Skip to main content
Erschienen in: Journal of Interventional Cardiac Electrophysiology 1/2021

02.06.2020 | MULTIMEDIA REPORT

Protective effects of cardiac resynchronization therapy in a canine model with experimental heart failure by improving mitochondrial function: a mitochondrial proteomics study

verfasst von: Xue Gong, Ziqing Yu, Zheyong Huang, Liqi Xie, Nianwei Zhou, Jingfeng Wang, Yixiu Liang, Shengmei Qin, Zhenning Nie, Liming Wei, Zheng Li, Shijun Wang, Yangang Su, Junbo Ge

Erschienen in: Journal of Interventional Cardiac Electrophysiology | Ausgabe 1/2021

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Cardiac resynchronization therapy (CRT) is well acknowledged as an effective treatment for dyssynchronous heart failure. However, the molecular mechanism is unclear to date. Mitochondrial dysfunction and impaired energetic metabolism are two important mechanisms that lead to heart failure. Therefore, we aim to screen the changes of mitochondria-associated proteins and signaling pathways involved in heart failure and CRT treatment.

Methods

A total of 24 beagle dogs were randomly assigned into control (CON), heart failure (HF), or CRT group. Myocardial mitochondria from the free wall of left ventricle was extracted for isobaric tags for relative and absolute quantitation (iTRAQ) labeling coupled with two-dimensional liquid chromatography tandem mass spectrometry analysis (2DLC-MS/MS).

Results

A total of 2190 proteins were identified, among which 234 proteins were differentially expressed in HF compared with CON group, 151 proteins were differentially expressed in CRT compared with HF group. A total of 192 of the 234 differentially expressed proteins in HF group were changed oppositely by CRT treatment, and 128 of the 151 CRT-induced differentially expressed proteins showed opposite trend of expression to HF/CON. Gene Ontology analysis of the 128 proteins revealed that 16 were localized in mitochondria, 17 were associated with calcium signaling, and 7 could be secreted extracellularly for cell-to-cell signaling. Calpain-1 (CAPN1), which is localized to mitochondria and related to calcium signaling, was upregulated in HF and downregulated after CRT treatment. CRT treatment also improved mitochondrial morphology and function and reduced collagen areas of both interstitial and perivascular fibrosis.

