Skip to main content
Erschienen in: Sports Medicine 11/2020

Open Access 16.09.2020 | Current Opinion

Primary, Secondary, and Tertiary Effects of Carbohydrate Ingestion During Exercise

verfasst von: Ian Rollo, Javier T. Gonzalez, Cas J. Fuchs, Luc J. C. van Loon, Clyde Williams

Erschienen in: Sports Medicine | Ausgabe 11/2020

Einloggen, um Zugang zu erhalten

Abstract

The purpose of this current opinion paper is to describe the journey of ingested carbohydrate from ‘mouth to mitochondria’ culminating in energy production in skeletal muscles during exercise. This journey is conveniently described as primary, secondary, and tertiary events. The primary stage is detection of ingested carbohydrate by receptors in the oral cavity and on the tongue that activate reward and other centers in the brain leading to insulin secretion. After digestion, the secondary stage is the transport of monosaccharides from the small intestine into the systemic circulation. The passage of these monosaccharides is facilitated by the presence of various transport proteins. The intestinal mucosa has carbohydrate sensors that stimulate the release of two ‘incretin’ hormones (GIP and GLP-1) whose actions range from the secretion of insulin to appetite regulation. Most of the ingested carbohydrate is taken up by the liver resulting in a transient inhibition of hepatic glucose release in a dose-dependent manner. Nonetheless, the subsequent increased hepatic glucose (and lactate) output can increase exogenous carbohydrate oxidation rates by 40–50%. The recognition and successful distribution of carbohydrate to the brain and skeletal muscles to maintain carbohydrate oxidation as well as prevent hypoglycaemia underpins the mechanisms to improve exercise performance.
Literatur
1.
Zurück zum Zitat Bergstrom J, et al. Diet, muscle glycogen and physical performance. Acta Physiol Scand. 1967;71(2):140–50.PubMed Bergstrom J, et al. Diet, muscle glycogen and physical performance. Acta Physiol Scand. 1967;71(2):140–50.PubMed
2.
Zurück zum Zitat Sherman WM, et al. Effect of exercise-diet manipulation on muscle glycogen and its subsequent utilization during performance. Int J Sports Med. 1981;2(2):114–8.PubMed Sherman WM, et al. Effect of exercise-diet manipulation on muscle glycogen and its subsequent utilization during performance. Int J Sports Med. 1981;2(2):114–8.PubMed
3.
Zurück zum Zitat Brewer J, Williams C, Patton A. The influence of high carbohydrate diets on endurance running performance. Eur J Appl Physiol Occup Physiol. 1988;57(6):698–706.PubMed Brewer J, Williams C, Patton A. The influence of high carbohydrate diets on endurance running performance. Eur J Appl Physiol Occup Physiol. 1988;57(6):698–706.PubMed
4.
Zurück zum Zitat Pitsiladis YP, Duignan C, Maughan RJ. Effects of alterations in dietary carbohydrate intake on running performance during a 10 km treadmill time trial. Br J Sports Med. 1996;30(3):226–31.PubMedPubMedCentral Pitsiladis YP, Duignan C, Maughan RJ. Effects of alterations in dietary carbohydrate intake on running performance during a 10 km treadmill time trial. Br J Sports Med. 1996;30(3):226–31.PubMedPubMedCentral
5.
Zurück zum Zitat Chryssanthopoulos C, et al. Skeletal muscle glycogen concentration and metabolic responses following a high glycaemic carbohydrate breakfast. J Sports Sci. 2004;22(11–12):1065–71.PubMed Chryssanthopoulos C, et al. Skeletal muscle glycogen concentration and metabolic responses following a high glycaemic carbohydrate breakfast. J Sports Sci. 2004;22(11–12):1065–71.PubMed
6.
Zurück zum Zitat Wee SL, et al. Influence of high and low glycemic index meals on endurance running capacity. Med Sci Sports Exerc. 1999;31(3):393–9.PubMed Wee SL, et al. Influence of high and low glycemic index meals on endurance running capacity. Med Sci Sports Exerc. 1999;31(3):393–9.PubMed
7.
