hence, CCR5 is considered as a potential target for both prevention and treatment of HIV infection. Discovery of CCR5∆32 has opened a new field in the treatment of HIV-1 infection. In this case, the investigation of allele distribution in various populations is informative [13]. The CCR5 variations could explain why some people are more susceptible to AIDS than others [11, 14]. Few studies have focused on the genetic susceptibility of Iranian population to HIV-1. The frequency of CCR5∆32 allele in the normal population of North East of Iran has not been investigated. Hence, in the present study, we describe the prevalence of CCR5∆32 among the Iranian population. Moreover, we observed a HWE deviation in this population. It could be due to some reasons, including: CCR5∆32 has a low allelic frequency, and a mixture genetic in this population.
The discuss origin of CCR5∆32 allele is still controversial. The CCR5∆32 allele is mostly considered in the Europeans population [15]. However, this allele has been observed in East and South-East Asian, African, and Indo-American populations [15]. Caucasians are widely distributed in Eurasia, the Middle East, and North Africa [16]. Moreover, the frequency of CCR5∆32 within the Caucasians is different [15]. Furthermore, the CCR5∆32 allele is rarely indicated in the population of North Africa and the Middle East Arabs. The allele distribution in the Europeans has been shown to be distributed in a north-south downhill manner. Several reasons have been noted for distribution of the allele in the Europeans such as population migration, genetic admixture and outbreaks of infectious diseases [17].
Phylogenetic studies have demonstrated that the Iranians are similar to population of northern India, the Greeks and some European populations such as Italian, English, German, Finn and Lapp [16]. However, the CCR5∆32 allele frequency in Iranian population is observed less than the Europeans [18]. Historical and phylogenetic evidence have suggested that Iranian and European populations are divided from a common ancestral population being called Indo-European [19].
According to several studies, the Vikings played a major role in the distribution of the CCR5∆32 allele in Europe. The CCR5∆32 allele is graphically distributed in Europe, Eurasia, and Anatolia in coincidence with the area which the Vikings were dominant [20, 21]. It seems that Vikings are involved in introducing this mutated allele and its related disease to the countries and changed its incidence in the target populations [20, 21]. There is also a strong positive association between CCR5∆32 allele prevalence and the geographic and climatic factors [15]. Historical data suggests that the more combination of Eastern population of Iran with the Mongol invaders and other Eastern nations could have diluted the CCR5∆32 allele prevalence. The high prevalence of the CCR5∆32 allele in the northern and the north-western population of Iran can be contributed to the age of the Vikings or can be due to the less combination with attackers whose allele prevalence was less than that population. The prevalence of CCR5∆32 allele is decreased from North to South of Iran, similarly, the allele prevalence both in North East (according to the results of this study) and in South East of Iran was very low [2224] (Table 3). This is while the prevalence of this allele was higher in the North and North West of Iran [24, 25]. In 2005, Gharagozloo et al. reported the prevalence rate of CCR5∆32 to be 0.0146 among normal individuals in the South of Iran [26]. In 2014, Rahimi et al. reported that CCR5∆32 allelic prevalence was 1.1 and 0.19% for heterozygous and homozygous respectively genotypes in populations of several provinces of Iran [18].
Table 3
Comparison of CCR5∆32 allele distribution in Iranian healthy individuals
Author
Geographical position in Iran
Provinces
Allele frequency
Number of
healthy individuals
HWE
Present study
Iran (North East)
Khorasan
0.0162
400
0.020
Arababadi et al., [23]
Iran (South East)
Kerman
0.0033
300
0.99
Shahbazi et al., [24]
Iran (North)
Golestan
0.0900
380
0002
Omrani et al., [25]
Iran (North West)
Uromia
0.0105
190
0.99
Gharagozloo et al., [26]
Iran (South)
Fars
0.0146
395
1.0
Rahimi et al., [18]
Iran
Hormozgan
0.0057
30
530
0.003
Gilan
20
East Azarbaijan
50
West Azarbaijan
50
Ghazvin
45
Tehran
100
Semnan
30
Kurdistan
35
Ghom
30
Isfahan
40
Yazd
30
Khorasan
40
Lorestan
30
Heydarifard et al., [27]
North
Gorgan
0.0150
300
0.7920
Bineshian et al., [28]
Between Center and North
Tehran
0
100
Abdolmohammadi et al., [29]
North
Golestan
0.072
455
0.004
In this case, the allele frequency in the north of Iran (Golestan Province) with different ethnicity and population is higher than another place in Iran. In this line, Shahbazi et al. and Abdolmohammadi et al. identified that allele frequency of CCR5∆32 were 0.09 and 0.072, respectively in north of Iran [24, 29]. Since Golestan Province is already located in the southeast of Caspian Sea, it is supposed to display an higher rate of this polymorphism but due to the presence of different ethnicities living (like Turkmen), the mutant genotype is more prevalent [27]. The different result between Iranian studies may due to genetic diversity among Iranian population [30, 31]. Investigation of genetic systems has been indicated a heterogeneity among Iranian population. Mehrjoo et al., in a genome-wide association study, indicated that there is a distinct genetic diversity and also heterogeneity of the population of Iranian [32]. Comparison of gene distributions with the small number of samples of Iranian population confirmed an intra-ethnic and wide overall genetic mixture in the Iranian population. The genetic diversity reflects the differences in the structure of Iranian populations [30]. Generally, Iran is an ethnically diverse population, comprising of different groups including Pars, Lur,, Kurd, Baloch, Arab, Turkmen, and Turk [30]. Moreover, the complete mtDNA sequence analysis exposed a high genetic diversity in the Iranian population [31].
Historians believe that the most Iranians are Aryan; however they have been mixed with different foreigners during the history, for example Macedonians, Arabs, Turks, and Mongols. Moreover, Iran has a key role in linking different populations in the Silk Road, between Asia and Europe [33]. Ongadi et al. in a systematic review analysis revealed that the CCR5Δ32 allele frequency is at 93% in Caucasians and 7% is in the other populations [34]. The frequencies of this allele in some European countries were demonstrated that is moderate such as Italy (3%), Cyprus (2.8%) and Greece (2.4%), but a high frequency (9.21%) was reported in southwest Germany [35, 36]. Moreover, this frequency is about 4% in Brazilian populations [37]. It is indicated that the distribution of CCR5-∆32 is very low in the south of Middle East and also Arabic countries. According to our study, we observed a low frequency of mutant allele in Iran that it is in almost agreement with the result observed from countries such as Saudi Arabia, and India (1%) [38, 39]. The frequency of CCR5-∆32 allele was indicated in Turkey (3.17%), Afghanistan (3.86%), Pakistan (2.86%) [40, 41].
