Skip to main content
Erschienen in: Clinical and Experimental Nephrology 1/2013

01.02.2013 | Original Article

Proteomic analysis indicates altered expression of plasma proteins in a rat nephropathy model

verfasst von: Si Ai, Jian Zheng, Qing Lin, Rongyan Chen

Erschienen in: Clinical and Experimental Nephrology | Ausgabe 1/2013

Einloggen, um Zugang zu erhalten

Abstract

Background

Minimal-change nephrotic syndrome is an idiopathic disease in which protein leaks through podocytes into the urine. We used proteomic tools to examine differences of plasma protein expression in healthy rats and rats with doxorubicin-induced nephropathy treated with or without prednisone.

Methods

Healthy three-month-old Sprague–Dawley male rats were randomly chosen for one injection of doxorubicin (5.5 mg/kg) through the caudal vein to induce nephropathy (n = 50) or the same volume of saline (control, n = 20). After 1 week, 25 rats in the nephropathy group received topical prednisone (5.5 mg/kg/day) for 21 days and another 25 rats (untreated nephropathy) and the control rats received topical water. At 4 weeks, protein chips generated from rat plasma samples were analyzed by surface enhanced laser desorption/ionization–time of flight mass spectrometry (SELDI–TOF–MS) to obtain mass-to-charge ratios (m/z) of proteins of 2–50 kDa.

Results

Relative to control rats, untreated nephropathic rats had four significantly higher and seven significantly lower m/z peaks. Prednisone treatment significantly normalized the intensities of peaks 9069 and 15005 (which correspond to cortexin-1 and interleukin-17A, respectively, according to Swiss Prot database) by increasing the expression of 9069 but reducing expression of 15005.

