Skip to main content
Erschienen in: Clinical Neuroradiology 3/2023

Open Access 03.03.2023 | Original Article

Prone Dynamic CT Myelography in Spontaneous Intracranial Hypotension

Diagnostic Need and Radiation Doses

verfasst von: Niklas Lützen, Enrique Barvulsky Aleman, Christian Fung, Juergen Beck, Horst Urbach

Erschienen in: Clinical Neuroradiology | Ausgabe 3/2023

Abstract

Background and Purpose

The diagnostic work-up in patients with spontaneous intracranial hypotension (SIH) and spinal longitudinal extradural CSF collection (SLEC) on magnetic resonance imaging (MRI) comprises dynamic digital subtraction myelography (dDSM) in prone position for leak detection. Dynamic computed tomography (CT) myelography (dCT-M) in prone position follows if the leak is not unequivocally located. A drawback of dCT‑M is a high radiation dose. This study evaluates the diagnostic needs of dCT-M examinations and measures to reduce radiation doses.

Methods

Frequency, leak sites, length and number of spiral acquisitions, DLP and effective doses of dCT‑M were retrospectively recorded in patients with ventral dural tears.

Results

Of 42 patients with ventral dural tears, 8 underwent 11 dCT‑M when the leak was not unequivocally shown on digital subtraction myelography. The median number of spiral acquisitions was 4 (range 3–7) and the mean effective radiation dose 30.6 mSv (range 13.1–62.16 mSv) mSv. Five of eight leaks were located in the upper thoracic spine (range C7/Th1–Th2/3). Bolus tracking of intrathecal contrast agent in dCT‑M was used to limit the number and length of spiral acquisitions.

Discussion

A dCT‑M in prone position to localize a ventral dural tear is needed in every fifth patient with a SLEC on MRI. It is typically needed when the leak is located in the upper thoracic spine and when patients have broad shoulders. Measures to reduce the radiation dose include bolus tracking or to repeat the DSM with adjusted positioning of patient.

Introduction

Spontaneous intracranial hypotension (SIH) is an acquired disease resulting in orthostatic headache, which is in almost all cases caused by cerebrospinal fluid (CSF) leaks [1, 2]. Patients with distinct SIH signs on head magnetic resonance imaging (MRI, so-called head-positive) and predominantly ventral spinal longitudinal extradural CSF collection (so-called SLEC-positive) are suggestive to have a ventral dural tear which is typically located with prone dynamic digital subtraction myelography (dDSM) [3]. Ventral dural tears are often located in the upper thoracic spine and difficult to visualize with myelographic techniques, especially when patients have broad shoulders superimposing the spinal canal. In these situations, additional prone dynamic CT myelography (dCT-M) may be needed.
The dCT‑M as a technique to localize so-called high-flow CSF leaks was introduced in 2003 [4, 5]. At this time patients were lying flat on the CT table. With the use of a custom made tiltable wooden table patients can be placed in an upside down position which helps to control the intrathecal contrast flow toward a possible leak in the upper thoracic spine.
To date, only few data have been published on the radiation dose of dCT‑M studies in SIH patients. This article provides detailed data of how often dCT‑M, radiation doses and localization of the ventral leaks were acquired. As radiation exposure of dCT‑M is ~3 times higher compared to dynamic digital subtraction myelography [6], approaches to reduce radiation exposure are evaluated.

Material and Methods

A retrospective study was carried out of patients fulfilling the diagnostic criteria of SIH who had been evaluated with dynamic subtraction myelography and dynamic CT myelography in prone position [1].
We restricted the time period to 2021–2022 in order to assure that dynamic digital subtraction myelography, which typically is the first invasive diagnostic measure was carried out with a state of the art flat detector unit (Siemens icono biplane, Siemens Healthineers, Erlangen, Germany).
Radiation exposures were recorded from the structured dose reports. The study was approved by the ethics committee (1249/22). Informed consent of the patients was obtained.
Dynamic CT myelography was performed on a 64-row multidetector CT scanner (Somatom Definition 64 AS; Siemens Healthineers, Erlangen, Germany). The patient was placed on a customized table in a prone and head down position. Spiral acquisition was typically started a few seconds after the beginning of the injection of 15 ml Iomeprol 300M (Imeron 300M, Bracco Imaging, Milano, Italy) with a speed of approximately 2 ml/s. The first spiral acquisition was in a caudo-cranial direction, subsequent acquisitions alternating in cranio-caudal and caudo-cranial directions. Collimation was 0.75 mm, rotation speed 0.3 s, 120 kV reference tube voltage, 280 mAs reference tube current, and four-dimensional automatic real-time dose adjustment technology served as default parameters (CareDose4D, Siemens Healthineers).
Dynamic CT myelography comprises the following steps:
1.
Placing a spinal needle in the lumbar subarachnoid space either under fluoroscopy in lateral decubitus position or on the CT scanner table in prone position.
 