On the other hand, approximately 0.8% of adults are living with HIV based on the latest data from the WHO [42]. In regions and countries, the burden of the epidemic is different [42]. The prevalence of adults living with HIV is 7.0, 1.5, 0.2, 0.2, 0.4, 0.9, 1.2 and < 0.1% in Eastern and Southern Africa, Western and Central Africa, Asia and the Pacific, Western and Central Europe and North America, Latin America, Eastern Europe and Central Asia, The Caribbean, and Middle East and North Africa [42]. Moreover, the prevalence of HIV among the general population in Iran remains low [42]. In Iran, the main populations at risk of HIV infection are people who inject drugs, prisoners and sex workers [43]. The general population category consisted mainly of research on blood donors in Iran [44]. In Bagheri’s systematic review, the prevalence of HIV in the general population was 0.00% [44]. Importantly, in a study by Haghdoost et al. is indicated that a change in the prevalence of HIV infection from people who inject drugs to the general population. This shift may due to the enhancing rate of premarital and also extramarital sexual contact, particularly with female sex workers in Iran [45]. It also demonstrated that HIV/AIDS burden was not distributed equally among different Iranian provinces, and in some provinces such as Kermanshah, Hormozgan, Lorestan, and Tehran it was more concentrated [46]. Remarkably, no case with HIV infection was detected in the general population of Mashhad [47]. Likewise, the prevalence of infection with HIV in the Iranian population of thalassemia and hemophilia and blood donors was low [48].
Beside genetic modifications, other critical immune factors that may prevent HIV-1 infection are certain chemokines and also their receptors. In this case, the CCR5 binding chemokines include CCL3, CCL4, and also CCL5 have a function as the main natural factors that act as a suppressor of HIV-1 [49]. CCL3L1 up-regulation results in the down-regulation of CCR5 and following the internalization of receptor [50]. The trans-activating function of Tax protein 2 is attributed to an increased secretion of CCL3L1 [49]. During human T-cell lymphotropic virus type 1 (HTLV)-1 and HTLV-2 infections with CCLs and CCRs, Tax1 and Tax2 may increase innate immunity in the extracellular environment, which may play a major role in regulating innate immunity during co-infection with HIV/ HTLV and inhibiting CCR5/HIV-1 [51]. The CCL3L1 down-regulates CCR5 for the entry of HIV-1, resulting in a long-term non-development status in co-infected patients with the high infection of HTLV-1 and 2 [52]. The most affected HTLV-1 cell is CD4+ T cell [53]. HTLV-1 and -2 are main co-pathogens among HIV-infected patients [54]. In this line, HTLV-2 and HTLV-1 infections can trigger the participation of innate HIV-1 immunity by modifying CCR5/HIV-1 binding and HIV-1 development in patients with co-infection [54]. In this regard, CCR5 down-regulation was reported for lymphocytes from HIV-1/HTLV-2 co-infected individuals [54]. High levels of co-infection with HIV-1/HTLV appear in HTLV-1-endemic regions, where HTLV-2 is transmitted by sharing the needle. In European and United States studies, individuals with HIV-1 and HTLV-2 co-infections were found to result in altered clinical outcomes, and also delayed development of AIDS [55, 56]. In contrast, there are several reports were indicated that co-infection with HTLV-1/HIV-1 is associated with faster AIDS clinical progression and shorter survival time and also have more risk to progress myelopathies as well as neurological disease [54, 55, 57, 58]. HTLV-I is widespread in a variety of geographic regions, including Japan, the Caribbean, South America, Africa and Northeastern Iran [5961]. HTLV-I is endemic in five Iranian provinces such as Khorasan Razavi (Mashhad), Northern Khorasan, Alborz, Eastern Azarbayejan, and Golestan [6163]. However, there is no report of co-infection HTLV-1 and HTLV-2 infection with HIV in Mashhad in the general population [47, 64]. Rahimi et al. indicated that HTLV-I/HIV co-infection may stimulate HIV replication and also could decrease the HTLV-I viral load, in infected cells in non intraveneous drug users in Mashhad [62].
In addition to general and main key population, there is a low risk of HIV-1 infection for HIV-1 laboratory workers as we all health care workers that are prolonged laboratory exposure to concentrated HIV-1 and also exposure to experiencing needle stick injuries in clinical and laboratory research [65, 66]. It is suggested that strict biosafety level 3 containment as well as practices are needed for work with HIV-1, particularly concentrated HIV-1 [65]. Although the frequency of HIV in the general population is low, it is higher in the high-risky populations such as persons who inject drugs, prisoners, and sex-workers. In this regard, the laboratories dealing with the latter group of populations are exposed to danger. Moreover, the lack of biosafety level 3 containment is another risk factor. Thus, the laboratories and the staffs researching on HIV are at risk, and most of the staffs are not interested to work in such a risky environment due to unwanted incidents. So, it is reasonable to employ the staffs, carrying the mutation (CCR5∆32), for working in such risky environments and blood samples.
In addition, the bioinformatics analysis indicated that mutated proteins lost three alpha helices, as the results of this changes degraded in the cells. Nevertheless, modeling indicated that the truncated protein also have the required domains for virus attachment and these domains did not show major conformational alterations with the wild type ones, so we can conclude that displaying the truncated protein on the cell surface may be a possible way of virus entry [5]. Thus, defective protein destruction in the cell and the absence of its surface display can be the main reason for CCR5∆32 variants resistance. These findings can suggest strategies for combating against HIV infections based on the prevention of expression or surface display of CCR5 [6772]. RNAi technology can be used to prevent of CCR5 expression or the masking of CCR5 on the cell surface which may be considered as research area to the prevention of HIV infection. Nowadays, various therapies are used to treat HIV-1 by targeting CCR5 receptors like CCR5 inhibitors. The CCR5 inhibitors include various agents such as maraviroc (MVC) (FDA approved), CMPD167, vicriviroc (VVC), aplaviroc (AVC), VCH-286, TAK-779, G-protein-coupled CCR5 receptors, zinc finger nucleases, and cell-specific RNA aptamer [7378]. These inhibitors change the shape of CCR5 and inhibit HIV-1 entry to target cells by preventing the binding of viral protein gp120 to the CCR5 [70]. Moreover, it is indicated that introduction of the CCR5∆32/∆32 in induced pluripotent stem cells by the combination of clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein nuclease (Cas)-9 system and a PiggyBac transposon lead to a resistance to the infection of HIV/AIDS. Moreover, a resistance was established by engineered induced pluripotent stem cells-derived phagocytic cells (monocytes and the macrophages) [67]. Based on the previous studies, a tropism-dependent resistance against HIV/AIDS infection is described in disrupts human CCR5 T-cells. In this line, in CCR5-modified cells, targeting of CCR5 via CRISPR-Cas9 technology, reduced tropic-dependent resistance against HIV-1/AIDS and has non-cytotoxic effect on the viability of cells [68, 71]. Furthermore, CRISPR-Cas9 system packaged with lentiviral vectors exposed hopeful outcomes in reducing HIV-1 infection [69].

Conclusions

The CCR5∆32 allele plays a main role in the resistance to HIV-1 infection, as a natural selection allele, and also its distribution is used for geodetic survey data. Aside from its importance in the geographic distribution, the use of this mutation has brought new hope for eradicating HIV infection. Novel therapies have led to significant progress in the treatment of HIV-1 infection, whereas some side effects such as drug-drug interactions, substantial toxicity, difficulties in adherence, and increased cost remain. Therefore, with the knowledge of individuals’ genetic variations, the most efficient treatment could be chosen, which reduces drug costs and side effects with appropriate drug dosing. Furthermore, for the first time, our study revealed the low prevalence of this mutation in the normal population of North Eastern Iran (Khorasan Province) and consequently concluded that there is a HIV-1 infection. Therefore, in these areas, more attention and preventive steps should be taken to prevent HIV infection. In addition, based on the controversially results in studies, more investigation is needed to evaluate HTLV prevalence, especially HTLV-1 and its influence on the viral load of HIV as well as AIDS development in co-infected patients in endemic area such as Khorasan, Iran. Even though there are no findings of the prevalence co-infection with HTLV/HIV in Iran, which can due to low prevalence of HIV in this area, patients and healthy persons need screening for potential clinical manifestations, particularly neurological diseases. To our knowledge and based on the results of previous studies, we could not find any association between prevalence of HIV and HTLV-1 infection and CCR5∆32 in Iran. The complete and accurate information according to the prevalence of HIV can help health authorities to design more successful plans in the general population. Since the prevalence of HIV in this area remains low, the implementation of health policies, public awareness, free HIV counseling and testing services appear to have led to this low prevalence. Conclusively, these findings provide a new understanding for scientists to define future research in the field of immunobiology of HIV-1 in Iranian population.

