Skip to main content
Erschienen in: BMC Geriatrics 1/2021

Open Access 01.12.2021 | Research

Prevalence of potentially harmful multidrug interactions on medication lists of elderly ambulatory patients

verfasst von: Tara V. Anand, Brendan K. Wallace, Herbert S. Chase

Erschienen in: BMC Geriatrics | Ausgabe 1/2021

Abstract

Background

It has been hypothesized that polypharmacy may increase the frequency of multidrug interactions (MDIs) where one drug interacts with two or more other drugs, amplifying the risk of associated adverse drug events (ADEs). The main objective of this study was to determine the prevalence of MDIs in medication lists of elderly ambulatory patients and to identify the medications most commonly involved in MDIs that amplify the risk of ADEs.

Methods

Medication lists stored in the electronic health record (EHR) of 6,545 outpatients ≥60 years old were extracted from the enterprise data warehouse. Network analysis identified patients with three or more interacting medications from their medication lists. Potentially harmful interactions were identified from the enterprise drug-drug interaction alerting system. MDIs were considered to amplify the risk if interactions could increase the probability of ADEs.

Results

MDIs were identified in 1.3 % of the medication lists, the majority of which involved three interacting drugs (75.6 %) while the remainder involved four (15.6 %) or five or more (8.9 %) interacting drugs. The average number of medications on the lists was 3.1 ± 2.3 in patients with no drug interactions and 8.6 ± 3.4 in patients with MDIs. The prevalence of MDIs on medication lists was greater than 10 % in patients prescribed bupropion, tramadol, trazodone, cyclobenzaprine, fluoxetine, ondansetron, or quetiapine and greater than 20 % in patients prescribed amiodarone or methotrexate. All MDIs were potentially risk-amplifying due to pharmacodynamic interactions, where three or more medications were associated with the same ADE, or pharmacokinetic, where two or more drugs reduced the metabolism of a third drug. The most common drugs involved in MDIs were psychotropic, comprising 35.1 % of all drugs involved. The most common serious potential ADEs associated with the interactions were serotonin syndrome, seizures, prolonged QT interval and bleeding.

Conclusions

An identifiable number of medications, the majority of which are psychotropic, may be involved in MDIs in elderly ambulatory patients which may amplify the risk of serious ADEs. To mitigate the risk, providers will need to pay special attention to the overlapping drug-drug interactions which result in MDIs.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12877-021-02594-z.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
MDIs
multiple drug interactions
DDIs
drug-drug interactions
ADE(s)
adverse drug event (s)
EHR
electronic health record
CYP
cytochrome P450 enzyme

Background

Elderly patients may suffer from several chronic conditions that benefit from targeted pharmacologic therapy. Consequently, there has been a steady rise in the number of medications these patients take daily, which increases the likelihood of adverse drug events (ADEs) [1, 2]. Drug-drug interactions (DDIs) are an increasingly common cause of morbidity and mortality in the elderly accounting for nearly 5 % of hospital admissions from the emergency room [36].
The steady increase in polypharmacy, where patients are prescribed five or more medications, also raises the risk of multidrug interactions (MDIs) in which one (or more) drugs interact with two or more other drugs, amplifying the probability of a patient experiencing an ADE [2, 7]. Amplification can result in a number of ways, including when three or more medications cause the same ADE (pharmacodynamic), when two or more drugs reduce the metabolism of a third medication (pharmacokinetic), or when one drug increases the susceptibility to ADEs associated with two other medications by altering a patient’s physiological state (conditional). While current clinical decision support in electronic health records (EHR) assign risk severity levels to DDIs, these values may underestimate the true risk for patients exposed to MDIs.
The objectives of our study were to identify the frequency of MDIs in the medication lists of ambulatory elderly patients as well as the most common drugs and ADEs associated with them.

Methods

Source of patient data

We identified 46,997 patients who were actively followed in the outpatient clinics of our institution from 2015 to 2019 and whose age was 60 years. The most recent medication list for each patient was extracted and used for analysis. We then excluded patients whose lists contained medications generally prescribed to hospitalized patients (enoxaparin, vancomycin, neomycin, dalteparin, lactulose or heparin), assuming that these patients had been recently hospitalized and that their medication lists had not yet been updated. Some of the medications were listed by brand names, which required conversion to generic names. Topical and ophthalmic preparations were excluded from the list of medications. Research involving human data was performed in accordance with the Declaration of Helsinki and was approved by the University’s Institutional Review Board.
All medications on the lists were associated with a date on which the medication was either prescribed or entered by providers updating the list of the patient’s medications. The dates of the medication entries on lists ranged from all medications entered on the same day to ten years or more separating the oldest and newest entries. We considered that some of the medications that had been entered years ago should have been removed and remained on the list because of inadequate medication reconciliation. To minimize the likelihood that some medications no longer belonged on the list, we chose to analyze only those medication lists in which all medications had been entered or recorded on the same day. The final number of unique patients, whose individual list was analyzed, was 6,545.

Identification of multidrug interactions

Our institution utilizes a two drug-drug interaction decision support tool (Allscripts) that consults a list of DDIs from a Cerner Multum table modified by our institution [8]. We developed a network analysis method, which involves representing drugs and interactions graphically, to identify more complex MDIs, as two-way drug-drug interaction pairs would not identify overlapping DDIs [9]. The steps involved are described in the Supplementary Fig. 1.

Amplification

Multidrug interactions were classified as amplifying if a third drug potentially increased the risk of an ADE associated with a two-drug interacting pair (Fig. 1). The third drug might have the same action as the other two (pharmacodynamic), inhibit the metabolism of one or both of the other two interacting drugs (pharmacokinetic) or amplify the effect of the other two interacting drugs by altering the patients’ physiology (conditional).

List of potential associated ADEs

We reviewed each of the ADEs associated with the overlapping DDIs that comprised the MDI and compiled a list of the most serious ones based on the description in the Cerner database. Only interactions rated contraindicated, generally avoid, or monitor closely were included in the identification of the MDIs.

Results

Drug-drug interactions

The 6,545 patients whose medications lists were extracted for analysis had a mean age of 72.5 ± 8.2 and were 53 % female. A total of 20,755 medications, 533 of which were unique, were on the medication lists. Of these patients’ lists, 487 (7.4 %) contained two-drug DDIs, involving 1,042 medications, of which 146 were unique, and 85 (1.3 %) contained MDIs involving 305 medications, of which 116 were unique. Five of the 85 medication lists contained a second MDI bringing the total MDIs to 90. The average number of medications on the lists was 3.1 ±2.3 in patients with no drug interactions, 6.6 ± 2.9 in patients with two-drug DDIs, and 8.6 ±3.4 in patients with MDIs. The majority of MDIs in patients’ medications lists involved three interacting drugs (75.6 %) while the remainder were composed of four (15.6 %) or five or more (8.9 %) interacting drugs.