Zurück zum Zitat Chryssanthopoulos C, et al. The effect of a high carbohydrate meal on endurance running capacity. Int J Sport Nutr Exerc Metab. 2002;12(2):157–71.PubMed Chryssanthopoulos C, et al. The effect of a high carbohydrate meal on endurance running capacity. Int J Sport Nutr Exerc Metab. 2002;12(2):157–71.PubMed
8.
Zurück zum Zitat Wu CL, Williams C. A low glycemic index meal before exercise improves endurance running capacity in men. Int J Sport Nutr Exerc Metab. 2006;16(5):510–27.PubMed Wu CL, Williams C. A low glycemic index meal before exercise improves endurance running capacity in men. Int J Sport Nutr Exerc Metab. 2006;16(5):510–27.PubMed
9.
Zurück zum Zitat Wright DA, Sherman WM, Dernbach AR. Carbohydrate feedings before, during, or in combination improve cycling endurance performance. J Appl Physiol. 1991;71(3):1082–8.PubMed Wright DA, Sherman WM, Dernbach AR. Carbohydrate feedings before, during, or in combination improve cycling endurance performance. J Appl Physiol. 1991;71(3):1082–8.PubMed
10.
Zurück zum Zitat Chryssanthopoulos C, et al. Comparison between carbohydrate feedings before exercise, during or in combination on running capacity. Clin Sci. 1994;87:34. Chryssanthopoulos C, et al. Comparison between carbohydrate feedings before exercise, during or in combination on running capacity. Clin Sci. 1994;87:34.
11.
Zurück zum Zitat Jeukendrup A, et al. Carbohydrate-electrolyte feedings improve 1 h time trial cycling performance. Int J Sports Med. 1997;18(2):125–9.PubMed Jeukendrup A, et al. Carbohydrate-electrolyte feedings improve 1 h time trial cycling performance. Int J Sports Med. 1997;18(2):125–9.PubMed
12.
Zurück zum Zitat Rollo I, Williams C. Influence of ingesting a carbohydrate-electrolyte solution before and during a 1-hr running performance test. Int J Sports Nutr Exerc Metab. 2009;19(6):645–58. Rollo I, Williams C. Influence of ingesting a carbohydrate-electrolyte solution before and during a 1-hr running performance test. Int J Sports Nutr Exerc Metab. 2009;19(6):645–58.
13.
Zurück zum Zitat Rollo I, Williams C. Influence of ingesting a carbohydrate-electrolyte solution before and during a 1-hour run in fed endurance-trained runners. J Sports Sci. 2010;28(6):593–602.PubMed Rollo I, Williams C. Influence of ingesting a carbohydrate-electrolyte solution before and during a 1-hour run in fed endurance-trained runners. J Sports Sci. 2010;28(6):593–602.PubMed
14.
Zurück zum Zitat Coyle EF, et al. Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol. 1986;61(1):165–72.PubMed Coyle EF, et al. Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol. 1986;61(1):165–72.PubMed
15.
Zurück zum Zitat Tsintzas OK, et al. Carbohydrate ingestion and single muscle fiber glycogen metabolism during prolonged running in men. J Appl Physiol. 1996;81(2):801–9.PubMed Tsintzas OK, et al. Carbohydrate ingestion and single muscle fiber glycogen metabolism during prolonged running in men. J Appl Physiol. 1996;81(2):801–9.PubMed
16.
Zurück zum Zitat Rollo I, Williams C. Effect of mouth-rinsing carbohydrate solutions on endurance performance. Sports Med. 2011;41(6):449–61.PubMed Rollo I, Williams C. Effect of mouth-rinsing carbohydrate solutions on endurance performance. Sports Med. 2011;41(6):449–61.PubMed
17.