Conclusions

CRT treatment significantly improved cardiac function, reduced myocardial fibrosis, and enhanced mitochondrial function in the failing heart through CAPN1 downregulation.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Bristow MR, Saxon LA, Boehmer J, Krueger S, Kass DA, De Marco T, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350:2140–50.PubMedCrossRef Bristow MR, Saxon LA, Boehmer J, Krueger S, Kass DA, De Marco T, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350:2140–50.PubMedCrossRef
2.
Zurück zum Zitat Grupa Robocza Europejskiego Towarzystwa Kardiologicznego ds. stymulacji serca i resynchronizacji we w, Europejskim Towarzystwem Rytmu S, Vardas PE, Auricchio A, Blanc JJ, Daubert JC, et al. Guidelines in cardiac pacing and resynchronization therapy. Kardiol Pol. 2007;65:1449–87 discussion 88–9. Grupa Robocza Europejskiego Towarzystwa Kardiologicznego ds. stymulacji serca i resynchronizacji we w, Europejskim Towarzystwem Rytmu S, Vardas PE, Auricchio A, Blanc JJ, Daubert JC, et al. Guidelines in cardiac pacing and resynchronization therapy. Kardiol Pol. 2007;65:1449–87 discussion 88–9.
3.
Zurück zum Zitat Barth AS, Chakir K, Kass DA, Tomaselli GF. Transcriptome, proteome, and metabolome in dyssynchronous heart failure and CRT. J Cardiovasc Transl Res. 2012;5:180–7.PubMedCrossRef Barth AS, Chakir K, Kass DA, Tomaselli GF. Transcriptome, proteome, and metabolome in dyssynchronous heart failure and CRT. J Cardiovasc Transl Res. 2012;5:180–7.PubMedCrossRef
4.
Zurück zum Zitat Marin-Garcia J, Goldenthal MJ, Damle S, Pi Y, Moe GW. Regional distribution of mitochondrial dysfunction and apoptotic remodeling in pacing-induced heart failure. J Card Fail. 2009;15:700–8.PubMedCrossRef Marin-Garcia J, Goldenthal MJ, Damle S, Pi Y, Moe GW. Regional distribution of mitochondrial dysfunction and apoptotic remodeling in pacing-induced heart failure. J Card Fail. 2009;15:700–8.PubMedCrossRef
5.
Zurück zum Zitat Doehner W, Frenneaux M, Anker SD. Metabolic impairment in heart failure: the myocardial and systemic perspective. J Am Coll Cardiol. 2014;64:1388–400.PubMedCrossRef Doehner W, Frenneaux M, Anker SD. Metabolic impairment in heart failure: the myocardial and systemic perspective. J Am Coll Cardiol. 2014;64:1388–400.PubMedCrossRef
6.
Zurück zum Zitat Ajith TA, Jayakumar TG. Mitochondria-targeted agents: future perspectives of mitochondrial pharmaceutics in cardiovascular diseases. World J Cardiol. 2014;6:1091–9.PubMedPubMedCentralCrossRef Ajith TA, Jayakumar TG. Mitochondria-targeted agents: future perspectives of mitochondrial pharmaceutics in cardiovascular diseases. World J Cardiol. 2014;6:1091–9.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Marin-Garcia J, Goldenthal MJ, Moe GW. Abnormal cardiac and skeletal muscle mitochondrial function in pacing-induced cardiac failure. Cardiovasc Res. 2001;52:103–10.PubMedCrossRef Marin-Garcia J, Goldenthal MJ, Moe GW. Abnormal cardiac and skeletal muscle mitochondrial function in pacing-induced cardiac failure. Cardiovasc Res. 2001;52:103–10.PubMedCrossRef
8.
Zurück zum Zitat Heinke MY, Wheeler CH, Yan JX, Amin V, Chang D, Einstein R, et al. Changes in myocardial protein expression in pacing-induced canine heart failure. Electrophoresis. 1999;20:2086–93.PubMedCrossRef Heinke MY, Wheeler CH, Yan JX, Amin V, Chang D, Einstein R, et al. Changes in myocardial protein expression in pacing-induced canine heart failure. Electrophoresis. 1999;20:2086–93.PubMedCrossRef
9.