Medications involved in multidrug interactions

The most common medications involved in the MDIs and their associated drug classes are listed in Table 1. Psychotropic medications were the most involved representing 35.1 % of all drugs associated with MDIs. Medications affecting the cardiovascular system and hemostasis, and opiates were the other major classes involved.
Table 1
Most common drugs involved in MDIs per class
Drugs in MDIs by class
(% all drugs)
Class (% of all drugs)
bupropion (6.6)
Psychotropic (35.1)
trazodone (4.3)
escitalopram (3.6)
sertraline (3.0)
fluoxetine (2.3)
amiodarone (3.0)
Cardiovascular (11.1)
diltiazem (1.3)
tramadol (4.6)
Opiate (9.8)
oxycodone (2.3)
aspirin (3.6)
Hemostasis (8.9)
warfarin (1.6)
clopidogrel (1.6)
apixaban (1.3)
methotrexate (3.0)
Immunosuppressant (8.2)
ibuprofen (1.3)
NSAIDs (4.3)
cyclobenzaprine (2.6)
Muscle relaxant (3.0)
Although the overall prevalence of MDIs was 1.3 %, the prevalence of MDIs in patients prescribed one of a small subset of drugs was considerably higher (Table 2). The highest prevalence of MDIs was on medication lists containing amiodarone (27.3 %), followed by methotrexate (23.1 %), bupropion (18.7 %), tramadol (16.3 %), trazadone (14.6 %), and cyclobenzaprine (14.3 %). The numbers of Medicare beneficiaries who filled prescriptions with the highest prevalence drugs are listed on Table 2 as well as the calculated number of patients potentially exposed to MDIs [10].
Table 2
The prevalence of the drugs involved in MDIs. Based on prevalence, number of Medicare beneficiaries at risk for an MDI was calculated
Medication
% Involved in MDI
CMS Part D beneficiaries
Involved in MDI
amiodarone
27.3
706,029
192,746
methotrexate
23.1
527,799
121,922
bupropion
18.7
1,714,050
320,527
tramadol
16.3
4,266,058
695,367
trazodone
14.6
2,915,625
425,681
cyclobenzaprine
14.3
1,860,548
266,058
fluoxetine
11.5
1,334,205
153,434
ondansetron
10.5
3,153,351
331,102
quetiapine
10.3
1,247,664
128,509
citalopram
9.8
1,684,688
165,099
mirtazapine
8.3
1,345,516
111,678
escitalopram
7.7
2,007,721
154,595
sertraline
7.1
2,683,062
190,497
venlafaxine
6.7
1,075,483
72,057
oxycodone
5.9
4,050,823
238,999
TOTAL
30,572,622
3,568,272
TOTAL psychotropics
16,009,014
1,722,078

Adverse drug events associated with MDIs

The most common potential ADEs associated with the MDIs involved the central nervous system (seizures and serotonin syndrome) representing 43.1 % of the total ADEs (Fig. 2). Those ADEs associated with psychotropic medications (prolonged QT, seizures, serotonin syndrome) represented 58.2 % of all potential ADEs resulting from MDIs. Many patients with MDIs were exposed to two or more potential ADEs, the most common of which were seizures and serotonin syndrome, seizures and prolonged QT, and prolonged QT and serotonin syndrome. ADEs associated with cardiovascular system (prolonged QT, sinus arrest, AV block and bradycardia), comprised 22.5 % of the total potential ADEs. Drug interactions that predisposed patients to bleeding or hemorrhage (hemostasis) comprised 11.2 % of the ADEs.

Amplification

Examples of how the risk of ADEs might be amplified in MDIs are reported in Supplementary Table 1. Of the 90 MDIs on the 85 medication lists, all but four were potentially amplifying resulting from one or more of the three basic mechanisms (see Fig. 1): pharmacodynamic (patients A, B, C); pharmacokinetic (patient D); and conditional (patient E). All three mechanisms were involved in patient F.

Severity of the interactions

The MULTUM categorization of severity of the individual overlapping drug-drug pairs that comprised the MDIs varied from contraindicated (2.1 %), generally avoid (27.4 %) or monitor closely (70.5 %). The severity of each of the interacting drug-drug pairs that comprise the MDI are listed in Supplementary Table 1. Inasmuch as MDIs are composed of two or more overlapping drug-drug interactions, each with a specific severity rating, the rating of an MDI is a composite of the individual severities which ranged from [contraindicated – contraindicated] interactions (patient A ) to [monitor closely – monitor closely – monitor closely – generally avoid] (patient F).

Discussion

Multidrug interactions

Adverse drug reactions have been estimated by the FDA to be the fourth leading cause of death in the US resulting in costs of over $500 billion [11, 12]. Drug-drug interactions increase the likelihood of ADEs either because both drugs have the same target or effect, or one drug inhibits the metabolism of the other. It follows that the probability of patients experiencing ADEs would be further amplified if three or more drugs interacted with each other. We found that 1.3 % of the 6,545 medication lists of a cohort of elderly ambulatory patients contained MDIs. The prevalence of MDIs in medication lists was considerably higher in those that included one of a subset of medications; MDIs were identified in more than 20 % of the medication lists containing amiodarone or methotrexate and more than 10 % of lists containing bupropion, tramadol, trazodone, cyclobenzaprine, fluoxetine, ondansetron, or quetiapine (Table 2).

Common medications and amplification of ADEs

Medications for psychiatric conditions were the medications most frequently involved in MDIs, accounting for 35.1 % of all medications involved, a finding consistent with several prior studies of two-drug interacting pairs [1320]. Given the frequency of psychotropic medications in MDIs, the most common potential serious ADEs were those associated with psychotropic medications, namely prolonged QT, seizures, and serotonin syndrome [2123].
Nearly all MDIs could amplify the risk of patients experiencing associated ADEs. There are two predominant mechanisms of amplification. First, there are pharmacodynamic additive effects of medications such as prolonging the QT interval, lowering the seizure threshold, or causing the serotonin syndrome [2327]. Second, there were pharmacokinetic additive effects in which multiple interactions could result in steep increases in the concentration of participating medications resulting from CYP inhibition. Sutherland et al. found that 4 % of elderly patients in the cohort they studied were taking multiple inhibitors of the same CYP enzyme [4]. Psychotropic medications, which were the most common class of medications represented in MDIs from our study, operate by both mechanisms to amplify the risk of serotonin syndrome, seizures, and torsades de pointes [28, 29]. Patient F (Supplementary Table 1) is likely to have significantly elevated levels of the psychotropic mirtazapine resulting from the inhibition of its metabolism by both bupropion and fluoxetine and the inhibition of fluoxetine’s metabolism by bupropion [22, 28, 3032]. Age-related changes in pharmacokinetics due to diminished hepatic and renal function in the elderly make pharmacokinetic interactions especially likely [33].