2.
Connection of a 20-mL syringe filled with 15 ml of a nonionic contrast agent (300 mg/ml) to an extension tube and injection of 1–2 ml to confirm the intrathecal needle position.
 
3.
Transport of the patient in lateral decubitus position from the flat detector unit to the CT scanner and placing the patient on a customized tiltable table in a prone and head down position with an additional pillow in order to compensate the lordosis of the lumbar spine (Fig. 1).
 
4.
Acquisition of lateral CT scout of the spine covering the region of interest. The region of interest is determined using the MRI scans focusing on the SLEC sign and on osteophytes visible on MRI and the site suspicious of a ventral contrast egress in the epidural space on the dynamic myelograms.
 
5.
Acquisition of 1–5 spiral CT scans during and after the continuous manual injection of contrast with the neuroradiologist wearing an X‑ray protective coat and standing behind a mobile acrylic lead glass shielding next to the gantry.
 
The approach is different from previous publications as the needle is placed under fluoroscopy and not in the CT scanner [79].

Approaches for Radiation Dose Reduction

Bolus tracking of contrast agent in dCT‑M in prone position

As it is unpredictable when the contrast column would overcome the thoracic kyphosis and reach the caudal border of the scanning range, we decided to include bolus tracking of contrast agent with the monitoring slice placed on the top of the thoracic kyphosis (Fig. 2b). The neuroradiologist in the CT room starts the injection of the contrast agent while the monitoring is started at the same time (one slice every second). Outside in the CT monitoring room, the scan is started by an assistant as soon as the contrast agent is visible intrathecally.

Shoulder Lift for Optimal, Overlay-free Imaging in DDSM

For optimal positioning of patients for dDSM in the angiography suite, they are placed in prone and “swimmer’s position”, with one arm extended toward the head and the other arm extended along the torso (Fig. 5). The shoulder with the arm extended forward is supported by a kidney cup and an inflatable pump wedge (Fig. 5) that raises the shoulder gradually until the spinal canal is no longer superimposed by the humeral head (Fig. 3c).