Acknowledgements

We thank Professor Majid Ghayour-Mobarhan for his helps by giving us samples.
The study was approved by the Ethics Committee of the Mashhad university of science (ethical approval code: IR.MUMS.REC.1393.964).
In this respect, written informed consent has been received from all participants.
A written informed consent form was signed by all individuals whose data is described.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Taylor MFJ, Shen Y, Kreitman ME. A population genetic test of selection at the molecular-level. Science. 1995;270(5241):1497–9.PubMedCrossRef Taylor MFJ, Shen Y, Kreitman ME. A population genetic test of selection at the molecular-level. Science. 1995;270(5241):1497–9.PubMedCrossRef
2.
Zurück zum Zitat Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, Cayanan C, Maddon PJ, Koup RA, Moore JP. HIV-1 entry into CD4 sup+ cells is mediated by the chemokine receptor CC-CKR-5. Nature. 1996;381(6584):673.CrossRef Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, Cayanan C, Maddon PJ, Koup RA, Moore JP. HIV-1 entry into CD4 sup+ cells is mediated by the chemokine receptor CC-CKR-5. Nature. 1996;381(6584):673.CrossRef
3.
Zurück zum Zitat Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell. 1996;86(3):367–77.PubMedCrossRef Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell. 1996;86(3):367–77.PubMedCrossRef
4.
Zurück zum Zitat Ungvári I, Tölgyesi G, Semsei ÁF, Nagy A, Radosits K, Keszei M, Kozma GT, Falus A, Szalai C. CCR5Δ32 mutation, mycoplasma pneumoniae infection, and asthma. J Allergy Clin Immunol. 2007;119(6):1545–7.PubMedCrossRef Ungvári I, Tölgyesi G, Semsei ÁF, Nagy A, Radosits K, Keszei M, Kozma GT, Falus A, Szalai C. CCR5Δ32 mutation, mycoplasma pneumoniae infection, and asthma. J Allergy Clin Immunol. 2007;119(6):1545–7.PubMedCrossRef
5.
Zurück zum Zitat Michael NL, Chang G, Louie LG, Mascola JR, Dondero D, Birx DL, Sheppard HW. The role of viral phenotype and CCR-5 gene defects in HIV-1 transmission and disease progression. Nat Med. 1997;3(3):338–40.PubMedCrossRef Michael NL, Chang G, Louie LG, Mascola JR, Dondero D, Birx DL, Sheppard HW. The role of viral phenotype and CCR-5 gene defects in HIV-1 transmission and disease progression. Nat Med. 1997;3(3):338–40.PubMedCrossRef
6.
Zurück zum Zitat Bouhlal H, Latry V, Requena M, Aubry S, Kaveri SV, Kazatchkine MD, Belec L, Hocini H. Natural antibodies to CCR5 from breast milk block infection of macrophages and dendritic cells with primary R5-tropic HIV-1. J Immunol. 2005;174(11):7202–9.PubMedCrossRef Bouhlal H, Latry V, Requena M, Aubry S, Kaveri SV, Kazatchkine MD, Belec L, Hocini H. Natural antibodies to CCR5 from breast milk block infection of macrophages and dendritic cells with primary R5-tropic HIV-1. J Immunol. 2005;174(11):7202–9.PubMedCrossRef
7.
Zurück zum Zitat Oh D-Y, Jessen H, Kücherer C, Neumann K, Oh N, Poggensee G, Bartmeyer B, Jessen A, Pruss A, Schumann RR. CCR5Δ32 genotypes in a German HIV-1 seroconverter cohort and report of HIV-1 infection in a CCR5Δ32 homozygous individual. PLoS One. 2008;3(7):e2747.PubMedPubMedCentralCrossRef Oh D-Y, Jessen H, Kücherer C, Neumann K, Oh N, Poggensee G, Bartmeyer B, Jessen A, Pruss A, Schumann RR. CCR5Δ32 genotypes in a German HIV-1 seroconverter cohort and report of HIV-1 infection in a CCR5Δ32 homozygous individual. PLoS One. 2008;3(7):e2747.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Agrawal L, Lu X, Qingwen J, VanHorn-Ali Z, Nicolescu IV, McDermott DH, Murphy PM, Alkhatib G. Role for CCR5Δ32 protein in resistance to R5, R5X4, and X4 human immunodeficiency virus type 1 in primary CD4+ cells. J Virol. 2004;78(5):2277–87.PubMedPubMedCentralCrossRef Agrawal L, Lu X, Qingwen J, VanHorn-Ali Z, Nicolescu IV, McDermott DH, Murphy PM, Alkhatib G. Role for CCR5Δ32 protein in resistance to R5, R5X4, and X4 human immunodeficiency virus type 1 in primary CD4+ cells. J Virol. 2004;78(5):2277–87.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Sandford AJ, Zhu S, Bai TR, FitzGerald JM, Paré PD. The role of the CC chemokine receptor-5 Δ32 polymorphism in asthma and in the production of regulated on activation, normal T cells expressed and secreted. J Allergy Clin Immunol. 2001;108(1):69–73.PubMedCrossRef Sandford AJ, Zhu S, Bai TR, FitzGerald JM, Paré PD. The role of the CC chemokine receptor-5 Δ32 polymorphism in asthma and in the production of regulated on activation, normal T cells expressed and secreted. J Allergy Clin Immunol. 2001;108(1):69–73.PubMedCrossRef
10.
Zurück zum Zitat Wu L, Paxton WA, Kassam N, Ruffing N, Rottman JB, Sullivan N, Choe H, Sodroski J, Newman W, Koup RA, et al. CCR5 levels and expression pattern correlate with infectability by macrophage-tropic HIV-1, in vitro. J Exp Med. 1997;185(9):1681–91.PubMedPubMedCentralCrossRef Wu L, Paxton WA, Kassam N, Ruffing N, Rottman JB, Sullivan N, Choe H, Sodroski J, Newman W, Koup RA, et al. CCR5 levels and expression pattern correlate with infectability by macrophage-tropic HIV-1, in vitro. J Exp Med. 1997;185(9):1681–91.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A, Allers K, Schneider T, Hofmann J, Kucherer C, Blau O, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009;360(7):692–8.PubMedCrossRef Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A, Allers K, Schneider T, Hofmann J, Kucherer C, Blau O, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009;360(7):692–8.PubMedCrossRef
12.