Zurück zum Zitat Xu YZ, Chen CF, Chen B, Gao XF, Hua W, Cha YM, et al. The modulating effects of cardiac resynchronization therapy on myocardial metabolism in heart failure. Pacing Clin Electrophysiol. 2016;39:1404–9.PubMedPubMedCentralCrossRef Xu YZ, Chen CF, Chen B, Gao XF, Hua W, Cha YM, et al. The modulating effects of cardiac resynchronization therapy on myocardial metabolism in heart failure. Pacing Clin Electrophysiol. 2016;39:1404–9.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Fujita T, Ishikawa Y. Apoptosis in heart failure. -The role of the beta-adrenergic receptor-mediated signaling pathway and p53-mediated signaling pathway in the apoptosis of cardiomyocytes. Circ J. 2011;75:1811–8.PubMedCrossRef Fujita T, Ishikawa Y. Apoptosis in heart failure. -The role of the beta-adrenergic receptor-mediated signaling pathway and p53-mediated signaling pathway in the apoptosis of cardiomyocytes. Circ J. 2011;75:1811–8.PubMedCrossRef
11.
Zurück zum Zitat Sheeran FL, Pepe S. Mitochondrial bioenergetics and dysfunction in failing heart. Adv Exp Med Biol. 2017;982:65–80.PubMedCrossRef Sheeran FL, Pepe S. Mitochondrial bioenergetics and dysfunction in failing heart. Adv Exp Med Biol. 2017;982:65–80.PubMedCrossRef
12.
Zurück zum Zitat Joiner ML, Koval OM, Li J, He BJ, Allamargot C, Gao Z, et al. CaMKII determines mitochondrial stress responses in heart. Nature. 2012;491:269–73.PubMedPubMedCentralCrossRef Joiner ML, Koval OM, Li J, He BJ, Allamargot C, Gao Z, et al. CaMKII determines mitochondrial stress responses in heart. Nature. 2012;491:269–73.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Wang S, Zhang F, Zhao G, Cheng Y, Wu T, Wu B, et al. Mitochondrial PKC-epsilon deficiency promotes I/R-mediated myocardial injury via GSK3beta-dependent mitochondrial permeability transition pore opening. J Cell Mol Med. 2017;21:2009–21.PubMedPubMedCentralCrossRef Wang S, Zhang F, Zhao G, Cheng Y, Wu T, Wu B, et al. Mitochondrial PKC-epsilon deficiency promotes I/R-mediated myocardial injury via GSK3beta-dependent mitochondrial permeability transition pore opening. J Cell Mol Med. 2017;21:2009–21.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Agnetti G, Kaludercic N, Kane LA, Elliott ST, Guo Y, Chakir K, et al. Modulation of mitochondrial proteome and improved mitochondrial function by biventricular pacing of dyssynchronous failing hearts. Circ Cardiovasc Genet. 2010;3:78–87.PubMedCrossRef Agnetti G, Kaludercic N, Kane LA, Elliott ST, Guo Y, Chakir K, et al. Modulation of mitochondrial proteome and improved mitochondrial function by biventricular pacing of dyssynchronous failing hearts. Circ Cardiovasc Genet. 2010;3:78–87.PubMedCrossRef
15.
Zurück zum Zitat Wang SB, Foster DB, Rucker J, O'Rourke B, Kass DA, Van Eyk JE. Redox regulation of mitochondrial ATP synthase: implications for cardiac resynchronization therapy. Circ Res. 2011;109:750–7.PubMedPubMedCentralCrossRef Wang SB, Foster DB, Rucker J, O'Rourke B, Kass DA, Van Eyk JE. Redox regulation of mitochondrial ATP synthase: implications for cardiac resynchronization therapy. Circ Res. 2011;109:750–7.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Ma H, Li R, Di X, Jin X, Wang Y, Lai B, et al. ITRAQ-based proteomic analysis reveals possible target-related proteins in human adrenocortical adenomas. BMC Genomics. 2019;20:655.PubMedPubMedCentralCrossRef Ma H, Li R, Di X, Jin X, Wang Y, Lai B, et al. ITRAQ-based proteomic analysis reveals possible target-related proteins in human adrenocortical adenomas. BMC Genomics. 2019;20:655.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Chen H, Wu M, Jiang W, Liu X, Zhang J, Yu C. iTRAQbased quantitative proteomics analysis of the potential application of secretoneurin gene therapy for cardiac hypertrophy induced by DLisoproterenol hydrochloride in mice. Int J Mol Med. 2020. Chen H, Wu M, Jiang W, Liu X, Zhang J, Yu C. iTRAQbased quantitative proteomics analysis of the potential application of secretoneurin gene therapy for cardiac hypertrophy induced by DLisoproterenol hydrochloride in mice. Int J Mol Med. 2020.
18.
Zurück zum Zitat Gong X, Qin S, Huang Z, Zhou N, Yang Z, Nie Z, et al. Pacing Bigeminal. Int Heart J. 2016;57:747–52.PubMedCrossRef Gong X, Qin S, Huang Z, Zhou N, Yang Z, Nie Z, et al. Pacing Bigeminal. Int Heart J. 2016;57:747–52.PubMedCrossRef
19.