Conclusion

Significant differences in plasma proteins can be identified by proteomic analysis using SELDI–TOF–MS in a rat model of nephropathy.
Literatur
1.
Zurück zum Zitat Lane JC, Kaskel FJ. Pediatric nephrotic syndrome: from the simple to the complex. Semin Nephrol. 2009;29:389–98.PubMedCrossRef Lane JC, Kaskel FJ. Pediatric nephrotic syndrome: from the simple to the complex. Semin Nephrol. 2009;29:389–98.PubMedCrossRef
2.
Zurück zum Zitat Cameron JS, Turner DR, Ogg CS, Sharpstoner P, Brown CB. The nephrotic syndrome in adults with ‘minimal change’ glomerular lesions. Q J Med. 1974;43:461–88.PubMed Cameron JS, Turner DR, Ogg CS, Sharpstoner P, Brown CB. The nephrotic syndrome in adults with ‘minimal change’ glomerular lesions. Q J Med. 1974;43:461–88.PubMed
3.
Zurück zum Zitat He K, Li R. Analysis on wean refractory nephropathy. Chin J Pract Integr Med. 2004;4:2621–2. He K, Li R. Analysis on wean refractory nephropathy. Chin J Pract Integr Med. 2004;4:2621–2.
4.
Zurück zum Zitat Yue Z, Min W, Qian W, Fei C, Jing Y, Boguang L, et al. Study on the establishment of the model of minimal change nephropathy with adriamycin in rats. J Beijing Univ TCM. 2002;3:16–8. Yue Z, Min W, Qian W, Fei C, Jing Y, Boguang L, et al. Study on the establishment of the model of minimal change nephropathy with adriamycin in rats. J Beijing Univ TCM. 2002;3:16–8.
5.
Zurück zum Zitat Traum AZ, Schachter AD. Proteomic analysis in pediatric renal disease. Semin Nephrol. 2007;27:652–7.PubMedCrossRef Traum AZ, Schachter AD. Proteomic analysis in pediatric renal disease. Semin Nephrol. 2007;27:652–7.PubMedCrossRef
6.
Zurück zum Zitat Yoshida Y, Miyamoto M, Bo X, Yaoita E, Yamamoto T. Overview of kidney and urine proteome databases. Contrib Nephrol. 2008;160:186–97.PubMedCrossRef Yoshida Y, Miyamoto M, Bo X, Yaoita E, Yamamoto T. Overview of kidney and urine proteome databases. Contrib Nephrol. 2008;160:186–97.PubMedCrossRef
7.
Zurück zum Zitat Gorg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics. 2004;4:3665–85.PubMedCrossRef Gorg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics. 2004;4:3665–85.PubMedCrossRef
8.
Zurück zum Zitat De Bock M, de Seny D, Meuwis MA, Chapelle JP, Louis E, Malaise M, et al. Challenges for biomarker discovery in body fluids usingSELDI–TOF-MS. J Biomed Biotechnol. 2010;2010:906082.PubMed De Bock M, de Seny D, Meuwis MA, Chapelle JP, Louis E, Malaise M, et al. Challenges for biomarker discovery in body fluids usingSELDI–TOF-MS. J Biomed Biotechnol. 2010;2010:906082.PubMed
9.
10.
Zurück zum Zitat Yoshida Y, Miyazaki K, Kamiie J, Sato M, Okuizumi S, Kenmochi A, et al. Two-dimensional electrophoretic profiling of normal human kidney glomerulus proteome and construction of an extensible markup language (XML)-based database. Proteomics. 2005;5:1083–96.PubMedCrossRef Yoshida Y, Miyazaki K, Kamiie J, Sato M, Okuizumi S, Kenmochi A, et al. Two-dimensional electrophoretic profiling of normal human kidney glomerulus proteome and construction of an extensible markup language (XML)-based database. Proteomics. 2005;5:1083–96.PubMedCrossRef
11.
Zurück zum Zitat Miyamoto M, Yoshida Y, Taguchi I, Nagasaka Y, Tasaki M, Zhang Y, et al. In-depth proteomic profiling of the normal human kidney glomerulus using two-dimensional protein prefractionation in combination with liquid chromatography-tandem mass spectrometry. J Proteome Res. 2007;6:3680–90.PubMedCrossRef Miyamoto M, Yoshida Y, Taguchi I, Nagasaka Y, Tasaki M, Zhang Y, et al. In-depth proteomic profiling of the normal human kidney glomerulus using two-dimensional protein prefractionation in combination with liquid chromatography-tandem mass spectrometry. J Proteome Res. 2007;6:3680–90.PubMedCrossRef
12.
Zurück zum Zitat Oh J, Pyo JH, Jo EH, Hwang SI, Kang SC, Jung JH, et al. Establishment of a near-standard two-dimensional human urine proteomic map. Proteomics. 2004;4:3485–97.PubMedCrossRef Oh J, Pyo JH, Jo EH, Hwang SI, Kang SC, Jung JH, et al. Establishment of a near-standard two-dimensional human urine proteomic map. Proteomics. 2004;4:3485–97.PubMedCrossRef
13.
Zurück zum Zitat Pieper R, Gatlin CL, McGrath AM, Makusky AJ, Mondal M, Seonarain M, et al. Characterization of the human urinary proteome: a method for high-resolution display of urinary proteins on two dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots. Proteomics. 2004;4:1159–74.PubMedCrossRef Pieper R, Gatlin CL, McGrath AM, Makusky AJ, Mondal M, Seonarain M, et al. Characterization of the human urinary proteome: a method for high-resolution display of urinary proteins on two dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots. Proteomics. 2004;4:1159–74.PubMedCrossRef
14.
Zurück zum Zitat Khan A, Packer NH. Simple urinary sample preparation for proteomic analysis. J Proteome Res. 2006;5:2824–38.PubMedCrossRef Khan A, Packer NH. Simple urinary sample preparation for proteomic analysis. J Proteome Res. 2006;5:2824–38.PubMedCrossRef
15.
Zurück zum Zitat Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA. 2004;101:13368–73.PubMedCrossRef Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA. 2004;101:13368–73.PubMedCrossRef
16.
Zurück zum Zitat Hawkridge AM, Muddiman DC. Mass spectrometry-based biomarker discovery: toward a global proteome index of individuality. Annu Rev Anal Chem. 2009;2:265–77.CrossRef Hawkridge AM, Muddiman DC. Mass spectrometry-based biomarker discovery: toward a global proteome index of individuality. Annu Rev Anal Chem. 2009;2:265–77.CrossRef