Zurück zum Zitat Ghayour-Mobarhan M, Moohebati M, Esmaily H, Ebrahimi M, Parizadeh SM, Heidari-Bakavoli AR, Safarian M, Mokhber N, Nematy M, Saber H, et al. Mashhad stroke and heart atherosclerotic disorder (MASHAD) study: design, baseline characteristics and 10-year cardiovascular risk estimation. Int J Public Health. 2015;60(5):561–72.PubMedCrossRef Ghayour-Mobarhan M, Moohebati M, Esmaily H, Ebrahimi M, Parizadeh SM, Heidari-Bakavoli AR, Safarian M, Mokhber N, Nematy M, Saber H, et al. Mashhad stroke and heart atherosclerotic disorder (MASHAD) study: design, baseline characteristics and 10-year cardiovascular risk estimation. Int J Public Health. 2015;60(5):561–72.PubMedCrossRef
13.
Zurück zum Zitat Karakaya G, YILDIRAN FAB, ARICA ŞÇ. Investigation of the frequency of the mutant CCR5-Δ32 allele related to HIV resistance in Turkey. Turk J Med Sci. 2013;43(6):886–90.CrossRef Karakaya G, YILDIRAN FAB, ARICA ŞÇ. Investigation of the frequency of the mutant CCR5-Δ32 allele related to HIV resistance in Turkey. Turk J Med Sci. 2013;43(6):886–90.CrossRef
16.
Zurück zum Zitat Nei M, Roychoudhury AK. Evolutionary relationships of human populations on a global scale. Mol Biol Evol. 1993;10(5):927–43.PubMed Nei M, Roychoudhury AK. Evolutionary relationships of human populations on a global scale. Mol Biol Evol. 1993;10(5):927–43.PubMed
17.
Zurück zum Zitat Galvani AP, Slatkin M. Evaluating plague and smallpox as historical selective pressures for the CCR5-Δ32 HIV-resistance allele. Proc Natl Acad Sci U S A. 2003;100(25):15276–9.PubMedPubMedCentralCrossRef Galvani AP, Slatkin M. Evaluating plague and smallpox as historical selective pressures for the CCR5-Δ32 HIV-resistance allele. Proc Natl Acad Sci U S A. 2003;100(25):15276–9.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Rahimi H, Farajollahi MM, Hosseini A. Distribution of the mutated delta 32 allele of CCR5 co-receptor gene in Iranian population. Med J Islam Repub Iran. 2014;28:140.PubMedPubMedCentral Rahimi H, Farajollahi MM, Hosseini A. Distribution of the mutated delta 32 allele of CCR5 co-receptor gene in Iranian population. Med J Islam Repub Iran. 2014;28:140.PubMedPubMedCentral
19.
Zurück zum Zitat Kortlandt F. The spread of the indo-Europeans. JIES. 1990;18:131–40. Kortlandt F. The spread of the indo-Europeans. JIES. 1990;18:131–40.
20.
Zurück zum Zitat Lucotte G. Distribution of the CCR5 gene 32-basepair deletion in West Europe. A hypothesis about the possible dispersion of the mutation by the Vikings in historical times. Hum Immunol. 2001;62(9):933–6.PubMedCrossRef Lucotte G. Distribution of the CCR5 gene 32-basepair deletion in West Europe. A hypothesis about the possible dispersion of the mutation by the Vikings in historical times. Hum Immunol. 2001;62(9):933–6.PubMedCrossRef
21.
Zurück zum Zitat Lucotte G, Dieterlen F. More about the Viking hypothesis of origin of the Δ32 mutation in the CCR5 gene conferring resistance to HIV-1 infection. Infect Genet Evol. 2003;3(4):293–5.PubMedCrossRef Lucotte G, Dieterlen F. More about the Viking hypothesis of origin of the Δ32 mutation in the CCR5 gene conferring resistance to HIV-1 infection. Infect Genet Evol. 2003;3(4):293–5.PubMedCrossRef
22.
Zurück zum Zitat Abousaidi H, Vazirinejad R, Arababadi MK, Rafatpanah H, Pourfathollah AA, Derakhshan R, Daneshmandi S, Hassanshahi G. Lack of association between chemokine receptor 5 (CCR5) d32 mutation and pathogenesis of asthma in Iranian patients. South Med J. 2011;104(6):422–5.PubMedCrossRef Abousaidi H, Vazirinejad R, Arababadi MK, Rafatpanah H, Pourfathollah AA, Derakhshan R, Daneshmandi S, Hassanshahi G. Lack of association between chemokine receptor 5 (CCR5) d32 mutation and pathogenesis of asthma in Iranian patients. South Med J. 2011;104(6):422–5.PubMedCrossRef
23.
Zurück zum Zitat Arababadi MK, Hassanshahi G, Azin H, Salehabad VA, Araste M, Pourali R, Nekhei Z. No association between CCR5-Δ32 mutation and multiple sclerosis in patients of southeastern Iran. Lab Medicine. 2010;41(1):31–3.CrossRef Arababadi MK, Hassanshahi G, Azin H, Salehabad VA, Araste M, Pourali R, Nekhei Z. No association between CCR5-Δ32 mutation and multiple sclerosis in patients of southeastern Iran. Lab Medicine. 2010;41(1):31–3.CrossRef
24.
Zurück zum Zitat Shahbazi M, Ebadi H, Fathi D, Roshandel D, Mahamadhoseeni M, Rashidbaghan A, Mahammadi N, Mahammadi MR, Zamani M. CCR5-Delta32 allele is associated with the risk of developing multiple sclerosis in the Iranian population. Cell Mol Neurobiol. 2009;29(8):1205–9.PubMedCrossRef Shahbazi M, Ebadi H, Fathi D, Roshandel D, Mahamadhoseeni M, Rashidbaghan A, Mahammadi N, Mahammadi MR, Zamani M. CCR5-Delta32 allele is associated with the risk of developing multiple sclerosis in the Iranian population. Cell Mol Neurobiol. 2009;29(8):1205–9.PubMedCrossRef
25.
Zurück zum Zitat Omrani D. Frequency of CCR5? 32 variant in north-west of Iran. J Sci I R Iran. 2009;20(2):105–10. Omrani D. Frequency of CCR5? 32 variant in north-west of Iran. J Sci I R Iran. 2009;20(2):105–10.
26.
Zurück zum Zitat Gharagozloo M, Doroudchi M, Farjadian S, Pezeshki AM, Ghaderi A. The frequency of CCR5Delta32 and CCR2-64I in southern Iranian normal population. Immunol Lett. 2005;96(2):277–81.PubMedCrossRef Gharagozloo M, Doroudchi M, Farjadian S, Pezeshki AM, Ghaderi A. The frequency of CCR5Delta32 and CCR2-64I in southern Iranian normal population. Immunol Lett. 2005;96(2):277–81.PubMedCrossRef
27.
Zurück zum Zitat Heydarifard Z, Tabarraei A, Moradi A. Polymorphisms in CCR5&#x0394;32 and Risk of HIV-1 Infection in the Southeast of Caspian Sea, Iran. Dis Markers. 2017;2017:5.CrossRef Heydarifard Z, Tabarraei A, Moradi A. Polymorphisms in CCR5&#x0394;32 and Risk of HIV-1 Infection in the Southeast of Caspian Sea, Iran. Dis Markers. 2017;2017:5.CrossRef
28.