Zurück zum Zitat Katz DB, Nicolelis MA, Simon SA. Nutrient tasting and signaling mechanisms in the gut. IV. There is more to taste than meets the tongue. Am J Physiol Gastrointest Liver Physiol. 2000;278(1):G6–G9.PubMed Katz DB, Nicolelis MA, Simon SA. Nutrient tasting and signaling mechanisms in the gut. IV. There is more to taste than meets the tongue. Am J Physiol Gastrointest Liver Physiol. 2000;278(1):G6–G9.PubMed
18.
Zurück zum Zitat Berthoud HR. Neural systems controlling food intake and energy balance in the modern world. Curr Opin Clin Nutr Metab Care. 2003;6(6):615–20.PubMed Berthoud HR. Neural systems controlling food intake and energy balance in the modern world. Curr Opin Clin Nutr Metab Care. 2003;6(6):615–20.PubMed
19.
Zurück zum Zitat Passe DH, Horn M, Murray R. Impact of beverage acceptability on fluid intake during exercise. Appetite. 2000;35(3):219–29.PubMed Passe DH, Horn M, Murray R. Impact of beverage acceptability on fluid intake during exercise. Appetite. 2000;35(3):219–29.PubMed
20.
Zurück zum Zitat Wilmore JH, et al. Role of taste preference on fluid intake during and after 90 min of running at 60% of VO2max in the heat. Med Sci Sports Exerc. 1998;30(4):587–95.PubMed Wilmore JH, et al. Role of taste preference on fluid intake during and after 90 min of running at 60% of VO2max in the heat. Med Sci Sports Exerc. 1998;30(4):587–95.PubMed
21.
Zurück zum Zitat Smeets PA, et al. Functional magnetic resonance imaging of human hypothalamic responses to sweet taste and calories. Am J Clin Nutr. 2005;82(5):1011–6.PubMed Smeets PA, et al. Functional magnetic resonance imaging of human hypothalamic responses to sweet taste and calories. Am J Clin Nutr. 2005;82(5):1011–6.PubMed
22.
Zurück zum Zitat Smeets PA, et al. Functional MRI of human hypothalamic responses following glucose ingestion. Neuroimage. 2005;24(2):363–8.PubMed Smeets PA, et al. Functional MRI of human hypothalamic responses following glucose ingestion. Neuroimage. 2005;24(2):363–8.PubMed
23.
Zurück zum Zitat Chambers ES, Bridge MW, Jones DA. Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity. J Physiol. 2009;578(8):1779–944. Chambers ES, Bridge MW, Jones DA. Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity. J Physiol. 2009;578(8):1779–944.
24.
Zurück zum Zitat Rolls ET. Sensory processing in the brain related to the control of food intake. Proc Nutr Soc. 2007;66(1):96–112.PubMed Rolls ET. Sensory processing in the brain related to the control of food intake. Proc Nutr Soc. 2007;66(1):96–112.PubMed
25.
Zurück zum Zitat Just T, et al. Cephalic phase insulin release in healthy humans after taste stimulation? Appetite. 2008;51(3):622–7.PubMed Just T, et al. Cephalic phase insulin release in healthy humans after taste stimulation? Appetite. 2008;51(3):622–7.PubMed
26.
Zurück zum Zitat James RM, et al. No dose response effect of carbohydrate mouth rinse on cycling time-trial performance. Int J Sport Nutr Exerc Metab. 2017;27(1):25–31.PubMed James RM, et al. No dose response effect of carbohydrate mouth rinse on cycling time-trial performance. Int J Sport Nutr Exerc Metab. 2017;27(1):25–31.PubMed
27.
Zurück zum Zitat Painelli VS, et al. The effect of carbohydrate mouth rinse on maximal strength and strength endurance. Eur J Appl Physiol. 2011;111(9):2381–6.PubMed Painelli VS, et al. The effect of carbohydrate mouth rinse on maximal strength and strength endurance. Eur J Appl Physiol. 2011;111(9):2381–6.PubMed
28.