Results

Out of 42 patients, who had ventral dural tears in an 18- month period 8 underwent 11 dCT‑M with a median number of 4 (range 3–7) spiral acquisitions and a mean effective radiation dose of 30.6 (range 13.1 to 79.8 mSv) (Table 1). In 34 patients, dDSM was able to show the exact site of leakage at the ventral aspect of the spine. In one patient, even dCT‑M did not succeed to find the exact site of leakage (patient #3).
Table 1
Patients with a ventral dural tear that was not detected by dynamic digital subtraction myelography (DSM) in prone position. In these patients, DSM was followed by dynamic CT myelography which revealed the leak, except in patient 3. The table shows the examination frequency, characteristics, localization of the leak, radiation doses and lists the use of bolus tracking of the contrast agent (in the right column)
Patient
Sex, age (years)
Leak location
kV mA/ref
Scanning range
Volume CT dose index (mGy)
Dose-length product (mGy×cm)
Effective dose (mSv);
DLP × 0.017
Monitoring of contrast agent
1
m, 34
Th1/2
100
484/300
C4-Th5
21.5,
20.88,
21.59
339.2,
329.3,
340.4
17.59
+
m, 35
Th 1/2
100
572/350
C7-Th6
25.41,
23.14,
25.23,
46.92
378.5,
344.5,
375.7,
529.8
28.22
+
2
m, 36
Th1/2
100
502/300
C4-Th6
22.3,
22.79,
22.39,
19.81
403.1,
410.0,
402.5,
565.8
31.55
+
3
m, 56
Not found
80
383/330
Th4‑9
8.02,
7.71,
8.59,
7.85,
6.97
136.5,
131.2,
53.8,
185,
160.5
13.00
+
m, 56
Not found
100
369/300
Th5-10
16.39,
15.72,
16.39,
14.86,
12.57
208.6,
293.5,
306.2,
283.6,
308.7
26.28
+
4
m, 54
Th1/2
100
611/295
C6-Th6
12.43,
27.14,
25.45,
28.7
256.8,
517.9,
484.7,
486.8
48.73
+
5
f, 41
Th 9/10
100
292/495
Th5-L1
12.97,
12.39,
12.75
315,10
225,58
232,55
13,14
6
f, 64
Th12/L1
100
227/495
Th9-L1
10.08
9.91
10.08
9.46
9.37
180,37
177,22
180,37
214,08
211,96
16,39
7
m, 47
C7/Th1
120
511/288
C3-Th2
38.84
40.97
38.77
523,50
552,03
522,26
27,16
+
8
f, 59
Th 2/3
120
363/288
C5-Th8
16.87
27.59
27.59
33.67
27.06
27.67
26.98
283.3
562.2
561.9
350.6
620
607.2
618.8
62,16
+
f, 59
Th 2/3
100
637/495
C4-Th7
14.75
28.3
27.5
28.2
28.16
290.6
558.6
541.6
557.7
555.2
43.5
+
Multiple numbers in the 6th and 7th column indicate the values of each CT scan
f female, m male, C cervical, Th thoracal, L lumbar, mGy milligray, mSv millisievert, DLP dose-length product
With respect to the entire cohort, 27 of 42 ventral leaks were located in the upper thoracic spine ranging from C7/Th1 to Th3/4. Of the additional dynamic CT‑M cohort, five of eight leaks were in this location (Table 1, Fig. 4).
Out of eight patients who underwent dCT‑M seven were performed with bolus tracking of contrast agent. Whether bolus tracking helped to limit the number and length of spiral acquisitions, cannot be proven.
Out of 34 patients who underwent dDSM 10 were performed with an additional “pump wedge” to lift one shoulder to increase image quality (Fig. 5).

Discussion

In order to precisely locate ventral dural tears, additional dynamic CT myelography following dynamic digital subtraction myelography in prone position is needed in every fifth patient. The radiation dose is around threefold compared to digital subtraction myelography ([69]; Table 2) and measures to reduce it are desirable. The most effective way to avoid a high radiation dose is to avoid dynamic CT myelography and instead to repeat dynamic digital subtraction myelography. Therefore, the patient can be placed in swimmer’s position with one shoulder elevated using a so-called pump wedge so that it does not superimpose the spinal canal (Figs. 3, 4 and 5); however, this algorithm is only promising when the patients do not have broad shoulders or when spinal MRI suggests the leak to be located in the middle or lower thoracic spine. As two thirds of ventral dural tears are located in the upper thoracic spine, dynamic CT myelography in prone position will remain an indispensable tool in the work-up of SIH patients. Bolus tracking of contrast agent with placing the monitoring slice on the top of the thoracic kyphosis may help to reduce the number and length of spiral acquisitions although this cannot be proven from the small number of patients in this retrospective study.
Table 2
Radiation doses in dynamic CT myelography. For comparison, a dynamic digital subtraction myelography study is provided (bottom line)
Study
Patients
Ventral leak location
Volume CT dose index (mGy)
Dose-length product (mGy × cm)
Effective dose (mSv)
Luetmer 2003 [4]
n =4
n.r.
21.11
n.r.
n.r.
Luetmer 2012 [10]
n = 24
n.r.
n.r.
n.r.
n.r.
Thielen 2015 [7]
n = 14
3 cervical, 11 throracic
21.4 per scan with 3–6 scans
n.r.
70.6 (21.5–182.9)
Dobrocky 2018 [9]
n = 10
n.r.
107 (12–246)
1347 (550–3750)
24.3 (9.9–67.6)
Nicholson 2021 [6]
n = 33
n.r.
38.1 (10.2–103.7)
1184.9 (185.5–4848)
19.7 (3.2–82.4)
Study
Patients
Ventral leak location
Fluoroscopy time (min)
Total kerma area product (mGy × cm2)
Effective dose (mSv)
Nicholson 2021 [6]
n = 42
n.r.
4.7 (1.8–8.1)
34,053 (2932–88,374)
13 (2.6–31.7)
The values in the brackets indicate the ranges
n number, n.r. not reported, mGy milligray, mSv millisievert
Use of iterative reconstructions in CT examinations is a common means to reduce radiation dose [11]. Whether it is helpful to reduce the tube voltage to better use the iodine contrast or to use dual energy CT are further open questions [12].