Relationship between actual and potential ADEs resulting from MDIs

Prior studies of DDIs found that between 6 % and 20 % of patients with DDIs identified in their records experienced an associated ADE [17, 20, 3436]. While there are as yet no studies to ascertain what proportion of patients exposed to MDIs experience an ADE, it is likely that the number will exceed that observed in two-drug interactions given the amplifying effect of additional interacting drugs. For example, patients taking warfarin and aspirin are more likely to have a hemorrhagic episode if they are also taking amiodarone. Polypharmacy has been associated with increased bleeding risk in patients on warfarin, even after adjusting for confounding factors [37]. We observed that the average number of medications on the lists of patients with MDIs was considerably higher (8.6 ±3.4) than those without (3.1 ± 3.4).
Prospective studies of ambulatory patients who experience ADEs due to multidrug interactions will be challenging because ADEs experienced outside of the hospital may be unaccounted for if the patient is admitted to another healthcare facility or suffers a lethal reaction. We note that an increased rate of sudden death associated with psychotropic medications has been observed [3845]. The FDA adverse event reporting system (FAERS) has recently been mined to identify multidrug interactions and the resulting ADEs actually experienced by patients [46]. While this approach cannot determine accurately the prevalence of ADEs associated with MDIs, it can establish that MDIs are associated with documented serious ADEs. In the absence of prospective studies, an examination of medication lists provides an opportunity to estimate the potential for amplification of the risk of ADEs.

Risk of ADEs in Medicare beneficiaries

In 2019, approximately 30 million CMS Part D Medicare beneficiaries were prescribed one of the top 15 medications involved in the MDIs we identified. Based on the prevalence we observed for MDIs in patients prescribed these drugs, approximately 3.5 million patients could have been exposed to amplifying MDIs (Table 2) [10]. Psychotropic medications were prescribed to nearly 16 million CMS Part D Medicare beneficiaries of whom 1.6 million were potentially exposed to amplifying MDIs. The use of amiodarone is particularly worrisome because, in addition to its effects on the lung, liver, and thyroid, it inhibits several key CYP enzymes (1A2, 2C9, 2D6, 3A4) and prolongs the QT interval [47, 48]. The number of CMS Part D Medicare beneficiaries prescribed amiodarone in 2019 was 706,029 of which 192,746 patients were potentially exposed to serious MDIs. Assuming that, on average, 10 % of patients with drug interactions experience the associated ADEs, approximately 20,000 patients taking amiodarone could have experienced a serious ADE [17, 20, 3436].

Alerting providers to potential MDIs

Most EHRs alert providers of potential drug-drug interactions by posting a warning of the potential ADE associated with the pair and the severity of the interaction. A patient prescribed warfarin, amiodarone and aspirin would trigger EHR warnings of two potential interactions, [amiodarone-warfarin] and [aspirin-warfarin], on separate lines along with the severity of each of the interactions. The amplifying effect of amiodarone on the warfarin-aspirin interaction would not be factored into the severity because there is no reported interaction between aspirin and amiodarone. Considering the amplifying effect of amiodarone on the warfarin-aspirin interaction, the combined severity of the drug interactions should probably be categorized as contraindicated. The Multum warnings of monitor closely for the [amiodarone-warfarin] pair and generally avoid for the [aspirin-warfarin] pair would underestimate the potential risk for hemorrhage (Patient D, Supplementary Table 1).
An EHR warning system that recognizes MDIs could be incorporated into the drug-drug interaction decision support but would likely result in alert fatigue that often results in providers overriding the alerts. Providers’ ignoring the alerts has been shown to increase the number of ADEs, at great cost to patients and the healthcare system [49, 50]. One solution would be to post the warning only when high-risk drugs such as psychotropics or amiodarone are involved. Until acceptable interventions are implemented, providers will need to look for multiple overlapping drug-drug interactions which share a common drug (and thus constitute an MDI).

Strategies to reduce risk

Once potential MDIs are recognized, providers could substitute one of the interacting drugs with a more benign, non-interacting one [51]. Amiodarone could be replaced with propafenone which would eliminate the amplified risk of hemorrhage resulting from the warfarin-aspirin interaction. The FDA and the American Geriatrics Society 2019 updated the AGS Beers Criteria® for Potentially Inappropriate Medication Use in Older Adults recommend that amiodarone should not be a first-line choice [52, 53]. Ondansetron, which prolongs the QT, could be avoided in patients already on medications that prolong the QT if prescribed anti-emetics that are not associated with changes in the QT interval [54]. Tramadol, which acts as both an opiate and inhibitor of neurotransmitter uptake, exposes patients to multiple serious ADEs. Non-opiate analgesics could be substituted for tramadol and, if there was no indication for the psychotropic effect, no additional medication would be necessary. Substitution of methotrexate, an immunosuppressant prescribed for patients with various autoimmune diseases, would be difficult to replace given its unique role in treating patients with autoimmune diseases. Other strategies would have to be employed such as meticulous attention to those medications which interact with methotrexate to increase the risk of renal or hepatic injury.
Deprescribing rather than substitution may be a more effective strategy, especially for patients on psychotropics [55]. It is not uncommon for patients to be prescribed three or more psychotropic medications, likely reflecting the increasing prevalence of psychotropic polypharmacy [56]. Given the amplifying effect of psychotropic drugs, it is essential to assess the necessity and suitability of their use in elderly patients [5761].Trazadone, one of the most prescribed psychotropic medications participating in multidrug interactions (Table 2) and associated with serotonin syndrome and seizures, is one of the least efficacious medications in treating depression and is associated with a higher suicide rate than other psychotropic medications [6266]. Despite the warnings, nearly 3 million Medicare beneficiaries received prescriptions for trazodone in 2019 of which over 400,000 would be expected to be exposed to an MDI including that drug (Table 2). Cyclobenzaprine, despite the characterization by the AGS Beers Criteria® for Potentially Inappropriate Medication Use in Older Adults as “questionable,” is contraindicated in patients already taking drugs that prolong the QT, cause serotonin syndrome, or cause seizures [53]. Nevertheless, 1.8 million Medicare beneficiaries were prescribed cyclobenzaprine in 2017, potentially exposing recipients to increased risk of life-threatening ADEs. Although deprescribing these medications might be the best strategy, to do so would require primary care physicians to coordinate care with the specialists who originally prescribed the other medications which is often a significant challenge [67].

Strengths

In 2015 Roughead warned that polypharmacy would inevitably result in multidrug interactions which would lead to an increased risk of ADEs [7]. Since that call to arms, however, there have been no studies prior to ours that identify MDIs. This may because doing so requires a more complex computational approach. To identify two-drug DDIs, drug pairs on the patients’ medication lists can be directly compared and matched to known two-drug interactions found in an enterprise EHR such as Cerner’s. Identification of MDIs, however, requires either network analysis or complex structured queries of the institutional database (Supplemental Fig. 1). Both approaches, however, are well known to clinical informaticians and could easily be applied in clinical studies. Perhaps our results will inspire other to identify and characterize MDIs in their institutions’ patient populations to expand the growing list of MDIs.