Zurück zum Zitat Dunkin JE, Phillips SM. The effect of a carbohydrate mouth rinse on upper-body muscular strength and endurance. J Strength Cond Res. 2017;31(7):1948–53.PubMed Dunkin JE, Phillips SM. The effect of a carbohydrate mouth rinse on upper-body muscular strength and endurance. J Strength Cond Res. 2017;31(7):1948–53.PubMed
29.
Zurück zum Zitat Beelen M, et al. Carbohydrate mouth rinsing in the fed state does not enhance time trial performance. Int J Sports Nutr Exerc Metab. 2009;19(4):400–9. Beelen M, et al. Carbohydrate mouth rinsing in the fed state does not enhance time trial performance. Int J Sports Nutr Exerc Metab. 2009;19(4):400–9.
30.
Zurück zum Zitat Rollo I, et al. The influence of carbohydrate mouth rinse on self-selected speeds during a 30-min treadmill run. Int J Sport Nutr Exerc Metab. 2008;18(6):585–600.PubMed Rollo I, et al. The influence of carbohydrate mouth rinse on self-selected speeds during a 30-min treadmill run. Int J Sport Nutr Exerc Metab. 2008;18(6):585–600.PubMed
32.
Zurück zum Zitat Turner CE, et al. Carbohydrate in the mouth enhances activation of brain circuitry involved in motor performance and sensory perception. Appetite. 2014;80:212–9.PubMed Turner CE, et al. Carbohydrate in the mouth enhances activation of brain circuitry involved in motor performance and sensory perception. Appetite. 2014;80:212–9.PubMed
33.
Zurück zum Zitat Brietzke C, et al. Effects of carbohydrate mouth rinse on cycling time trial performance: a systematic review and meta-analysis. Sports Med. 2019;49(1):57–66.PubMed Brietzke C, et al. Effects of carbohydrate mouth rinse on cycling time trial performance: a systematic review and meta-analysis. Sports Med. 2019;49(1):57–66.PubMed
34.
Zurück zum Zitat Holdsworth CD, Dawson AM. The absorption of monosaccharides in man. Clin Sci. 1964;27:371–9.PubMed Holdsworth CD, Dawson AM. The absorption of monosaccharides in man. Clin Sci. 1964;27:371–9.PubMed
35.
Zurück zum Zitat Datz FL, Christian PE, Moore J. Gender-related differences in gastric emptying. J Nucl Med. 1987;28(7):1204–7.PubMed Datz FL, Christian PE, Moore J. Gender-related differences in gastric emptying. J Nucl Med. 1987;28(7):1204–7.PubMed
36.
Zurück zum Zitat Baker LB, Jeukendrup AE. Optimal composition of fluid-replacement beverages. Compr Physiol. 2014;4(2):575–620.PubMed Baker LB, Jeukendrup AE. Optimal composition of fluid-replacement beverages. Compr Physiol. 2014;4(2):575–620.PubMed
37.
Zurück zum Zitat Elias E, et al. The slowing of gastric emptying by monosaccharides and disaccharides in test meals. J Physiol. 1968;194(2):317–26.PubMedPubMedCentral Elias E, et al. The slowing of gastric emptying by monosaccharides and disaccharides in test meals. J Physiol. 1968;194(2):317–26.PubMedPubMedCentral
38.
Zurück zum Zitat Brener W, Hendrix TR, McHugh PR. Regulation of the gastric emptying of glucose. Gastroenterology. 1983;85(1):76–82.PubMed Brener W, Hendrix TR, McHugh PR. Regulation of the gastric emptying of glucose. Gastroenterology. 1983;85(1):76–82.PubMed
39.
Zurück zum Zitat Rehrer NJ, et al. Gastric emptying, absorption, and carbohydrate oxidation during prolonged exercise. J Appl Physiol (1985). 1992;72(2):468–75. Rehrer NJ, et al. Gastric emptying, absorption, and carbohydrate oxidation during prolonged exercise. J Appl Physiol (1985). 1992;72(2):468–75.
40.