Limitations

We are aware that a retrospective study with changing the technique and scanning parameters over the time is far away from a controlled trial; however, the need to exactly locate ventral dural tears in patients with spontaneous intracranial hypotension is evident and many leaks have been missed for years [13, 14]. Thus, it is important to report on the technical challenges associated with the work-up of these patients.

Conclusion

The use of dCT‑M has a high radiation dose but is sometimes indispensable in the search for ventral dural leaks in SIH patients. Its usage should be limited whenever possible by the less dose-intensive dDSM, where special positioning techniques of the patient may help to increase detectability of leaks. In addition, bolus tracking of contrast agent is an approach to potentially reduce the number of CT scans and therefore radiation dosages.

Declarations

Conflict of interest

N. Lützen, E. Barvulsky Aleman, C. Fung, J. Beck and H. Urbach declare that they have no competing interests.

Ethical standards

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Headache Classification Committee of the International Headache Society. The international classification of headache disorders, 3rd edition. Cephalalgia. 2018;38:1–211.CrossRef Headache Classification Committee of the International Headache Society. The international classification of headache disorders, 3rd edition. Cephalalgia. 2018;38:1–211.CrossRef
2.
Zurück zum Zitat Schievink WI, Maya MM, Jean-Pierre S, Nuño M, Prasad RS, Moser FG. A classification system of spontaneous spinal CSF leaks. Neurology. 2016;87:673–9.CrossRefPubMed Schievink WI, Maya MM, Jean-Pierre S, Nuño M, Prasad RS, Moser FG. A classification system of spontaneous spinal CSF leaks. Neurology. 2016;87:673–9.CrossRefPubMed
3.
Zurück zum Zitat Luetzen N, Dovi-Akue P, Fung C, Beck J, Urbach H. Spontaneous intracranial hypotension: diagnostic and therapeutic workup. Neuroradiology. 2021;63:1765–72.CrossRefPubMedPubMedCentral Luetzen N, Dovi-Akue P, Fung C, Beck J, Urbach H. Spontaneous intracranial hypotension: diagnostic and therapeutic workup. Neuroradiology. 2021;63:1765–72.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Luetmer PH, Mokri B. Dynamic CT myelography: a technique for localizing high-flow spinal cerebrospinal fluid leaks. AJNR Am J Neuroradiol. 2003;24:1711–4.PubMedPubMedCentral Luetmer PH, Mokri B. Dynamic CT myelography: a technique for localizing high-flow spinal cerebrospinal fluid leaks. AJNR Am J Neuroradiol. 2003;24:1711–4.PubMedPubMedCentral
6.
Zurück zum Zitat Nicholson PJ, Guest WC, van Prooijen M, Farb RI. Digital subtraction myelography is associated with less radiation dose than CT-based techniques. Clin Neuroradiol. 2021;31:627–31.CrossRefPubMed Nicholson PJ, Guest WC, van Prooijen M, Farb RI. Digital subtraction myelography is associated with less radiation dose than CT-based techniques. Clin Neuroradiol. 2021;31:627–31.CrossRefPubMed
7.
Zurück zum Zitat Thielen KR, Sillery JC, Morris JM, Hoxworth JM, Diehn FE, Wald JT, Rosebrock RE, Yu L, Luetmer PH. Ultrafast dynamic computed tomography myelography for the precise identification of high-flow cerebrospinal fluid leaks caused by spiculated spinal osteophytes. J Neurosurg Spine. 2015;22:324–31.CrossRefPubMed Thielen KR, Sillery JC, Morris JM, Hoxworth JM, Diehn FE, Wald JT, Rosebrock RE, Yu L, Luetmer PH. Ultrafast dynamic computed tomography myelography for the precise identification of high-flow cerebrospinal fluid leaks caused by spiculated spinal osteophytes. J Neurosurg Spine. 2015;22:324–31.CrossRefPubMed