Limitations

There are several limitations to this study. First, we did not take into consideration the doses of the medications that were involved in the MDIs. It is possible that patients were prescribed lower doses of a particular medication than recommended because a second or third drug could influence its metabolism, thus mitigating any potentially amplifying interaction. Second, we cannot say if the medications on the list were intended for daily use or only intermittent use, as needed. Aspirin, which appeared on many lists of patients with MDIs, could have been intended to be taken daily for cardioprotective effects or only as necessary for intermittent pain. Daily aspirin would pose greater risk of an ADE, such as gastric hemorrhage, than if taken only intermittently. Third, identification of three and four MDIs is based on the drug-drug interaction tables at our institution. The identification and rating of various interactions might differ across institutions given that there is significant variability in the drug-drug interaction databases [6873].

Conclusions

Our results demonstrate that patient medication lists contain combinations of drugs that can participate in multidrug interactions and increase the risk of associated ADEs. The discovery of previously unrecognized drug interactions through data mining will likely increase the identification of MDIs [7476]. Until the EHR-based drug-drug interaction warning tools recognize MDIs, providers will have to be on the lookout for overlapping interacting drug-drug pairs which constitute MDIs on the patients’ medication lists. In either case, substitution of another medication or deprescribing may be warranted to lower the risk of ADEs.

Acknowledgements

The authors thank Eloise Austin, MD, Nancy Chang, MD, Lauren Mautner, MD, and Beverly F Chase, J.D, for their careful review and insightful suggestions. We also thank Claudia Boyle, MA, Health Data Informatics Manager at New York Presbyterian, for obtaining the data from the data warehouse for this study.

Declarations

Research involving human data was performed in accordance with the Declaration of Helsinki and was approved by the Columbia University Irving Medical Center Institutional Review Board under protocol AAAC8273 “Feasibility of Evaluating Physician Prescribing Patterns”. Obtaining consent was waived by the CUIMC Institutional Review Board given that it would not be feasible to obtain consent on the thousands of patients used in the study and that using the data posed no risk to the patients.
Data for this study was extracted from the New York Presbyterian (NYP) data warehouse. Public access to this database is closed. Permission to obtain the data for this study was granted by the NYP Tripartite Request Assessment Committee (TRAC) which requires a current Institutional Review Board Protocol, HIPAA training, and a secured, encrypted drive for storage.
Not applicable.