Zurück zum Zitat Dyer J, et al. Glucose sensing in the intestinal epithelium. Eur J Biochem. 2003;270(16):3377–88.PubMed Dyer J, et al. Glucose sensing in the intestinal epithelium. Eur J Biochem. 2003;270(16):3377–88.PubMed
41.
Zurück zum Zitat Kristiansen S, et al. Fructose transport and GLUT-5 protein in human sarcolemmal vesicles. Am J Physiol. 1997;273(3 Pt 1):E543–E548548.PubMed Kristiansen S, et al. Fructose transport and GLUT-5 protein in human sarcolemmal vesicles. Am J Physiol. 1997;273(3 Pt 1):E543–E548548.PubMed
42.
Zurück zum Zitat Rogers S, et al. Glucose transporter GLUT12-functional characterization in Xenopus laevis oocytes. Biochem Biophys Res Commun. 2003;308(3):422–6.PubMed Rogers S, et al. Glucose transporter GLUT12-functional characterization in Xenopus laevis oocytes. Biochem Biophys Res Commun. 2003;308(3):422–6.PubMed
43.
Zurück zum Zitat DeBosch BJ, Chi M, Moley KH. Glucose transporter 8 (GLUT8) regulates enterocyte fructose transport and global mammalian fructose utilization. Endocrinology. 2012;153(9):4181–91.PubMedPubMedCentral DeBosch BJ, Chi M, Moley KH. Glucose transporter 8 (GLUT8) regulates enterocyte fructose transport and global mammalian fructose utilization. Endocrinology. 2012;153(9):4181–91.PubMedPubMedCentral
45.
Zurück zum Zitat Jentjens RL, et al. Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol (1985). 2004;96(4):1277–84. Jentjens RL, et al. Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol (1985). 2004;96(4):1277–84.
46.
Zurück zum Zitat Rowlands DS, et al. Fructose–glucose composite carbohydrates and endurance performance: critical review and future perspectives. Sports Med. 2015;45(11):1561–76.PubMed Rowlands DS, et al. Fructose–glucose composite carbohydrates and endurance performance: critical review and future perspectives. Sports Med. 2015;45(11):1561–76.PubMed
47.
Zurück zum Zitat Gonzalez JT, et al. Ingestion of glucose or sucrose prevents liver but not muscle glycogen depletion during prolonged endurance-type exercise in trained cyclists. Am J Physiol Endocrinol Metab. 2015;309(12):E1032–E10391039.PubMed Gonzalez JT, et al. Ingestion of glucose or sucrose prevents liver but not muscle glycogen depletion during prolonged endurance-type exercise in trained cyclists. Am J Physiol Endocrinol Metab. 2015;309(12):E1032–E10391039.PubMed
48.
Zurück zum Zitat Trommelen J, et al. Fructose and sucrose intake increase exogenous carbohydrate oxidation during exercise. Nutrients. 2017;9(2):167.PubMedCentral Trommelen J, et al. Fructose and sucrose intake increase exogenous carbohydrate oxidation during exercise. Nutrients. 2017;9(2):167.PubMedCentral
49.
Zurück zum Zitat van Wijck K, et al. Exercise-induced splanchnic hypoperfusion results in gut dysfunction in healthy men. PLoS ONE. 2011;6(7):e22366.PubMedPubMedCentral van Wijck K, et al. Exercise-induced splanchnic hypoperfusion results in gut dysfunction in healthy men. PLoS ONE. 2011;6(7):e22366.PubMedPubMedCentral
50.
Zurück zum Zitat Edinburgh RM, et al. Pre-exercise breakfast ingestion versus extended overnight fasting increases postprandial glucose flux after exercise in healthy men. Am J Physiol. 2018;315:E1062–E10741074. Edinburgh RM, et al. Pre-exercise breakfast ingestion versus extended overnight fasting increases postprandial glucose flux after exercise in healthy men. Am J Physiol. 2018;315:E1062–E10741074.
51.