Zurück zum Zitat Wang J, Gong X, Chen H, Qin S, Zhou N, Su Y, et al. Effect of cardiac resynchronization therapy on myocardial fibrosis and relevant cytokines in a canine model with experimental heart failure. J Cardiovasc Electrophysiol. 2017;28:438–45.PubMedCrossRef Wang J, Gong X, Chen H, Qin S, Zhou N, Su Y, et al. Effect of cardiac resynchronization therapy on myocardial fibrosis and relevant cytokines in a canine model with experimental heart failure. J Cardiovasc Electrophysiol. 2017;28:438–45.PubMedCrossRef
20.
Zurück zum Zitat Liu L, Tockman B, Girouard S, Pastore J, Walcott G, KenKnight B, et al. Left ventricular resynchronization therapy in a canine model of left bundle branch block. Am J Physiol Heart Circ Physiol. 2002;282:H2238–44.PubMedCrossRef Liu L, Tockman B, Girouard S, Pastore J, Walcott G, KenKnight B, et al. Left ventricular resynchronization therapy in a canine model of left bundle branch block. Am J Physiol Heart Circ Physiol. 2002;282:H2238–44.PubMedCrossRef
21.
Zurück zum Zitat Gottdiener JS, Bednarz J, Devereux R, Gardin J, Klein A, Manning WJ, et al. American Society of Echocardiography recommendations for use of echocardiography in clinical trials. J Am Soc Echocardiogr. 2004;17:1086–119.PubMed Gottdiener JS, Bednarz J, Devereux R, Gardin J, Klein A, Manning WJ, et al. American Society of Echocardiography recommendations for use of echocardiography in clinical trials. J Am Soc Echocardiogr. 2004;17:1086–119.PubMed
22.
Zurück zum Zitat Kane LA, Yung CK, Agnetti G, Neverova I, Van Eyk JE. Optimization of paper bridge loading for 2-DE analysis in the basic pH region: application to the mitochondrial subproteome. Proteomics. 2006;6:5683–7.PubMedCrossRef Kane LA, Yung CK, Agnetti G, Neverova I, Van Eyk JE. Optimization of paper bridge loading for 2-DE analysis in the basic pH region: application to the mitochondrial subproteome. Proteomics. 2006;6:5683–7.PubMedCrossRef
23.
Zurück zum Zitat Chen J, Gao Y, Liao W, Huang J, Gao W. Hypoxia affects mitochondrial protein expression in rat skeletal muscle. OMICS. 2012;16:98–104.PubMedCrossRef Chen J, Gao Y, Liao W, Huang J, Gao W. Hypoxia affects mitochondrial protein expression in rat skeletal muscle. OMICS. 2012;16:98–104.PubMedCrossRef
24.
Zurück zum Zitat Oberg AL, Mahoney DW, Eckel-Passow JE, Malone CJ, Wolfinger RD, Hill EG, et al. Statistical analysis of relative labeled mass spectrometry data from complex samples using ANOVA. J Proteome Res. 2008;7:225–33. Oberg AL, Mahoney DW, Eckel-Passow JE, Malone CJ, Wolfinger RD, Hill EG, et al. Statistical analysis of relative labeled mass spectrometry data from complex samples using ANOVA. J Proteome Res. 2008;7:225–33.
25.
Zurück zum Zitat Vanderheyden M, Mullens W, Delrue L, Goethals M, de Bruyne B, Wijns W, et al. Myocardial gene expression in heart failure patients treated with cardiac resynchronization therapy responders versus nonresponders. J Am Coll Cardiol. 2008;51:129–36.PubMedCrossRef Vanderheyden M, Mullens W, Delrue L, Goethals M, de Bruyne B, Wijns W, et al. Myocardial gene expression in heart failure patients treated with cardiac resynchronization therapy responders versus nonresponders. J Am Coll Cardiol. 2008;51:129–36.PubMedCrossRef
26.
Zurück zum Zitat Ravassa S, Garcia-Bolao I, Zudaire A, Macias A, Gavira JJ, Beaumont J, et al. Cardiac resynchronization therapy-induced left ventricular reverse remodelling is associated with reduced plasma annexin A5. Cardiovasc Res. 2010;88:304–13.PubMedCrossRef Ravassa S, Garcia-Bolao I, Zudaire A, Macias A, Gavira JJ, Beaumont J, et al. Cardiac resynchronization therapy-induced left ventricular reverse remodelling is associated with reduced plasma annexin A5. Cardiovasc Res. 2010;88:304–13.PubMedCrossRef
27.
Zurück zum Zitat Letavernier E, Zafrani L, Perez J, Letavernier B, Haymann JP, Baud L. The role of calpains in myocardial remodelling and heart failure. Cardiovasc Res. 2012;96:38–45.PubMedCrossRef Letavernier E, Zafrani L, Perez J, Letavernier B, Haymann JP, Baud L. The role of calpains in myocardial remodelling and heart failure. Cardiovasc Res. 2012;96:38–45.PubMedCrossRef