Zurück zum Zitat Bineshian F, Hosseini A, Sharifi Z, Aghaie A. A study on the association between CCRΔ32 mutation and HCV infection in Iranian patients. Avicenna J Med Biotechnol. 2018;10(4):261–4.PubMedPubMedCentral Bineshian F, Hosseini A, Sharifi Z, Aghaie A. A study on the association between CCRΔ32 mutation and HCV infection in Iranian patients. Avicenna J Med Biotechnol. 2018;10(4):261–4.PubMedPubMedCentral
29.
Zurück zum Zitat Abdolmohammadi R, Shahbazi Azar S, Khosravi A, Shahbazi M. CCR5 polymorphism as a protective factor for hepatocellular carcinoma in hepatitis B virus-infected Iranian patients. Asian Pac J Cancer Prev. 2016;17(10):4643–6.PubMedPubMedCentral Abdolmohammadi R, Shahbazi Azar S, Khosravi A, Shahbazi M. CCR5 polymorphism as a protective factor for hepatocellular carcinoma in hepatitis B virus-infected Iranian patients. Asian Pac J Cancer Prev. 2016;17(10):4643–6.PubMedPubMedCentral
30.
Zurück zum Zitat Amirshahi P, Sunderland E, Farhud D, Daneshmand P, Papiha S. Population genetics of the peoples of Iran I. Genetic polymorphisms of blood groups, serum proteins and red cell enzymes. Int J Anthropol. 1992;7:1–10.CrossRef Amirshahi P, Sunderland E, Farhud D, Daneshmand P, Papiha S. Population genetics of the peoples of Iran I. Genetic polymorphisms of blood groups, serum proteins and red cell enzymes. Int J Anthropol. 1992;7:1–10.CrossRef
31.
Zurück zum Zitat Derenko M, Malyarchuk B, Bahmanimehr A, Denisova G, Perkova M, Farjadian S, Yepiskoposyan L. Complete mitochondrial DNA diversity in Iranians. PLoS One. 2013;8(11):e80673.PubMedPubMedCentralCrossRef Derenko M, Malyarchuk B, Bahmanimehr A, Denisova G, Perkova M, Farjadian S, Yepiskoposyan L. Complete mitochondrial DNA diversity in Iranians. PLoS One. 2013;8(11):e80673.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Mehrjoo Z, Fattahi Z, Beheshtian M, Mohseni M, Poustchi H, Ardalani F, Jalalvand K, Arzhangi S, Mohammadi Z, Khoshbakht S, et al. Distinct genetic variation and heterogeneity of the Iranian population. PLoS Genet. 2019;15(9):e1008385.PubMedPubMedCentralCrossRef Mehrjoo Z, Fattahi Z, Beheshtian M, Mohseni M, Poustchi H, Ardalani F, Jalalvand K, Arzhangi S, Mohammadi Z, Khoshbakht S, et al. Distinct genetic variation and heterogeneity of the Iranian population. PLoS Genet. 2019;15(9):e1008385.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Farjadian S, Ghaderi A. Iranian Lurs genetic diversity: an anthropological view based on HLA class II profiles. Iran J Immunol. 2006;3(3):106–13.PubMed Farjadian S, Ghaderi A. Iranian Lurs genetic diversity: an anthropological view based on HLA class II profiles. Iran J Immunol. 2006;3(3):106–13.PubMed
34.
Zurück zum Zitat Ongadi B, Obiero G, Lihana R, Kiiru J. Distribution of genetic polymorphism in the CCR5 among Caucasians, Asians and Africans: a systematic review and meta-analysis. Open J Genet. 2018;08:54–66.CrossRef Ongadi B, Obiero G, Lihana R, Kiiru J. Distribution of genetic polymorphism in the CCR5 among Caucasians, Asians and Africans: a systematic review and meta-analysis. Open J Genet. 2018;08:54–66.CrossRef
35.
Zurück zum Zitat Hutter G, Bluthgen C, Elvers-Hornung S, Kluter H, Bugert P. Distribution of the CCR5-delta32 deletion in Southwest Germany. Anthropol Anz. 2015;72(3):303–9.PubMedCrossRef Hutter G, Bluthgen C, Elvers-Hornung S, Kluter H, Bugert P. Distribution of the CCR5-delta32 deletion in Southwest Germany. Anthropol Anz. 2015;72(3):303–9.PubMedCrossRef
36.
Zurück zum Zitat Martinson JJ, Chapman NH, Rees DC, Liu YT, Clegg JB. Global distribution of the CCR5 gene 32-basepair deletion. Nat Genet. 1997;16(1):100–3.PubMedCrossRef Martinson JJ, Chapman NH, Rees DC, Liu YT, Clegg JB. Global distribution of the CCR5 gene 32-basepair deletion. Nat Genet. 1997;16(1):100–3.PubMedCrossRef
37.
Zurück zum Zitat Silva-Carvalho WH, de Moura RR, Coelho AV, Crovella S, Guimaraes RL. Frequency of the CCR5-delta32 allele in Brazilian populations: a systematic literature review and meta-analysis. Infect Genet Evol. 2016;43:101–7.PubMedCrossRef Silva-Carvalho WH, de Moura RR, Coelho AV, Crovella S, Guimaraes RL. Frequency of the CCR5-delta32 allele in Brazilian populations: a systematic literature review and meta-analysis. Infect Genet Evol. 2016;43:101–7.PubMedCrossRef
38.
Zurück zum Zitat Husain S, Goila R, Shahi S, Banerjea A. First report of a healthy Indian heterozygous for delta 32 mutant of HIV-1 co-receptor-CCR5 gene. Gene. 1998;207(2):141–7.PubMedCrossRef Husain S, Goila R, Shahi S, Banerjea A. First report of a healthy Indian heterozygous for delta 32 mutant of HIV-1 co-receptor-CCR5 gene. Gene. 1998;207(2):141–7.PubMedCrossRef
39.
Zurück zum Zitat Jawdat D, Alarifi M, Al-Turki A, Alalwan A, Al-Amro F, Atallah N, Muallimi MA, Al-Balwi M, Hajeer A. 82-p: the prevalence of CCR5 delta 32 mutation in Saudi Arabia. Hum Immunol. 2013;74:108.CrossRef Jawdat D, Alarifi M, Al-Turki A, Alalwan A, Al-Amro F, Atallah N, Muallimi MA, Al-Balwi M, Hajeer A. 82-p: the prevalence of CCR5 delta 32 mutation in Saudi Arabia. Hum Immunol. 2013;74:108.CrossRef
40.
Zurück zum Zitat Balci A, Yegin Z, Koc H. Prevalence of HIV/AIDS protective alleles (CCR5-Δ32, CCR2-64I, and SDF1-3’A) in Turkish population. Res J Biol. 2017;5(2):36-42. Balci A, Yegin Z, Koc H. Prevalence of HIV/AIDS protective alleles (CCR5-Δ32, CCR2-64I, and SDF1-3’A) in Turkish population. Res J Biol. 2017;5(2):36-42.
41.
Zurück zum Zitat Solloch UV, Lang K, Lange V, Böhme I, Schmidt AH, Sauter J. Frequencies of gene variant CCR5-Δ32 in 87 countries based on next-generation sequencing of 1.3 million individuals sampled from 3 national DKMS donor centers. Hum Immunol. 2017;78(11):710–7.PubMedCrossRef Solloch UV, Lang K, Lange V, Böhme I, Schmidt AH, Sauter J. Frequencies of gene variant CCR5-Δ32 in 87 countries based on next-generation sequencing of 1.3 million individuals sampled from 3 national DKMS donor centers. Hum Immunol. 2017;78(11):710–7.PubMedCrossRef
43.