Competing interests

None (all authors).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Kantor ED, Rehm CD, Haas JS, Chan AT, Giovannucci EL. Trends in prescription drug use among adults in the United States from 1999-2012. JAMA. 2015;314(17):1818–30.PubMedPubMedCentralCrossRef Kantor ED, Rehm CD, Haas JS, Chan AT, Giovannucci EL. Trends in prescription drug use among adults in the United States from 1999-2012. JAMA. 2015;314(17):1818–30.PubMedPubMedCentralCrossRef
2.
3.
Zurück zum Zitat Björkman IK. Drug-drug interactions in the elderly. The Annals of Pharmacotherapy. 2002;36(11):1675–81.PubMedCrossRef Björkman IK. Drug-drug interactions in the elderly. The Annals of Pharmacotherapy. 2002;36(11):1675–81.PubMedCrossRef
4.
Zurück zum Zitat Sutherland JJ, Daly TM, Liu X, Goldstein K, Johnston JA, Ryan TP. Co-prescription trends in a large cohort of subjects predict substantial drug-drug interactions. PloS one. 2015;10(3):e0118991-e.CrossRef Sutherland JJ, Daly TM, Liu X, Goldstein K, Johnston JA, Ryan TP. Co-prescription trends in a large cohort of subjects predict substantial drug-drug interactions. PloS one. 2015;10(3):e0118991-e.CrossRef
5.
Zurück zum Zitat Becker ML. Hospitalisations and emergency department visits due to drug-drug interactions: a literature review. Pharmacoepidemiology and Drug Safety. 2007;16(6):641–51.PubMedCrossRef Becker ML. Hospitalisations and emergency department visits due to drug-drug interactions: a literature review. Pharmacoepidemiology and Drug Safety. 2007;16(6):641–51.PubMedCrossRef
6.
Zurück zum Zitat Hampton LM, Daubresse M, Chang H-Y, Alexander GC, Budnitz DS. Emergency Department Visits by Adults for Psychiatric Medication Adverse Events. JAMA Psychiatry. 2014;71(9):1006–14.PubMedPubMedCentralCrossRef Hampton LM, Daubresse M, Chang H-Y, Alexander GC, Budnitz DS. Emergency Department Visits by Adults for Psychiatric Medication Adverse Events. JAMA Psychiatry. 2014;71(9):1006–14.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Roughead EE. Multidrug interactions: the current clinical and pharmacovigilance challenge. Journal of Pharmacy Practice and Research. 2015;45(2):138–9.CrossRef Roughead EE. Multidrug interactions: the current clinical and pharmacovigilance challenge. Journal of Pharmacy Practice and Research. 2015;45(2):138–9.CrossRef
9.
Zurück zum Zitat Tarjan R. Depth-First Search and Linear Graph Algorithms. SIAM Journal on Computing. 1972;1(2):146–60.CrossRef Tarjan R. Depth-First Search and Linear Graph Algorithms. SIAM Journal on Computing. 1972;1(2):146–60.CrossRef
11.
Zurück zum Zitat Watanabe JH. Cost of Prescription Drug-Related Morbidity and Mortality. Ann Pharmacotherapy. 52(9):829–37. Watanabe JH. Cost of Prescription Drug-Related Morbidity and Mortality. Ann Pharmacotherapy. 52(9):829–37.
13.
Zurück zum Zitat Aljadani R, Aseeri M. Prevalence of drug-drug interactions in geriatric patients at an ambulatory care pharmacy in a tertiary care teaching hospital. BMC Research Notes. 2018;11(1):234-.PubMedPubMedCentralCrossRef Aljadani R, Aseeri M. Prevalence of drug-drug interactions in geriatric patients at an ambulatory care pharmacy in a tertiary care teaching hospital. BMC Research Notes. 2018;11(1):234-.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Gandhi TK, Weingart SN, Borus J, Seger AC, Peterson J, Burdick E, et al. Adverse drug events in ambulatory care. NEJM. 2003;348(16):1556–64.PubMedCrossRef Gandhi TK, Weingart SN, Borus J, Seger AC, Peterson J, Burdick E, et al. Adverse drug events in ambulatory care. NEJM. 2003;348(16):1556–64.PubMedCrossRef
17.
Zurück zum Zitat Obreli-Neto PR, Nobili A, de Oliveira Baldoni A, Guidoni CM, de Lyra Júnior DP, Pilger D, et al. Adverse drug reactions caused by drug–drug interactions in elderly outpatients: a prospective cohort study. Eur J Clin Pharmacol. 2012;68(12):1667–76.PubMedCrossRef Obreli-Neto PR, Nobili A, de Oliveira Baldoni A, Guidoni CM, de Lyra Júnior DP, Pilger D, et al. Adverse drug reactions caused by drug–drug interactions in elderly outpatients: a prospective cohort study. Eur J Clin Pharmacol. 2012;68(12):1667–76.PubMedCrossRef
18.
Zurück zum Zitat Holm J, Eiermann B, Eliasson E, Mannheimer B. A limited number of prescribed drugs account for the great majority of drug-drug interactions. Eur J Clin Pharmacol. 2014;70(11):1375–83.PubMedCrossRef Holm J, Eiermann B, Eliasson E, Mannheimer B. A limited number of prescribed drugs account for the great majority of drug-drug interactions. Eur J Clin Pharmacol. 2014;70(11):1375–83.PubMedCrossRef
19.
Zurück zum Zitat Létinier L, Cossin S, Mansiaux Y, Arnaud M, Salvo F, Bezin J, et al. Risk of Drug-Drug Interactions in Out-Hospital Drug Dispensings in France: Results From the DRUG-Drug Interaction Prevalence Study. Front Pharmacol. 2019;10(265). Létinier L, Cossin S, Mansiaux Y, Arnaud M, Salvo F, Bezin J, et al. Risk of Drug-Drug Interactions in Out-Hospital Drug Dispensings in France: Results From the DRUG-Drug Interaction Prevalence Study. Front Pharmacol. 2019;10(265).
20.
Zurück zum Zitat Tulner LR. Drug-drug interactions in a geriatric outpatient cohort: prevalence and relevance. Drugs Aging. 2008;25(4):343–55.PubMedCrossRef Tulner LR. Drug-drug interactions in a geriatric outpatient cohort: prevalence and relevance. Drugs Aging. 2008;25(4):343–55.PubMedCrossRef
21.
Zurück zum Zitat Jeon SM, Park S, Kim D, Kwon J-W. Risk of seizures associated with antipsychotic treatment in pediatrics with psychiatric disorders: a nested case–control study in Korea. European Child & Adolescent Psychiatry. 2021;30(3):391–9.CrossRef Jeon SM, Park S, Kim D, Kwon J-W. Risk of seizures associated with antipsychotic treatment in pediatrics with psychiatric disorders: a nested case–control study in Korea. European Child & Adolescent Psychiatry. 2021;30(3):391–9.CrossRef
22.
Zurück zum Zitat Woosley RL, Heise CW, Gallo T, Tate J, Woosley D, Romero KA. QTdrugs List 822 Innovation Park Dr., Oro Valley, AZ 85755: AZCERT, Inc.; [Available from: www.CredibleMeds.org. Woosley RL, Heise CW, Gallo T, Tate J, Woosley D, Romero KA. QTdrugs List 822 Innovation Park Dr., Oro Valley, AZ 85755: AZCERT, Inc.; [Available from: www.CredibleMeds.org.
23.
Zurück zum Zitat Buckley NA, Dawson AH, Isbister GK. Serotonin syndrome. BMJ: British Medical Journal. 2014;348:g1626.PubMedCrossRef Buckley NA, Dawson AH, Isbister GK. Serotonin syndrome. BMJ: British Medical Journal. 2014;348:g1626.PubMedCrossRef
24.
Zurück zum Zitat Frommeyer G, Fischer C, Ellermann C, Dechering DG, Kochhäuser S, Lange PS, et al. Additive Proarrhythmic Effect of Combined Treatment with QT-Prolonging Agents. Cardiovascular Toxicology. 2018;18(1):84–90.PubMedCrossRef Frommeyer G, Fischer C, Ellermann C, Dechering DG, Kochhäuser S, Lange PS, et al. Additive Proarrhythmic Effect of Combined Treatment with QT-Prolonging Agents. Cardiovascular Toxicology. 2018;18(1):84–90.PubMedCrossRef