28.
Zurück zum Zitat Chemaly ER, Troncone L, Lebeche D. SERCA control of cell death and survival. Cell Calcium. 2018;69:46–61.PubMedCrossRef Chemaly ER, Troncone L, Lebeche D. SERCA control of cell death and survival. Cell Calcium. 2018;69:46–61.PubMedCrossRef
29.
Zurück zum Zitat Banerjee P, Chander V, Bandyopadhyay A. Balancing functions of annexin A6 maintain equilibrium between hypertrophy and apoptosis in cardiomyocytes. Cell Death Dis. 2015;6:e1873.PubMedPubMedCentralCrossRef Banerjee P, Chander V, Bandyopadhyay A. Balancing functions of annexin A6 maintain equilibrium between hypertrophy and apoptosis in cardiomyocytes. Cell Death Dis. 2015;6:e1873.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Satoh M, Matter CM, Ogita H, Takeshita K, Wang CY, Dorn GW 2nd, et al. Inhibition of apoptosis-regulated signaling kinase-1 and prevention of congestive heart failure by estrogen. Circulation. 2007;115:3197–204.PubMedPubMedCentralCrossRef Satoh M, Matter CM, Ogita H, Takeshita K, Wang CY, Dorn GW 2nd, et al. Inhibition of apoptosis-regulated signaling kinase-1 and prevention of congestive heart failure by estrogen. Circulation. 2007;115:3197–204.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Song H, Feng X, Zhang H, Luo Y, Huang J, Lin M, et al. METTL3 and ALKBH5 oppositely regulate m(6)A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Autophagy. 2019;15:1419–37.PubMedPubMedCentralCrossRef Song H, Feng X, Zhang H, Luo Y, Huang J, Lin M, et al. METTL3 and ALKBH5 oppositely regulate m(6)A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Autophagy. 2019;15:1419–37.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Wu S, Lu Q, Ding Y, Wu Y, Qiu Y, Wang P, et al. Hyperglycemia-driven inhibition of AMP-activated protein kinase alpha2 induces diabetic cardiomyopathy by promoting mitochondria-associated endoplasmic reticulum membranes in vivo. Circulation. 2019;139:1913–36.PubMedPubMedCentralCrossRef Wu S, Lu Q, Ding Y, Wu Y, Qiu Y, Wang P, et al. Hyperglycemia-driven inhibition of AMP-activated protein kinase alpha2 induces diabetic cardiomyopathy by promoting mitochondria-associated endoplasmic reticulum membranes in vivo. Circulation. 2019;139:1913–36.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Newington JT, Rappon T, Albers S, Wong DY, Rylett RJ, Cumming RC. Overexpression of pyruvate dehydrogenase kinase 1 and lactate dehydrogenase A in nerve cells confers resistance to amyloid beta and other toxins by decreasing mitochondrial respiration and reactive oxygen species production. J Biol Chem. 2012;287:37245–58.PubMedPubMedCentralCrossRef Newington JT, Rappon T, Albers S, Wong DY, Rylett RJ, Cumming RC. Overexpression of pyruvate dehydrogenase kinase 1 and lactate dehydrogenase A in nerve cells confers resistance to amyloid beta and other toxins by decreasing mitochondrial respiration and reactive oxygen species production. J Biol Chem. 2012;287:37245–58.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Greenberg SM, Koo EH, Selkoe DJ, Qiu WQ, Kosik KS. Secreted beta-amyloid precursor protein stimulates mitogen-activated protein kinase and enhances tau phosphorylation. Proc Natl Acad Sci U S A. 1994;91:7104–8.PubMedPubMedCentralCrossRef Greenberg SM, Koo EH, Selkoe DJ, Qiu WQ, Kosik KS. Secreted beta-amyloid precursor protein stimulates mitogen-activated protein kinase and enhances tau phosphorylation. Proc Natl Acad Sci U S A. 1994;91:7104–8.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Stein TD, Johnson JA. Lack of neurodegeneration in transgenic mice overexpressing mutant amyloid precursor protein is associated with increased levels of transthyretin and the activation of cell survival pathways. J Neurosci. 2002;22:7380–8.PubMedPubMedCentralCrossRef Stein TD, Johnson JA. Lack of neurodegeneration in transgenic mice overexpressing mutant amyloid precursor protein is associated with increased levels of transthyretin and the activation of cell survival pathways. J Neurosci. 2002;22:7380–8.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Shintani-Ishida K, Inui M, Yoshida K. Ischemia-reperfusion induces myocardial infarction through mitochondrial Ca(2)(+) overload. J Mol Cell Cardiol. 2012;53:233–9.PubMedCrossRef Shintani-Ishida K, Inui M, Yoshida K. Ischemia-reperfusion induces myocardial infarction through mitochondrial Ca(2)(+) overload. J Mol Cell Cardiol. 2012;53:233–9.PubMedCrossRef