Zurück zum Zitat Sharifi H, Mirzazadeh A, Shokoohi M, Karamouzian M, Khajehkazemi R, Navadeh S, Fahimfar N, Danesh A, Osooli M, McFarland W, et al. Estimation of HIV incidence and its trend in three key populations in Iran. PLoS One. 2018;13(11):e0207681.PubMedPubMedCentralCrossRef Sharifi H, Mirzazadeh A, Shokoohi M, Karamouzian M, Khajehkazemi R, Navadeh S, Fahimfar N, Danesh A, Osooli M, McFarland W, et al. Estimation of HIV incidence and its trend in three key populations in Iran. PLoS One. 2018;13(11):e0207681.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Bagheri Amiri F, Mostafavi E, Mirzazadeh A. HIV, HBV and HCV Coinfection prevalence in Iran--a systematic review and meta-analysis. PLoS One. 2016;11(3):e0151946.PubMedPubMedCentralCrossRef Bagheri Amiri F, Mostafavi E, Mirzazadeh A. HIV, HBV and HCV Coinfection prevalence in Iran--a systematic review and meta-analysis. PLoS One. 2016;11(3):e0151946.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Haghdoost A, Mostafavi E, Mirzazadeh A, Sajadi L, Navadeh S, Feizzadeh A, Fahimfar N, Kamali K, Namdari H, Sedaghat A. Modelling of HIV/AIDS in Iran up to 2014. J AIDS HIV Res. 2011;3:231–9.CrossRef Haghdoost A, Mostafavi E, Mirzazadeh A, Sajadi L, Navadeh S, Feizzadeh A, Fahimfar N, Kamali K, Namdari H, Sedaghat A. Modelling of HIV/AIDS in Iran up to 2014. J AIDS HIV Res. 2011;3:231–9.CrossRef
46.
Zurück zum Zitat Moradi G, Piroozi B, Alinia C, Akbarpour S, Gouya M, Saadi S, Mohamadi A, Kazaerooni P. Incidence, mortality, and burden of HIV/AIDS and its geographical distribution in Iran during 2008-2016. Iran J Public Health. 2019;48:1–9. Moradi G, Piroozi B, Alinia C, Akbarpour S, Gouya M, Saadi S, Mohamadi A, Kazaerooni P. Incidence, mortality, and burden of HIV/AIDS and its geographical distribution in Iran during 2008-2016. Iran J Public Health. 2019;48:1–9.
47.
Zurück zum Zitat Miri R, Ahmadi Ghezeldasht S, Mosavat A, Hedayati-Moghaddam MR. No evidence of HIV infection among the general population of Mashhad, Northeast of Iran. Jundishapur J Microbiol. 2017;10(3):e43655. Miri R, Ahmadi Ghezeldasht S, Mosavat A, Hedayati-Moghaddam MR. No evidence of HIV infection among the general population of Mashhad, Northeast of Iran. Jundishapur J Microbiol. 2017;10(3):e43655.
48.
Zurück zum Zitat Rezvan H, Abolghassemi H, Kafiabad SA. Transfusion-transmitted infections among multitransfused patients in Iran: a review. Transfus Med. 2007;17(6):425–33.PubMedCrossRef Rezvan H, Abolghassemi H, Kafiabad SA. Transfusion-transmitted infections among multitransfused patients in Iran: a review. Transfus Med. 2007;17(6):425–33.PubMedCrossRef
49.
Zurück zum Zitat Pilotti E, Bianchi MV, De Maria A, Bozzano F, Romanelli MG, Bertazzoni U, Casoli C. HTLV-1/−2 and HIV-1 co-infections: retroviral interference on host immune status. Front Microbiol. 2013;4:372.PubMedPubMedCentralCrossRef Pilotti E, Bianchi MV, De Maria A, Bozzano F, Romanelli MG, Bertazzoni U, Casoli C. HTLV-1/−2 and HIV-1 co-infections: retroviral interference on host immune status. Front Microbiol. 2013;4:372.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Townson JR, Barcellos LF, Nibbs RJ. Gene copy number regulates the production of the human chemokine CCL3-L1. Eur J Immunol. 2002;32(10):3016–26.PubMedCrossRef Townson JR, Barcellos LF, Nibbs RJ. Gene copy number regulates the production of the human chemokine CCL3-L1. Eur J Immunol. 2002;32(10):3016–26.PubMedCrossRef
51.
Zurück zum Zitat Oo Z, Barrios CS, Castillo L, Beilke MA. High levels of CC-chemokine expression and downregulated levels of CCR5 during HIV-1/HTLV-1 and HIV-1/HTLV-2 coinfections. J Med Virol. 2015;87(5):790–7.PubMedCrossRef Oo Z, Barrios CS, Castillo L, Beilke MA. High levels of CC-chemokine expression and downregulated levels of CCR5 during HIV-1/HTLV-1 and HIV-1/HTLV-2 coinfections. J Med Virol. 2015;87(5):790–7.PubMedCrossRef
52.
Zurück zum Zitat Pilotti E, Elviri L, Vicenzi E, Bertazzoni U, Re MC, Allibardi S, Poli G, Casoli C. Postgenomic up-regulation of CCL3L1 expression in HTLV-2–infected persons curtails HIV-1 replication. Blood. 2006;109(5):1850–6.PubMedCrossRef Pilotti E, Elviri L, Vicenzi E, Bertazzoni U, Re MC, Allibardi S, Poli G, Casoli C. Postgenomic up-regulation of CCL3L1 expression in HTLV-2–infected persons curtails HIV-1 replication. Blood. 2006;109(5):1850–6.PubMedCrossRef
53.
Zurück zum Zitat Rahimzadegan M, Abedi F, Rezaei SA, Ghadimi R. HTLV-1: ancient virus, new challenges. Rev Clin Med. 2014;1(3):141–8. Rahimzadegan M, Abedi F, Rezaei SA, Ghadimi R. HTLV-1: ancient virus, new challenges. Rev Clin Med. 2014;1(3):141–8.
54.
Zurück zum Zitat Beilke MA. Retroviral coinfections: HIV and HTLV: taking stock of more than a quarter century of research. AIDS Res Hum Retrovir. 2012;28(2):139–47.PubMedCrossRefPubMedCentral Beilke MA. Retroviral coinfections: HIV and HTLV: taking stock of more than a quarter century of research. AIDS Res Hum Retrovir. 2012;28(2):139–47.PubMedCrossRefPubMedCentral
55.
Zurück zum Zitat Beilke MA, Theall KP, O'Brien M, Clayton JL, Benjamin SM, Winsor EL, Kissinger PJ. Clinical outcomes and disease progression among patients coinfected with HIV and human T lymphotropic virus types 1 and 2. Clin Infect Dis. 2004;39(2):256–63.PubMedCrossRef Beilke MA, Theall KP, O'Brien M, Clayton JL, Benjamin SM, Winsor EL, Kissinger PJ. Clinical outcomes and disease progression among patients coinfected with HIV and human T lymphotropic virus types 1 and 2. Clin Infect Dis. 2004;39(2):256–63.PubMedCrossRef
56.