25.
Zurück zum Zitat Isbister GK. The pathophysiology of serotonin toxicity in animals and humans: implications for diagnosis and treatment. Clinical neuropharmacology.28(5):205–14. Isbister GK. The pathophysiology of serotonin toxicity in animals and humans: implications for diagnosis and treatment. Clinical neuropharmacology.28(5):205–14.
26.
Zurück zum Zitat Pisani F. Effects of psychotropic drugs on seizure threshold. Drug Safety. 2002;25(2):91–110.PubMedCrossRef Pisani F. Effects of psychotropic drugs on seizure threshold. Drug Safety. 2002;25(2):91–110.PubMedCrossRef
27.
Zurück zum Zitat Chan TY. Adverse Interactions Between Warfarin and Nonsteroidal Antiinflammatory Drugs: Mechanisms, Clinical Significance, and Avoidance. Ann Pharmacother. 1995;29(12):1274–83.PubMedCrossRef Chan TY. Adverse Interactions Between Warfarin and Nonsteroidal Antiinflammatory Drugs: Mechanisms, Clinical Significance, and Avoidance. Ann Pharmacother. 1995;29(12):1274–83.PubMedCrossRef
28.
Zurück zum Zitat Spina E, Santoro V, D’Arrigo C. Clinically relevant pharmacokinetic drug interactions with second-generation antidepressants: An update. Clinical Therapeutics. 2008;30(7):1206–27.PubMedCrossRef Spina E, Santoro V, D’Arrigo C. Clinically relevant pharmacokinetic drug interactions with second-generation antidepressants: An update. Clinical Therapeutics. 2008;30(7):1206–27.PubMedCrossRef
29.
Zurück zum Zitat Hemeryck A. Selective serotonin reuptake inhibitors and cytochrome P-450 mediated drug-drug interactions: an update. Current Drug Metabolism. 2002;3(1):13–37.PubMedCrossRef Hemeryck A. Selective serotonin reuptake inhibitors and cytochrome P-450 mediated drug-drug interactions: an update. Current Drug Metabolism. 2002;3(1):13–37.PubMedCrossRef
30.
Zurück zum Zitat Jeppesen U. Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur J Clin Pharmacol. 1996;51(1):73–8.PubMedCrossRef Jeppesen U. Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur J Clin Pharmacol. 1996;51(1):73–8.PubMedCrossRef
31.
Zurück zum Zitat Kotlyar M. Inhibition of CYP2D6 activity by bupropion. Journal of Clinical Psychopharmacology. 2005;25(3):226–9.PubMedCrossRef Kotlyar M. Inhibition of CYP2D6 activity by bupropion. Journal of Clinical Psychopharmacology. 2005;25(3):226–9.PubMedCrossRef
32.
Zurück zum Zitat Hesse LM. CYP2B6 mediates the in vitro hydroxylation of bupropion: potential drug interactions with other antidepressants. Drug metabolism and disposition. 2000;28(10):1176–83.PubMed Hesse LM. CYP2B6 mediates the in vitro hydroxylation of bupropion: potential drug interactions with other antidepressants. Drug metabolism and disposition. 2000;28(10):1176–83.PubMed
33.
Zurück zum Zitat Boyce RD. Age-related changes in antidepressant pharmacokinetics and potential drug-drug interactions: a comparison of evidence-based literature and package insert information. The American journal of geriatric pharmacotherapy. 2012;10(2):139–50.PubMedPubMedCentralCrossRef Boyce RD. Age-related changes in antidepressant pharmacokinetics and potential drug-drug interactions: a comparison of evidence-based literature and package insert information. The American journal of geriatric pharmacotherapy. 2012;10(2):139–50.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Marusic S, Bacic-Vrca V, Obreli Neto PR, Franic M, Erdeljic V, Gojo-Tomic N. Actual drug–drug interactions in elderly patients discharged from internal medicine clinic: a prospective observational study. Eur J Clin Pharmacol. 2013;69(9):1717–24.PubMedCrossRef Marusic S, Bacic-Vrca V, Obreli Neto PR, Franic M, Erdeljic V, Gojo-Tomic N. Actual drug–drug interactions in elderly patients discharged from internal medicine clinic: a prospective observational study. Eur J Clin Pharmacol. 2013;69(9):1717–24.PubMedCrossRef
35.
Zurück zum Zitat Sánchez-Fidalgo S, Guzmán-Ramos MI, Galván-Banqueri M, Bernabeu-Wittel M, Santos-Ramos B. Prevalence of drug interactions in elderly patients with multimorbidity in primary care. Int J Clin Pharm. 2017;39(2):343–53.PubMedCrossRef Sánchez-Fidalgo S, Guzmán-Ramos MI, Galván-Banqueri M, Bernabeu-Wittel M, Santos-Ramos B. Prevalence of drug interactions in elderly patients with multimorbidity in primary care. Int J Clin Pharm. 2017;39(2):343–53.PubMedCrossRef
36.
Zurück zum Zitat Glassman PA. The utility of adding retrospective medication profiling to computerized provider order entry in an ambulatory care population. J Am Med Informatics Assoc. 14(4):424–31. Glassman PA. The utility of adding retrospective medication profiling to computerized provider order entry in an ambulatory care population. J Am Med Informatics Assoc. 14(4):424–31.
37.
Zurück zum Zitat Leiss W, Méan M, Limacher A, Righini M, Jaeger K, Beer H-J, et al. Polypharmacy is Associated with an Increased Risk of Bleeding in Elderly Patients with Venous Thromboembolism. J Gen Intern Med. 2015;30(1):17–24.PubMedCrossRef Leiss W, Méan M, Limacher A, Righini M, Jaeger K, Beer H-J, et al. Polypharmacy is Associated with an Increased Risk of Bleeding in Elderly Patients with Venous Thromboembolism. J Gen Intern Med. 2015;30(1):17–24.PubMedCrossRef
38.
Zurück zum Zitat Ray WA, Stein CM, Murray KT, Fuchs DC, Patrick SW, Daugherty J, et al. Association of Antipsychotic Treatment With Risk of Unexpected Death Among Children and Youths. JAMA Psychiatry. 2019;76(2):162–71.PubMedCrossRef Ray WA, Stein CM, Murray KT, Fuchs DC, Patrick SW, Daugherty J, et al. Association of Antipsychotic Treatment With Risk of Unexpected Death Among Children and Youths. JAMA Psychiatry. 2019;76(2):162–71.PubMedCrossRef
39.
Zurück zum Zitat Danielsson B, Collin J, Jonasdottir Bergman G, Borg N, Salmi P, Fastbom J. Antidepressants and antipsychotics classified with torsades de pointes arrhythmia risk and mortality in older adults - a Swedish nationwide study. British journal of clinical pharmacology. 2016;81(4):773–83.PubMedPubMedCentralCrossRef Danielsson B, Collin J, Jonasdottir Bergman G, Borg N, Salmi P, Fastbom J. Antidepressants and antipsychotics classified with torsades de pointes arrhythmia risk and mortality in older adults - a Swedish nationwide study. British journal of clinical pharmacology. 2016;81(4):773–83.PubMedPubMedCentralCrossRef
40.
41.
Zurück zum Zitat Ray WA, Chung CP, Murray KT, Hall K, Stein CM. Atypical Antipsychotic Drugs and the Risk of Sudden Cardiac Death. NEJM. 2009;360(3):225–35.PubMedCrossRef Ray WA, Chung CP, Murray KT, Hall K, Stein CM. Atypical Antipsychotic Drugs and the Risk of Sudden Cardiac Death. NEJM. 2009;360(3):225–35.PubMedCrossRef
42.
Zurück zum Zitat Schneeweiss S, Avorn J. Antipsychotic Agents and Sudden Cardiac Death — How Should We Manage the Risk? NEJM. 2009;360(3):294–6. Schneeweiss S, Avorn J. Antipsychotic Agents and Sudden Cardiac Death — How Should We Manage the Risk? NEJM. 2009;360(3):294–6.
43.