Zurück zum Zitat Jonvik KL, et al. Sucrose but not nitrate ingestion reduces strenuous cycling-induced intestinal injury. Med Sci Sports Exerc. 2019;51(3):436–44.PubMed Jonvik KL, et al. Sucrose but not nitrate ingestion reduces strenuous cycling-induced intestinal injury. Med Sci Sports Exerc. 2019;51(3):436–44.PubMed
52.
Zurück zum Zitat Perley MJ, Kipnis DM. Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects. J Clin Investig. 1967;46(12):1954–62.PubMedPubMedCentral Perley MJ, Kipnis DM. Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic subjects. J Clin Investig. 1967;46(12):1954–62.PubMedPubMedCentral
54.
Zurück zum Zitat Raybould HE. Does your gut taste? Sensory transduction in the gastrointestinal tract. News Physiol Sci Int J Physiol Prod Jt Int Union Physiol Sci Am Physiol Soc. 1998;13:275–80. Raybould HE. Does your gut taste? Sensory transduction in the gastrointestinal tract. News Physiol Sci Int J Physiol Prod Jt Int Union Physiol Sci Am Physiol Soc. 1998;13:275–80.
55.
Zurück zum Zitat Hevener AL, Bergman RN, Donovan CM. Portal vein afferents are critical for the sympathoadrenal response to hypoglycemia. Diabetes. 2000;49(1):8–12.PubMed Hevener AL, Bergman RN, Donovan CM. Portal vein afferents are critical for the sympathoadrenal response to hypoglycemia. Diabetes. 2000;49(1):8–12.PubMed
56.
Zurück zum Zitat Gonzalez JT, et al. Liver glycogen metabolism during and after prolonged endurance-type exercise. Am J Physiol Endocrinol Metab. 2016;311(3):E543–E553553.PubMed Gonzalez JT, et al. Liver glycogen metabolism during and after prolonged endurance-type exercise. Am J Physiol Endocrinol Metab. 2016;311(3):E543–E553553.PubMed
57.
Zurück zum Zitat Jeukendrup AE, et al. Carbohydrate ingestion can completely suppress endogenous glucose production during exercise. Am J Physiol. 1999;276(4):E672–E683683.PubMed Jeukendrup AE, et al. Carbohydrate ingestion can completely suppress endogenous glucose production during exercise. Am J Physiol. 1999;276(4):E672–E683683.PubMed
58.
Zurück zum Zitat Jeukendrup AE, Jentjens R. Oxidation of carbohydrate feedings during prolonged exercise: current thoughts, guidelines and directions for future research. Sports Med. 2000;29(6):407–24.PubMed Jeukendrup AE, Jentjens R. Oxidation of carbohydrate feedings during prolonged exercise: current thoughts, guidelines and directions for future research. Sports Med. 2000;29(6):407–24.PubMed
59.
Zurück zum Zitat Lecoultre V, et al. Fructose and glucose co-ingestion during prolonged exercise increases lactate and glucose fluxes and oxidation compared with an equimolar intake of glucose. Am J Clin Nutr. 2010;92(5):1071–9.PubMed Lecoultre V, et al. Fructose and glucose co-ingestion during prolonged exercise increases lactate and glucose fluxes and oxidation compared with an equimolar intake of glucose. Am J Clin Nutr. 2010;92(5):1071–9.PubMed
60.
Zurück zum Zitat Coyle EF. Carbohydrate supplementation during exercise. J Nutr. 1992;122(3 Suppl):788–95.PubMed Coyle EF. Carbohydrate supplementation during exercise. J Nutr. 1992;122(3 Suppl):788–95.PubMed
61.
Zurück zum Zitat Duelli R, Kuschinsky W. Brain glucose transporters: relationship to local energy demand. News Physiol Sci. 2001;16:71–6.PubMed Duelli R, Kuschinsky W. Brain glucose transporters: relationship to local energy demand. News Physiol Sci. 2001;16:71–6.PubMed
62.
Zurück zum Zitat Simpson IA, Carruthers A, Vannucci SJ. Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab. 2007;27(11):1766–91.PubMed Simpson IA, Carruthers A, Vannucci SJ. Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab. 2007;27(11):1766–91.PubMed
63.