8.
Zurück zum Zitat Kranz PG, Luetmer PH, Diehn FE, Amrhein TJ, Tanpitukpongse TP, Gray L. Myelographic Techniques for the Detection of Spinal CSF Leaks in Spontaneous Intracranial Hypotension. AJR Am J Roentgenol. 2016;206:8–19.CrossRef Kranz PG, Luetmer PH, Diehn FE, Amrhein TJ, Tanpitukpongse TP, Gray L. Myelographic Techniques for the Detection of Spinal CSF Leaks in Spontaneous Intracranial Hypotension. AJR Am J Roentgenol. 2016;206:8–19.CrossRef
9.
Zurück zum Zitat Dobrocky T, Mosimann PJ, Zibold F, Mordasini P, Raabe A, Ulrich CT, Gralla J, Beck J, Piechowiak EI. Cryptogenic Cerebrospinal Fluid Leaks in Spontaneous Intracranial Hypotension: Role of Dynamic CT Myelography. Radiology. 2018;289:766–72.CrossRefPubMed Dobrocky T, Mosimann PJ, Zibold F, Mordasini P, Raabe A, Ulrich CT, Gralla J, Beck J, Piechowiak EI. Cryptogenic Cerebrospinal Fluid Leaks in Spontaneous Intracranial Hypotension: Role of Dynamic CT Myelography. Radiology. 2018;289:766–72.CrossRefPubMed
10.
Zurück zum Zitat Luetmer PH, Schwartz KM, Eckel LJ, Hunt CH, Carter RE, Diehn FE. When should I do dynamic CT myelography? Predicting fast spinal CSF leaks in patients with spontaneous intracranial hypotension. AJNR Am J Neuroradiol. 2012;33:690–4.CrossRefPubMedPubMedCentral Luetmer PH, Schwartz KM, Eckel LJ, Hunt CH, Carter RE, Diehn FE. When should I do dynamic CT myelography? Predicting fast spinal CSF leaks in patients with spontaneous intracranial hypotension. AJNR Am J Neuroradiol. 2012;33:690–4.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Komlosi P, Zhang Y, Leiva-Salinas C, Ornan D, Patrie JT, Xin W, Grady D, Wintermark M. Adaptive statistical iterative reconstruction reduces patient radiation dose in neuroradiology CT studies. Neuroradiology. 2014;56:187–93.CrossRefPubMed Komlosi P, Zhang Y, Leiva-Salinas C, Ornan D, Patrie JT, Xin W, Grady D, Wintermark M. Adaptive statistical iterative reconstruction reduces patient radiation dose in neuroradiology CT studies. Neuroradiology. 2014;56:187–93.CrossRefPubMed
12.
Zurück zum Zitat Houk JL, Marin DM, Malinzak MD, Kranz PG, Amrhein TJ. Dual energy CT for the identification of CSF-venous fistulas and CSF leaks in spontaneous intracranial hypotension: report of four cases. Radiol Case Rep. 2022;17:1824–9.CrossRefPubMedPubMedCentral Houk JL, Marin DM, Malinzak MD, Kranz PG, Amrhein TJ. Dual energy CT for the identification of CSF-venous fistulas and CSF leaks in spontaneous intracranial hypotension: report of four cases. Radiol Case Rep. 2022;17:1824–9.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Nicoletti T, Modoni A, Gaudino S, Frisullo G. Ventral longitudinal Intraspinal fluid collection presenting as upper limb amyotrophy. Eur Neurol. 2018;80:126–7.CrossRefPubMed Nicoletti T, Modoni A, Gaudino S, Frisullo G. Ventral longitudinal Intraspinal fluid collection presenting as upper limb amyotrophy. Eur Neurol. 2018;80:126–7.CrossRefPubMed
Metadaten
Titel
Prone Dynamic CT Myelography in Spontaneous Intracranial Hypotension
Diagnostic Need and Radiation Doses
verfasst von
Niklas Lützen
Enrique Barvulsky Aleman
Christian Fung
Juergen Beck
Horst Urbach
Publikationsdatum
03.03.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Clinical Neuroradiology / Ausgabe 3/2023
Print ISSN: 1869-1439
Elektronische ISSN: 1869-1447
DOI
https://doi.org/10.1007/s00062-023-01269-z

Weitere Artikel der Ausgabe 3/2023

Clinical Neuroradiology 3/2023 Zur Ausgabe

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.