38.
Zurück zum Zitat Santulli G, Xie W, Reiken SR, Marks AR. Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci U S A. 2015;112:11389–94.PubMedPubMedCentralCrossRef Santulli G, Xie W, Reiken SR, Marks AR. Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci U S A. 2015;112:11389–94.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Griffiths EJ, Balaska D, Cheng WH. The ups and downs of mitochondrial calcium signalling in the heart. Biochim Biophys Acta. 1797;2010:856–64. Griffiths EJ, Balaska D, Cheng WH. The ups and downs of mitochondrial calcium signalling in the heart. Biochim Biophys Acta. 1797;2010:856–64.
40.
Zurück zum Zitat Paillard M, Tubbs E, Thiebaut PA, Gomez L, Fauconnier J, Da Silva CC, et al. Depressing mitochondria-reticulum interactions protects cardiomyocytes from lethal hypoxia-reoxygenation injury. Circulation. 2013;128:1555–65.PubMedCrossRef Paillard M, Tubbs E, Thiebaut PA, Gomez L, Fauconnier J, Da Silva CC, et al. Depressing mitochondria-reticulum interactions protects cardiomyocytes from lethal hypoxia-reoxygenation injury. Circulation. 2013;128:1555–65.PubMedCrossRef
41.
Zurück zum Zitat Drago I, De Stefani D, Rizzuto R, Pozzan T. Mitochondrial Ca2+ uptake contributes to buffering cytoplasmic Ca2+ peaks in cardiomyocytes. Proc Natl Acad Sci U S A. 2012;109:12986–91.PubMedPubMedCentralCrossRef Drago I, De Stefani D, Rizzuto R, Pozzan T. Mitochondrial Ca2+ uptake contributes to buffering cytoplasmic Ca2+ peaks in cardiomyocytes. Proc Natl Acad Sci U S A. 2012;109:12986–91.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Zhao H, Xu M, Chu G. Association between myocardial cell apoptosis and calpain-1/caspase-3 expression in rats with hypoxic-ischemic brain damage. Mol Med Rep. 2017;15:2727–31.PubMedCrossRef Zhao H, Xu M, Chu G. Association between myocardial cell apoptosis and calpain-1/caspase-3 expression in rats with hypoxic-ischemic brain damage. Mol Med Rep. 2017;15:2727–31.PubMedCrossRef
44.
Zurück zum Zitat Cao T, Fan S, Zheng D, Wang G, Yu Y, Chen R, et al. Increased calpain-1 in mitochondria induces dilated heart failure in mice: role of mitochondrial superoxide anion. Basic Res Cardiol. 2019;114:17.PubMedCrossRef Cao T, Fan S, Zheng D, Wang G, Yu Y, Chen R, et al. Increased calpain-1 in mitochondria induces dilated heart failure in mice: role of mitochondrial superoxide anion. Basic Res Cardiol. 2019;114:17.PubMedCrossRef
45.
Zurück zum Zitat Galvez AS, Diwan A, Odley AM, Hahn HS, Osinska H, Melendez JG, et al. Cardiomyocyte degeneration with calpain deficiency reveals a critical role in protein homeostasis. Circ Res. 2007;100:1071–8.PubMedCrossRef Galvez AS, Diwan A, Odley AM, Hahn HS, Osinska H, Melendez JG, et al. Cardiomyocyte degeneration with calpain deficiency reveals a critical role in protein homeostasis. Circ Res. 2007;100:1071–8.PubMedCrossRef
46.
Zurück zum Zitat Patterson C, Portbury AL, Schisler JC, Willis MS. Tear me down: role of calpain in the development of cardiac ventricular hypertrophy. Circ Res. 2011;109:453–62.PubMedPubMedCentralCrossRef Patterson C, Portbury AL, Schisler JC, Willis MS. Tear me down: role of calpain in the development of cardiac ventricular hypertrophy. Circ Res. 2011;109:453–62.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Thompson J, Hu Y, Lesnefsky EJ, Chen Q. Activation of mitochondrial calpain and increased cardiac injury: beyond AIF release. Am J Physiol Heart Circ Physiol. 2016;310:H376–84.PubMedCrossRef Thompson J, Hu Y, Lesnefsky EJ, Chen Q. Activation of mitochondrial calpain and increased cardiac injury: beyond AIF release. Am J Physiol Heart Circ Physiol. 2016;310:H376–84.PubMedCrossRef