Zurück zum Zitat Turci M, Pilotti E, Ronzi P, Magnani G, Boschini A, Parisi SG, Zipeto D, Lisa A, Casoli C, Bertazzoni U. Coinfection with HIV-1 and human T-Cell lymphotropic virus type II in intravenous drug users is associated with delayed progression to AIDS. J Acquir Immune Defic Syndr (1999). 2006;41(1):100–6.CrossRef Turci M, Pilotti E, Ronzi P, Magnani G, Boschini A, Parisi SG, Zipeto D, Lisa A, Casoli C, Bertazzoni U. Coinfection with HIV-1 and human T-Cell lymphotropic virus type II in intravenous drug users is associated with delayed progression to AIDS. J Acquir Immune Defic Syndr (1999). 2006;41(1):100–6.CrossRef
57.
Zurück zum Zitat Brites C, Alencar R, Gusmao R, Pedroso C, Netto EM, Pedral-Sampaio D, Badaro R. Co-infection with HTLV-1 is associated with a shorter survival time for HIV-1-infected patients in Bahia, Brazil. Aids. 2001;15(15):2053–5.PubMedCrossRef Brites C, Alencar R, Gusmao R, Pedroso C, Netto EM, Pedral-Sampaio D, Badaro R. Co-infection with HTLV-1 is associated with a shorter survival time for HIV-1-infected patients in Bahia, Brazil. Aids. 2001;15(15):2053–5.PubMedCrossRef
58.
59.
Zurück zum Zitat Hedayati-Moghaddam MR, Fathimoghadam F, Eftekharzadeh Mashhadi I, Soghandi L, Bidkhori HR. Epidemiology of HTLV-1 in Neyshabour, northeast of Iran. Iran Red Crescent Med J. 2011;13(6):424–7.PubMedPubMedCentral Hedayati-Moghaddam MR, Fathimoghadam F, Eftekharzadeh Mashhadi I, Soghandi L, Bidkhori HR. Epidemiology of HTLV-1 in Neyshabour, northeast of Iran. Iran Red Crescent Med J. 2011;13(6):424–7.PubMedPubMedCentral
60.
Zurück zum Zitat Proietti FA, Carneiro-Proietti AB, Catalan-Soares BC, Murphy EL. Global epidemiology of HTLV-I infection and associated diseases. Oncogene. 2005;24(39):6058–68.PubMedCrossRef Proietti FA, Carneiro-Proietti AB, Catalan-Soares BC, Murphy EL. Global epidemiology of HTLV-I infection and associated diseases. Oncogene. 2005;24(39):6058–68.PubMedCrossRef
61.
Zurück zum Zitat Rafatpanah H, Hedayati-Moghaddam MR, Fathimoghadam F, Bidkhori HR, Shamsian SK, Ahmadi S, Sohgandi L, Azarpazhooh MR, Rezaee SA, Farid R, et al. High prevalence of HTLV-I infection in Mashhad, Northeast Iran: a population-based seroepidemiology survey. J Clin Virol. 2011;52(3):172–6.PubMedCrossRef Rafatpanah H, Hedayati-Moghaddam MR, Fathimoghadam F, Bidkhori HR, Shamsian SK, Ahmadi S, Sohgandi L, Azarpazhooh MR, Rezaee SA, Farid R, et al. High prevalence of HTLV-I infection in Mashhad, Northeast Iran: a population-based seroepidemiology survey. J Clin Virol. 2011;52(3):172–6.PubMedCrossRef
62.
Zurück zum Zitat Rahimi H, Rezaee SA, Valizade N, Vakili R, Rafatpanah H. Assessment of HTLV-I proviral load, HIV viral load and CD4 T cell count in infected subjects; with an emphasis on viral replication in co-infection. Iran J Basic Med Sci. 2014;17(1):49–54.PubMedPubMedCentral Rahimi H, Rezaee SA, Valizade N, Vakili R, Rafatpanah H. Assessment of HTLV-I proviral load, HIV viral load and CD4 T cell count in infected subjects; with an emphasis on viral replication in co-infection. Iran J Basic Med Sci. 2014;17(1):49–54.PubMedPubMedCentral
63.
Zurück zum Zitat Kalavi K, Moradi A, Tabarraei A. Population-based Seroprevalence of HTLV-I infection in Golestan Province, south east of Caspian Sea, Iran. Iran J Basic Med Sci. 2013;16(3):225–8.PubMedPubMedCentral Kalavi K, Moradi A, Tabarraei A. Population-based Seroprevalence of HTLV-I infection in Golestan Province, south east of Caspian Sea, Iran. Iran J Basic Med Sci. 2013;16(3):225–8.PubMedPubMedCentral
64.
Zurück zum Zitat Rafatpanah H, Fathimoghadam F, Shahabi M, Eftekharzadeh I, Hedayati-Moghaddam M, Valizadeh N, Tadayon M, Shamsian SA, Bidkhori H, Miri R, et al. No evidence of HTLV-II infection among Immonoblot indeterminate samples using nested PCR in Mashhad, northeast of Iran. Iran J Basic Med Sci. 2013;16(3):229–34.PubMedPubMedCentral Rafatpanah H, Fathimoghadam F, Shahabi M, Eftekharzadeh I, Hedayati-Moghaddam M, Valizadeh N, Tadayon M, Shamsian SA, Bidkhori H, Miri R, et al. No evidence of HTLV-II infection among Immonoblot indeterminate samples using nested PCR in Mashhad, northeast of Iran. Iran J Basic Med Sci. 2013;16(3):229–34.PubMedPubMedCentral
65.
Zurück zum Zitat Weiss SH, Goedert JJ, Gartner S, Popovic M, Waters D, Markham P, di Marzo VF, Gail MH, Barkley WE, Gibbons J, et al. Risk of human immunodeficiency virus (HIV-1) infection among laboratory workers. Science (New York, NY). 1988;239(4835):68–71.CrossRef Weiss SH, Goedert JJ, Gartner S, Popovic M, Waters D, Markham P, di Marzo VF, Gail MH, Barkley WE, Gibbons J, et al. Risk of human immunodeficiency virus (HIV-1) infection among laboratory workers. Science (New York, NY). 1988;239(4835):68–71.CrossRef
66.
Zurück zum Zitat Soria A, Alteri C, Scarlatti G, Bertoli A, Tolazzi M, Balestra E, Bellocchi MC, Continenza F, Carioti L, Biasin M, et al. Occupational HIV infection in a research laboratory with unknown mode of transmission: a case report. Clin Infect Dis. 2017;64(6):810–3.PubMed Soria A, Alteri C, Scarlatti G, Bertoli A, Tolazzi M, Balestra E, Bellocchi MC, Continenza F, Carioti L, Biasin M, et al. Occupational HIV infection in a research laboratory with unknown mode of transmission: a case report. Clin Infect Dis. 2017;64(6):810–3.PubMed
67.