Zurück zum Zitat Brown AM. Brain glycogen re-awakened. J Neurochem. 2004;89(3):537–52.PubMed Brown AM. Brain glycogen re-awakened. J Neurochem. 2004;89(3):537–52.PubMed
64.
Zurück zum Zitat Nybo L, Secher NH. Cerebral perturbations provoked by prolonged exercise. Prog Neurobiol. 2004;72(4):223–61.PubMed Nybo L, Secher NH. Cerebral perturbations provoked by prolonged exercise. Prog Neurobiol. 2004;72(4):223–61.PubMed
65.
Zurück zum Zitat Boumezbeur F, et al. The contribution of blood lactate to brain energy metabolism in humans measured by dynamic 13C nuclear magnetic resonance spectroscopy. J Neurosci. 2010;30(42):13983–91.PubMedPubMedCentral Boumezbeur F, et al. The contribution of blood lactate to brain energy metabolism in humans measured by dynamic 13C nuclear magnetic resonance spectroscopy. J Neurosci. 2010;30(42):13983–91.PubMedPubMedCentral
66.
Zurück zum Zitat Querido JS, Sheel AW. Regulation of cerebral blood flow during exercise. Sports Med. 2007;37(9):765–82.PubMed Querido JS, Sheel AW. Regulation of cerebral blood flow during exercise. Sports Med. 2007;37(9):765–82.PubMed
67.
Zurück zum Zitat Quistorff B, Secher NH, Van Lieshout JJ. Lactate fuels the human brain during exercise. FASEB J. 2008;22(10):3443–9.PubMed Quistorff B, Secher NH, Van Lieshout JJ. Lactate fuels the human brain during exercise. FASEB J. 2008;22(10):3443–9.PubMed
68.
Zurück zum Zitat van Hall G, et al. Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab. 2009;29(6):1121–9.PubMed van Hall G, et al. Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab. 2009;29(6):1121–9.PubMed
69.
Zurück zum Zitat Nybo L. CNS fatigue and prolonged exercise: effect of glucose supplementation. Med Sci Sports Exerc. 2003;35(4):589–94.PubMed Nybo L. CNS fatigue and prolonged exercise: effect of glucose supplementation. Med Sci Sports Exerc. 2003;35(4):589–94.PubMed
70.
Zurück zum Zitat Khong TK, et al. Role of carbohydrate in central fatigue: a systematic review. Scand J Med Sci Sports. 2017;27(4):376–84.PubMed Khong TK, et al. Role of carbohydrate in central fatigue: a systematic review. Scand J Med Sci Sports. 2017;27(4):376–84.PubMed
71.
Zurück zum Zitat Baker LB, et al. Acute effects of carbohydrate supplementation on intermittent sports performance. Nutrients. 2015;7(7):5733–63.PubMedPubMedCentral Baker LB, et al. Acute effects of carbohydrate supplementation on intermittent sports performance. Nutrients. 2015;7(7):5733–63.PubMedPubMedCentral
72.
Zurück zum Zitat Rodriguez-Giustiniani P, et al. Ingesting a 12% carbohydrate-electrolyte beverage before each half of a soccer match simulation facilitates retention of passing performance and improves high-intensity running capacity in academy players. Int J Sport Nutr Exerc Metab. 2019;29(4):397–405.PubMed Rodriguez-Giustiniani P, et al. Ingesting a 12% carbohydrate-electrolyte beverage before each half of a soccer match simulation facilitates retention of passing performance and improves high-intensity running capacity in academy players. Int J Sport Nutr Exerc Metab. 2019;29(4):397–405.PubMed
73.
Zurück zum Zitat Russell M, Kingsley M. The efficacy of acute nutritional interventions on soccer skill performance. Sports Med. 2014;44(7):957–70.PubMed Russell M, Kingsley M. The efficacy of acute nutritional interventions on soccer skill performance. Sports Med. 2014;44(7):957–70.PubMed
74.