48.
Zurück zum Zitat Ni R, Zheng D, Xiong S, Hill DJ, Sun T, Gardiner RB, et al. Mitochondrial calpain-1 disrupts ATP synthase and induces superoxide generation in type 1 diabetic hearts: a novel mechanism contributing to diabetic cardiomyopathy. Diabetes. 2016;65:255–68.PubMed Ni R, Zheng D, Xiong S, Hill DJ, Sun T, Gardiner RB, et al. Mitochondrial calpain-1 disrupts ATP synthase and induces superoxide generation in type 1 diabetic hearts: a novel mechanism contributing to diabetic cardiomyopathy. Diabetes. 2016;65:255–68.PubMed
49.
Zurück zum Zitat Hu H, Li X, Li Y, Wang L, Mehta S, Feng Q, et al. Calpain-1 induces apoptosis in pulmonary microvascular endothelial cells under septic conditions. Microvasc Res. 2009;78:33–9.PubMedCrossRef Hu H, Li X, Li Y, Wang L, Mehta S, Feng Q, et al. Calpain-1 induces apoptosis in pulmonary microvascular endothelial cells under septic conditions. Microvasc Res. 2009;78:33–9.PubMedCrossRef
51.
Zurück zum Zitat Kudo-Sakamoto Y, Akazawa H, Ito K, Takano J, Yano M, Yabumoto C, et al. Calpain-dependent cleavage of N-cadherin is involved in the progression of post-myocardial infarction remodeling. J Biol Chem. 2014;289:19408–19.PubMedPubMedCentralCrossRef Kudo-Sakamoto Y, Akazawa H, Ito K, Takano J, Yano M, Yabumoto C, et al. Calpain-dependent cleavage of N-cadherin is involved in the progression of post-myocardial infarction remodeling. J Biol Chem. 2014;289:19408–19.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Undrovinas A, Maltsev VA, Sabbah HN. Calpain inhibition reduces amplitude and accelerates decay of the late sodium current in ventricular myocytes from dogs with chronic heart failure. PLoS One. 2013;8:e54436.PubMedPubMedCentralCrossRef Undrovinas A, Maltsev VA, Sabbah HN. Calpain inhibition reduces amplitude and accelerates decay of the late sodium current in ventricular myocytes from dogs with chronic heart failure. PLoS One. 2013;8:e54436.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat da Silva MF, Natali AJ, da Silva E, Gomes GJ, Teodoro BG, Cunha DN, et al. Attenuation of Ca2+ homeostasis, oxidative stress, and mitochondrial dysfunctions in diabetic rat heart: insulin therapy or aerobic exercise? Journal of Applied Physiology (Bethesda, Md : 1985). 2015;119:148–56.CrossRef da Silva MF, Natali AJ, da Silva E, Gomes GJ, Teodoro BG, Cunha DN, et al. Attenuation of Ca2+ homeostasis, oxidative stress, and mitochondrial dysfunctions in diabetic rat heart: insulin therapy or aerobic exercise? Journal of Applied Physiology (Bethesda, Md : 1985). 2015;119:148–56.CrossRef
54.
Zurück zum Zitat Neidhardt S, Garbade J, Emrich F, Klaeske K, Borger MA, Lehmann S, et al. Ischemic cardiomyopathy affects the thioredoxin system in the human myocardium. J Card Fail. 2019;25:204–12.PubMedCrossRef Neidhardt S, Garbade J, Emrich F, Klaeske K, Borger MA, Lehmann S, et al. Ischemic cardiomyopathy affects the thioredoxin system in the human myocardium. J Card Fail. 2019;25:204–12.PubMedCrossRef
Metadaten
Titel
Protective effects of cardiac resynchronization therapy in a canine model with experimental heart failure by improving mitochondrial function: a mitochondrial proteomics study
verfasst von
Xue Gong
Ziqing Yu
Zheyong Huang
Liqi Xie
Nianwei Zhou
Jingfeng Wang
Yixiu Liang
Shengmei Qin
Zhenning Nie
Liming Wei
Zheng Li
Shijun Wang
Yangang Su
Junbo Ge
Publikationsdatum
02.06.2020
Verlag
Springer US
Erschienen in
Journal of Interventional Cardiac Electrophysiology / Ausgabe 1/2021
Print ISSN: 1383-875X
Elektronische ISSN: 1572-8595
DOI
https://doi.org/10.1007/s10840-020-00768-0

Weitere Artikel der Ausgabe 1/2021

Journal of Interventional Cardiac Electrophysiology 1/2021 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.