Zurück zum Zitat Ye L, Wang J, Beyer AI, Teque F, Cradick TJ, Qi Z, Chang JC, Bao G, Muench MO, Yu J, et al. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Delta32 mutation confers resistance to HIV infection. Proc Natl Acad Sci U S A. 2014;111(26):9591–6.PubMedPubMedCentralCrossRef Ye L, Wang J, Beyer AI, Teque F, Cradick TJ, Qi Z, Chang JC, Bao G, Muench MO, Yu J, et al. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Delta32 mutation confers resistance to HIV infection. Proc Natl Acad Sci U S A. 2014;111(26):9591–6.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Liu Z, Chen S, Jin X, Wang Q, Yang K, Li C, Xiao Q, Hou P, Liu S, Wu S, et al. Genome editing of the HIV co-receptors CCR5 and CXCR4 by CRISPR-Cas9 protects CD4(+) T cells from HIV-1 infection. Cell Biosci. 2017;7:47.PubMedPubMedCentralCrossRef Liu Z, Chen S, Jin X, Wang Q, Yang K, Li C, Xiao Q, Hou P, Liu S, Wu S, et al. Genome editing of the HIV co-receptors CCR5 and CXCR4 by CRISPR-Cas9 protects CD4(+) T cells from HIV-1 infection. Cell Biosci. 2017;7:47.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Choi JG, Dang Y, Abraham S, Ma H, Zhang J, Guo H, Cai Y, Mikkelsen JG, Wu H, Shankar P, et al. Lentivirus pre-packed with Cas9 protein for safer gene editing. Gene Ther. 2016;23(7):627–33.PubMedCrossRef Choi JG, Dang Y, Abraham S, Ma H, Zhang J, Guo H, Cai Y, Mikkelsen JG, Wu H, Shankar P, et al. Lentivirus pre-packed with Cas9 protein for safer gene editing. Gene Ther. 2016;23(7):627–33.PubMedCrossRef
70.
Zurück zum Zitat Berro R, Klasse PJ, Moore JP, Sanders RW. V3 determinants of HIV-1 escape from the CCR5 inhibitors Maraviroc and Vicriviroc. Virology. 2012;427(2):158–65.PubMedCrossRef Berro R, Klasse PJ, Moore JP, Sanders RW. V3 determinants of HIV-1 escape from the CCR5 inhibitors Maraviroc and Vicriviroc. Virology. 2012;427(2):158–65.PubMedCrossRef
71.
Zurück zum Zitat Xiao Q, Chen S, Wang Q, Liu Z, Liu S, Deng H, Hou W, Wu D, Xiong Y, Li J, et al. CCR5 editing by Staphylococcus aureus Cas9 in human primary CD4+ T cells and hematopoietic stem/progenitor cells promotes HIV-1 resistance and CD4+ T cell enrichment in humanized mice. Retrovirology. 2019;16(1):15.PubMedPubMedCentralCrossRef Xiao Q, Chen S, Wang Q, Liu Z, Liu S, Deng H, Hou W, Wu D, Xiong Y, Li J, et al. CCR5 editing by Staphylococcus aureus Cas9 in human primary CD4+ T cells and hematopoietic stem/progenitor cells promotes HIV-1 resistance and CD4+ T cell enrichment in humanized mice. Retrovirology. 2019;16(1):15.PubMedPubMedCentralCrossRef
72.
73.
Zurück zum Zitat Li L, Krymskaya L, Wang J, Henley J, Rao A, Cao L-F, Tran C-A, Torres-Coronado M, Gardner A, Gonzalez N. Genomic editing of the HIV-1 coreceptor CCR5 in adult hematopoietic stem and progenitor cells using zinc finger nucleases. Mol Ther. 2013;21(6):1259–69.PubMedPubMedCentralCrossRef Li L, Krymskaya L, Wang J, Henley J, Rao A, Cao L-F, Tran C-A, Torres-Coronado M, Gardner A, Gonzalez N. Genomic editing of the HIV-1 coreceptor CCR5 in adult hematopoietic stem and progenitor cells using zinc finger nucleases. Mol Ther. 2013;21(6):1259–69.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Berro R, Yasmeen A, Abrol R, Trzaskowski B, Abi-Habib S, Grunbeck A, Lascano D, Goddard WA, Klasse PJ, Sakmar TP, et al. Use of G-protein-coupled and -uncoupled CCR5 receptors by CCR5 inhibitor-resistant and -sensitive human immunodeficiency virus type 1 variants. J Virol. 2013;87(12):6569–81.PubMedPubMedCentralCrossRef Berro R, Yasmeen A, Abrol R, Trzaskowski B, Abi-Habib S, Grunbeck A, Lascano D, Goddard WA, Klasse PJ, Sakmar TP, et al. Use of G-protein-coupled and -uncoupled CCR5 receptors by CCR5 inhibitor-resistant and -sensitive human immunodeficiency virus type 1 variants. J Virol. 2013;87(12):6569–81.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Asin-Milan O, Sylla M, El-Far M, Belanger-Jasmin G, Blackburn J, Chamberland A, Tremblay CL. Synergistic combinations of the CCR5 inhibitor VCH-286 with other classes of HIV-1 inhibitors. Antimicrob Agents Chemother. 2014;58(12):7565–9.PubMedPubMedCentralCrossRef Asin-Milan O, Sylla M, El-Far M, Belanger-Jasmin G, Blackburn J, Chamberland A, Tremblay CL. Synergistic combinations of the CCR5 inhibitor VCH-286 with other classes of HIV-1 inhibitors. Antimicrob Agents Chemother. 2014;58(12):7565–9.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Briz V, Poveda E, Soriano V. HIV entry inhibitors: mechanisms of action and resistance pathways. J Antimicrob Chemother. 2006;57(4):619–27.PubMedCrossRef Briz V, Poveda E, Soriano V. HIV entry inhibitors: mechanisms of action and resistance pathways. J Antimicrob Chemother. 2006;57(4):619–27.PubMedCrossRef
77.
Zurück zum Zitat Malcolm RK, Veazey RS, Geer L, Lowry D, Fetherston SM, Murphy DJ, Boyd P, Major I, Shattock RJ, Klasse PJ, et al. Sustained release of the CCR5 inhibitors CMPD167 and maraviroc from vaginal rings in rhesus macaques. Antimicrob Agents Chemother. 2012;56(5):2251–8.PubMedPubMedCentralCrossRef Malcolm RK, Veazey RS, Geer L, Lowry D, Fetherston SM, Murphy DJ, Boyd P, Major I, Shattock RJ, Klasse PJ, et al. Sustained release of the CCR5 inhibitors CMPD167 and maraviroc from vaginal rings in rhesus macaques. Antimicrob Agents Chemother. 2012;56(5):2251–8.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Zhou J, Satheesan S, Li H, Weinberg MS, Morris KV, Burnett JC, Rossi JJ. Cell-specific RNA aptamer against human CCR5 specifically targets HIV-1 susceptible cells and inhibits HIV-1 infectivity. Chem Biol. 2015;22(3):379–90.PubMedPubMedCentralCrossRef Zhou J, Satheesan S, Li H, Weinberg MS, Morris KV, Burnett JC, Rossi JJ. Cell-specific RNA aptamer against human CCR5 specifically targets HIV-1 susceptible cells and inhibits HIV-1 infectivity. Chem Biol. 2015;22(3):379–90.PubMedPubMedCentralCrossRef
Metadaten
Titel
Prevalence of CCR5delta32 in Northeastern Iran
verfasst von
Amir Tajbakhsh
Mostafa Fazeli
Mehdi Rezaee
Faezeh Ghasemi
Mastoureh Momen Heravi
Aida Gholoobi
Zahra Meshkat
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
BMC Medical Genetics / Ausgabe 1/2019
Elektronische ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-019-0913-9

Weitere Artikel der Ausgabe 1/2019

BMC Medical Genetics 1/2019 Zur Ausgabe