Zurück zum Zitat Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev. 2013;93(3):993–1017.PubMed Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev. 2013;93(3):993–1017.PubMed
75.
Zurück zum Zitat Brooks GA. The science and translation of lactate shuttle theory. Cell Metab. 2018;27(4):757–85.PubMed Brooks GA. The science and translation of lactate shuttle theory. Cell Metab. 2018;27(4):757–85.PubMed
76.
Zurück zum Zitat Jentjens RL, Jeukendrup AE. High rates of exogenous carbohydrate oxidation from a mixture of glucose and fructose ingested during prolonged cycling exercise. Br J Nutr. 2005;93(4):485–92.PubMed Jentjens RL, Jeukendrup AE. High rates of exogenous carbohydrate oxidation from a mixture of glucose and fructose ingested during prolonged cycling exercise. Br J Nutr. 2005;93(4):485–92.PubMed
77.
Zurück zum Zitat Fuchs CJ, Gonzalez JT, van Loon LJC. Fructose co-ingestion to increase carbohydrate availability in athletes. J Physiol. 2019;597(14):3549–60.PubMed Fuchs CJ, Gonzalez JT, van Loon LJC. Fructose co-ingestion to increase carbohydrate availability in athletes. J Physiol. 2019;597(14):3549–60.PubMed
78.
Zurück zum Zitat Currell K, Jeukendrup AE. Superior endurance performance with ingestion of multiple transportable carbohydrates. Med Sci Sports Exerc. 2008;40(2):275–81.PubMed Currell K, Jeukendrup AE. Superior endurance performance with ingestion of multiple transportable carbohydrates. Med Sci Sports Exerc. 2008;40(2):275–81.PubMed
79.
Zurück zum Zitat King AJ, et al. Carbohydrate dose influences liver and muscle glycogen oxidation and performance during prolonged exercise. Physiol Rep. 2018;6(1):e13555.PubMedCentral King AJ, et al. Carbohydrate dose influences liver and muscle glycogen oxidation and performance during prolonged exercise. Physiol Rep. 2018;6(1):e13555.PubMedCentral
80.
Zurück zum Zitat Costa RJS, et al. Gut-training: the impact of two weeks repetitive gut-challenge during exercise on gastrointestinal status, glucose availability, fuel kinetics, and running performance. Appl Physiol Nutr Metab. 2017;42(5):547–57.PubMed Costa RJS, et al. Gut-training: the impact of two weeks repetitive gut-challenge during exercise on gastrointestinal status, glucose availability, fuel kinetics, and running performance. Appl Physiol Nutr Metab. 2017;42(5):547–57.PubMed
81.
Zurück zum Zitat Tsintzas K, Williams C. Human muscle glycogen metabolism during exercise. Effect of carbohydrate supplementation. Sports Med. 1998;25(1):7–23.PubMed Tsintzas K, Williams C. Human muscle glycogen metabolism during exercise. Effect of carbohydrate supplementation. Sports Med. 1998;25(1):7–23.PubMed
82.
Zurück zum Zitat Cermak NM, van Loon LJ. The use of carbohydrates during exercise as an ergogenic aid. Sports Med. 2013;43(11):1139–55.PubMed Cermak NM, van Loon LJ. The use of carbohydrates during exercise as an ergogenic aid. Sports Med. 2013;43(11):1139–55.PubMed
Metadaten
Titel
Primary, Secondary, and Tertiary Effects of Carbohydrate Ingestion During Exercise
verfasst von
Ian Rollo
Javier T. Gonzalez
Cas J. Fuchs
Luc J. C. van Loon
Clyde Williams
Publikationsdatum
16.09.2020
Verlag
Springer International Publishing
Erschienen in
Sports Medicine / Ausgabe 11/2020
Print ISSN: 0112-1642
Elektronische ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-020-01343-3

Weitere Artikel der Ausgabe 11/2020

Sports Medicine 11/2020 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.