Zurück zum Zitat Risgaard B. Sudden cardiac death in young adults with previous hospital-based psychiatric inpatient and outpatient treatment: a nationwide cohort study from Denmark. The Journal of Clinical Psychiatry. 2015;76(9):e1122-9.PubMedCrossRef Risgaard B. Sudden cardiac death in young adults with previous hospital-based psychiatric inpatient and outpatient treatment: a nationwide cohort study from Denmark. The Journal of Clinical Psychiatry. 2015;76(9):e1122-9.PubMedCrossRef
44.
Zurück zum Zitat Simpson TF, Salazar JW, Vittinghoff E, Probert J, Iwahashi A, Olgin JE, et al. Association of QT-Prolonging Medications With Risk of Autopsy-Defined Causes of Sudden Death. JAMA Internal Medicine. 2020. Simpson TF, Salazar JW, Vittinghoff E, Probert J, Iwahashi A, Olgin JE, et al. Association of QT-Prolonging Medications With Risk of Autopsy-Defined Causes of Sudden Death. JAMA Internal Medicine. 2020.
45.
Zurück zum Zitat Zhu J, Hou W, Xu Y, Ji F, Wang G, Chen C, et al. Antipsychotic drugs and sudden cardiac death: A literature review of the challenges in the prediction, management, and future steps. Psychiatry Research. 2019;281:112598.PubMedCrossRef Zhu J, Hou W, Xu Y, Ji F, Wang G, Chen C, et al. Antipsychotic drugs and sudden cardiac death: A literature review of the challenges in the prediction, management, and future steps. Psychiatry Research. 2019;281:112598.PubMedCrossRef
46.
Zurück zum Zitat Xiang Y, Albin A, Ren K, Zhang P, Etter JP, Lin S, et al. Efficiently mining Adverse Event Reporting System for multiple drug interactions. AMIA Joint Summits on Translational Science proceedings AMIA Joint Summits on Translational Science. 2014;2014:120-5. Xiang Y, Albin A, Ren K, Zhang P, Etter JP, Lin S, et al. Efficiently mining Adverse Event Reporting System for multiple drug interactions. AMIA Joint Summits on Translational Science proceedings AMIA Joint Summits on Translational Science. 2014;2014:120-5.
47.
Zurück zum Zitat Tisdale JE. Drug-induced QT interval prolongation and torsades de pointes: Role of the pharmacist in risk assessment, prevention and management. Can Pharm J (Ott). 2016;149(3):139–52.CrossRef Tisdale JE. Drug-induced QT interval prolongation and torsades de pointes: Role of the pharmacist in risk assessment, prevention and management. Can Pharm J (Ott). 2016;149(3):139–52.CrossRef
48.
Zurück zum Zitat Yamreudeewong W, DeBisschop M, Martin LG, Lower DL. Potentially Significant Drug Interactions of Class III Antiarrhythmic Drugs. Drug Safety. 2003;26(6):421–38.PubMedCrossRef Yamreudeewong W, DeBisschop M, Martin LG, Lower DL. Potentially Significant Drug Interactions of Class III Antiarrhythmic Drugs. Drug Safety. 2003;26(6):421–38.PubMedCrossRef
49.
Zurück zum Zitat Slight SP, Seger DL, Franz C, Wong A, Bates DW. The national cost of adverse drug events resulting from inappropriate medication-related alert overrides in the United States. J Am Med Inform Assoc. 2018;25(9):1183–8.PubMedPubMedCentralCrossRef Slight SP, Seger DL, Franz C, Wong A, Bates DW. The national cost of adverse drug events resulting from inappropriate medication-related alert overrides in the United States. J Am Med Inform Assoc. 2018;25(9):1183–8.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Phansalkar S. Drug-drug interactions that should be non-interruptive in order to reduce alert fatigue in electronic health records. Journal of the American Medical Informatics Association: JAMIA. 2013;20(3):489–93. Phansalkar S. Drug-drug interactions that should be non-interruptive in order to reduce alert fatigue in electronic health records. Journal of the American Medical Informatics Association: JAMIA. 2013;20(3):489–93.
51.
Zurück zum Zitat Hanlon JT, Semla TP, Schmader KE. Alternative Medications for Medications in the Use of High-Risk Medications in the Elderly and Potentially Harmful Drug–Disease Interactions in the Elderly Quality Measures. Journal of the American Geriatrics Society. 2015;63(12):e8-e18.PubMedPubMedCentralCrossRef Hanlon JT, Semla TP, Schmader KE. Alternative Medications for Medications in the Use of High-Risk Medications in the Elderly and Potentially Harmful Drug–Disease Interactions in the Elderly Quality Measures. Journal of the American Geriatrics Society. 2015;63(12):e8-e18.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Furyk JS, Meek RA, Egerton-Warburton D. Drugs for the treatment of nausea and vomiting in adults in the emergency department setting. The Cochrane database of systematic reviews. 2015;2015(9):CD010106-CD. Furyk JS, Meek RA, Egerton-Warburton D. Drugs for the treatment of nausea and vomiting in adults in the emergency department setting. The Cochrane database of systematic reviews. 2015;2015(9):CD010106-CD.
55.
56.
Zurück zum Zitat Mojtabai R, Olfson M. National Trends in Psychotropic Medication Polypharmacy in Office-Based Psychiatry. Archives of General Psychiatry. 2010;67(1):26–36.PubMedCrossRef Mojtabai R, Olfson M. National Trends in Psychotropic Medication Polypharmacy in Office-Based Psychiatry. Archives of General Psychiatry. 2010;67(1):26–36.PubMedCrossRef
57.
Zurück zum Zitat Kok RM, Reynolds CF, III. Management of Depression in Older Adults: A Review. JAMA. 2017;317(20):2114–22.PubMedCrossRef Kok RM, Reynolds CF, III. Management of Depression in Older Adults: A Review. JAMA. 2017;317(20):2114–22.PubMedCrossRef
58.
Zurück zum Zitat Brooks JO, Hoblyn JC. Neurocognitive Costs and Benefits of Psychotropic Medications in Older Adults. Journal of Geriatric Psychiatry and Neurology. 2007;20(4):199–214.PubMedCrossRef Brooks JO, Hoblyn JC. Neurocognitive Costs and Benefits of Psychotropic Medications in Older Adults. Journal of Geriatric Psychiatry and Neurology. 2007;20(4):199–214.PubMedCrossRef
59.
Zurück zum Zitat Petit-Monéger A, Jouhet V, Thiessard F, Berdaï D, Noize P, Gilleron V, et al. Appropriateness of psychotropic drug prescriptions in the elderly: structuring tools based on data extracted from the hospital information system to understand physician practices. BMC Health Services Research. 2019;19(1):272.PubMedPubMedCentralCrossRef Petit-Monéger A, Jouhet V, Thiessard F, Berdaï D, Noize P, Gilleron V, et al. Appropriateness of psychotropic drug prescriptions in the elderly: structuring tools based on data extracted from the hospital information system to understand physician practices. BMC Health Services Research. 2019;19(1):272.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Leung GM, Johnston JM, Tin KYK, Wong IOL, Ho L-M, Lam WWT, et al. Randomised controlled trial of clinical decision support tools to improve learning of evidence based medicine in medical students. BMJ. 2003;327:1090–5.PubMedPubMedCentralCrossRef Leung GM, Johnston JM, Tin KYK, Wong IOL, Ho L-M, Lam WWT, et al. Randomised controlled trial of clinical decision support tools to improve learning of evidence based medicine in medical students. BMJ. 2003;327:1090–5.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Nauta KJ, Groenhof F, Schuling J, Hugtenburg JG, van Hout HPJ, Haaijer-Ruskamp FM, et al. Application of the STOPP/START criteria to a medical record database. Pharmacoepidemiol Drug Saf. 2017;26(10):1242–7.PubMedCrossRef Nauta KJ, Groenhof F, Schuling J, Hugtenburg JG, van Hout HPJ, Haaijer-Ruskamp FM, et al. Application of the STOPP/START criteria to a medical record database. Pharmacoepidemiol Drug Saf. 2017;26(10):1242–7.PubMedCrossRef
62.
Zurück zum Zitat Boyer EW. The serotonin syndrome. The New England Journal of Medicine. 2005;352(11):1112–20.PubMedCrossRef Boyer EW. The serotonin syndrome. The New England Journal of Medicine. 2005;352(11):1112–20.PubMedCrossRef
64.
Zurück zum Zitat Steinert T. Epileptic Seizures Under Antidepressive Drug Treatment: Systematic Review. Pharmacopsychiatry. 2017;51(4):121–35.PubMed Steinert T. Epileptic Seizures Under Antidepressive Drug Treatment: Systematic Review. Pharmacopsychiatry. 2017;51(4):121–35.PubMed
65.
Zurück zum Zitat Coupland C, Dhiman P, Morriss R, Arthur A, Barton G, Hippisley-Cox J. Antidepressant use and risk of adverse outcomes in older people: population based cohort study. BMJ. 2011;343:d4551.PubMedPubMedCentralCrossRef Coupland C, Dhiman P, Morriss R, Arthur A, Barton G, Hippisley-Cox J. Antidepressant use and risk of adverse outcomes in older people: population based cohort study. BMJ. 2011;343:d4551.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Cipriani A. Comparative Efficacy and Acceptability of 21 Antidepressant Drugs for the Acute Treatment of Adults With Major Depressive Disorder: A Systematic Review and Network Meta-Analysis. Focus (American Psychiatric Publishing). 2018;16(4):420–9.PubMedCentral Cipriani A. Comparative Efficacy and Acceptability of 21 Antidepressant Drugs for the Acute Treatment of Adults With Major Depressive Disorder: A Systematic Review and Network Meta-Analysis. Focus (American Psychiatric Publishing). 2018;16(4):420–9.PubMedCentral
67.
Zurück zum Zitat Ong M-S, Olson KL, Chadwick L, Liu C, Mandl KD. The Impact of Provider Networks on the Co-Prescriptions of Interacting Drugs: A Claims-Based Analysis. Drug safety. 2017;40(3):263–72.PubMedPubMedCentralCrossRef Ong M-S, Olson KL, Chadwick L, Liu C, Mandl KD. The Impact of Provider Networks on the Co-Prescriptions of Interacting Drugs: A Claims-Based Analysis. Drug safety. 2017;40(3):263–72.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Olvey EL, Clauschee S, Malone DC. Comparison of Critical Drug–Drug Interaction Listings: The Department of Veterans Affairs Medical System and Standard Reference Compendia. Clinical Pharmacology & Therapeutics. 2010;87(1):48–51.CrossRef Olvey EL, Clauschee S, Malone DC. Comparison of Critical Drug–Drug Interaction Listings: The Department of Veterans Affairs Medical System and Standard Reference Compendia. Clinical Pharmacology & Therapeutics. 2010;87(1):48–51.CrossRef
70.
Zurück zum Zitat Ayvaz S, Horn J, Hassanzadeh O, Zhu Q, Stan J, Tatonetti NP, et al. Toward a complete dataset of drug–drug interaction information from publicly available sources. J Biomed Inform. 2015;55:206–17.PubMedPubMedCentralCrossRef Ayvaz S, Horn J, Hassanzadeh O, Zhu Q, Stan J, Tatonetti NP, et al. Toward a complete dataset of drug–drug interaction information from publicly available sources. J Biomed Inform. 2015;55:206–17.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Muhič N, Mrhar A, Brvar M. Comparative analysis of three drug–drug interaction screening systems against probable clinically relevant drug–drug interactions: a prospective cohort study. Eur J Clin Pharmacol. 2017;73(7):875–82.PubMedCrossRef Muhič N, Mrhar A, Brvar M. Comparative analysis of three drug–drug interaction screening systems against probable clinically relevant drug–drug interactions: a prospective cohort study. Eur J Clin Pharmacol. 2017;73(7):875–82.PubMedCrossRef
72.
Zurück zum Zitat Fung KW, Kapusnik-Uner J, Cunningham J, Higby-Baker S, Bodenreider O. Comparison of three commercial knowledge bases for detection of drug-drug interactions in clinical decision support. J Am Med Inform Assoc. 2017;24(4):806–12.PubMedPubMedCentralCrossRef Fung KW, Kapusnik-Uner J, Cunningham J, Higby-Baker S, Bodenreider O. Comparison of three commercial knowledge bases for detection of drug-drug interactions in clinical decision support. J Am Med Inform Assoc. 2017;24(4):806–12.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Cornu P. High-priority and low-priority drug-drug interactions in different international electronic health record systems: A comparative study. International journal of medical informatics (Shannon, Ireland). 2018;111:165–71.CrossRef Cornu P. High-priority and low-priority drug-drug interactions in different international electronic health record systems: A comparative study. International journal of medical informatics (Shannon, Ireland). 2018;111:165–71.CrossRef
74.
Zurück zum Zitat Tatonetti NP, Denny JC, Murphy SN, Fernald GH, Krishnan G, Castro V, et al. Detecting Drug Interactions From Adverse-Event Reports: Interaction Between Paroxetine and Pravastatin Increases Blood Glucose Levels. Clinical Pharmacology & Therapeutics. 2011;90(1):133–42.CrossRef Tatonetti NP, Denny JC, Murphy SN, Fernald GH, Krishnan G, Castro V, et al. Detecting Drug Interactions From Adverse-Event Reports: Interaction Between Paroxetine and Pravastatin Increases Blood Glucose Levels. Clinical Pharmacology & Therapeutics. 2011;90(1):133–42.CrossRef
75.
Zurück zum Zitat Lorberbaum T, Sampson KJ, Chang JB, Iyer V, Woosley RL, Kass RS, et al. Coupling Data Mining and Laboratory Experiments to Discover Drug Interactions Causing QT Prolongation. J Am Coll Cardiol. 2016;68(16):1756–64. Lorberbaum T, Sampson KJ, Chang JB, Iyer V, Woosley RL, Kass RS, et al. Coupling Data Mining and Laboratory Experiments to Discover Drug Interactions Causing QT Prolongation. J Am Coll Cardiol. 2016;68(16):1756–64.
76.
Zurück zum Zitat Lorberbaum T, Sampson KJ, Woosley RL, Kass RS, Tatonetti NP. An Integrative Data Science Pipeline to Identify Novel Drug Interactions that Prolong the QT Interval. Drug Saf. 2016;39(5):433–41.PubMedPubMedCentralCrossRef Lorberbaum T, Sampson KJ, Woosley RL, Kass RS, Tatonetti NP. An Integrative Data Science Pipeline to Identify Novel Drug Interactions that Prolong the QT Interval. Drug Saf. 2016;39(5):433–41.PubMedPubMedCentralCrossRef
Metadaten
Titel
Prevalence of potentially harmful multidrug interactions on medication lists of elderly ambulatory patients
verfasst von
Tara V. Anand
Brendan K. Wallace
Herbert S. Chase
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
BMC Geriatrics / Ausgabe 1/2021
Elektronische ISSN: 1471-2318
DOI
https://doi.org/10.1186/s12877-021-02594-z

Weitere Artikel der Ausgabe 1/2021

BMC Geriatrics 1/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.