17.
Zurück zum Zitat Sparbier K, Wenzel T, Dihazi H. Immuno-MALDI–TOF MS, new perspectives for clinical applications of mass spectrometry. Proteomics. 2009;9:1442–50.PubMedCrossRef Sparbier K, Wenzel T, Dihazi H. Immuno-MALDI–TOF MS, new perspectives for clinical applications of mass spectrometry. Proteomics. 2009;9:1442–50.PubMedCrossRef
18.
Zurück zum Zitat Hutchens T, Yip T. New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Commun Mass Spectrom. 1993;7:576–80.CrossRef Hutchens T, Yip T. New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Commun Mass Spectrom. 1993;7:576–80.CrossRef
19.
Zurück zum Zitat Jr GW, Cazares LH, Leung SM, Nasim S, Adam BL, Yip TT, et al. ProteinChip® surface enhanced laser desorption/ionization (SELDI) mass spectrometry: a novel protein biochip technology for detection of prostate cancer biomarkers in complex protein mixtures. Prostate Cancer Prostatic Dis. 1999;2:264–76.PubMedCrossRef Jr GW, Cazares LH, Leung SM, Nasim S, Adam BL, Yip TT, et al. ProteinChip® surface enhanced laser desorption/ionization (SELDI) mass spectrometry: a novel protein biochip technology for detection of prostate cancer biomarkers in complex protein mixtures. Prostate Cancer Prostatic Dis. 1999;2:264–76.PubMedCrossRef
20.
Zurück zum Zitat Wright GL Jr. SELDI protein chip MS: a platform for biomarker discovery and cancer diagnosis. Expert Rev Mol Diag. 2002;2:549–63.CrossRef Wright GL Jr. SELDI protein chip MS: a platform for biomarker discovery and cancer diagnosis. Expert Rev Mol Diag. 2002;2:549–63.CrossRef
21.
Zurück zum Zitat Tang N, Tornatore P, Weinberger SR. Current developments in SELDI affinity technology. Mass Spectrom Rev. 2004;23:34–44.PubMedCrossRef Tang N, Tornatore P, Weinberger SR. Current developments in SELDI affinity technology. Mass Spectrom Rev. 2004;23:34–44.PubMedCrossRef
22.
Zurück zum Zitat Zhao H, Ljungberg B, Grankvist K, Rasmuson T, Tibshirani R, Brooks JD. Gene expression profiling predicts survival in conventional renal cell carcinoma. PLoS Med. 2006;3:e13.PubMedCrossRef Zhao H, Ljungberg B, Grankvist K, Rasmuson T, Tibshirani R, Brooks JD. Gene expression profiling predicts survival in conventional renal cell carcinoma. PLoS Med. 2006;3:e13.PubMedCrossRef
23.
Zurück zum Zitat Oberthuer A, Berthold F, Warnat P, Hero B, Kahlert Y, Spitz R, et al. Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification. J Clin Oncol. 2006;24:5070–8.PubMedCrossRef Oberthuer A, Berthold F, Warnat P, Hero B, Kahlert Y, Spitz R, et al. Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification. J Clin Oncol. 2006;24:5070–8.PubMedCrossRef
24.
Zurück zum Zitat Liu LL, Qin Y, Cai JF, Wang HY, Tao JL, Li H, et al. Th17/Treg imbalance in adult patients with minimal change nephrotic syndrome. Clin Immunol. 2011;139:314–20.PubMedCrossRef Liu LL, Qin Y, Cai JF, Wang HY, Tao JL, Li H, et al. Th17/Treg imbalance in adult patients with minimal change nephrotic syndrome. Clin Immunol. 2011;139:314–20.PubMedCrossRef
25.
Zurück zum Zitat Matsumotoa K, Kanmatsuse K. Increased urinary excretion of interleukin-17 in nephrotic patients. Nephron. 2002;91:243–9.CrossRef Matsumotoa K, Kanmatsuse K. Increased urinary excretion of interleukin-17 in nephrotic patients. Nephron. 2002;91:243–9.CrossRef
26.
Zurück zum Zitat Puppione DL, Ryan CM, Bassilian S, Souda P, Xiao X, Ryder OA, et al. Detection of two distinct forms of apoC-I in great apes. Comp Biochem Physiol Part D Genomics Proteomics. 2010;5:73–9.PubMedCrossRef Puppione DL, Ryan CM, Bassilian S, Souda P, Xiao X, Ryder OA, et al. Detection of two distinct forms of apoC-I in great apes. Comp Biochem Physiol Part D Genomics Proteomics. 2010;5:73–9.PubMedCrossRef
27.
Zurück zum Zitat Arystarkhova E, Wetzel RK, Sweadner KJ. Distribution and oligomeric association of splice forms of Na+-K+-ATPase regulatory gamma-subunit in rat kidney. Am J Physiol Renal Physiol. 2002;282:393–407. Arystarkhova E, Wetzel RK, Sweadner KJ. Distribution and oligomeric association of splice forms of Na+-K+-ATPase regulatory gamma-subunit in rat kidney. Am J Physiol Renal Physiol. 2002;282:393–407.
28.
Zurück zum Zitat Breiteneder-Geleff S, Matsui K, Soleiman A, Meraner P, Poczewski H, Kalt R, et al. Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis. Am J Pathol. 1997;151:1141–52.PubMed Breiteneder-Geleff S, Matsui K, Soleiman A, Meraner P, Poczewski H, Kalt R, et al. Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis. Am J Pathol. 1997;151:1141–52.PubMed
29.
Zurück zum Zitat Gonzalez E, Neuhaus T, Kemper MJ, Giradin E. Proteomic analysis of mononuclear cells of patients with minimal-change nephrotic syndrome of childhood. Nephrol Dial Transplant. 2009;24:149–55.PubMedCrossRef Gonzalez E, Neuhaus T, Kemper MJ, Giradin E. Proteomic analysis of mononuclear cells of patients with minimal-change nephrotic syndrome of childhood. Nephrol Dial Transplant. 2009;24:149–55.PubMedCrossRef
30.
Zurück zum Zitat Bertani T, Poggi A, Pozzoni R, Delaini F, Sacchi G, Thoua Y, et al. Adriamycin-induced nephrotic syndrome in rats: sequence of pathologic events. Lab Invest. 1982;46:16–23.PubMed Bertani T, Poggi A, Pozzoni R, Delaini F, Sacchi G, Thoua Y, et al. Adriamycin-induced nephrotic syndrome in rats: sequence of pathologic events. Lab Invest. 1982;46:16–23.PubMed
31.
Zurück zum Zitat Bricio T, Molina A, Egido J, Gonzalez E, Mampaso F. IL-1-like production in adriamycin-induced nephrotic syndrome in the rat. Clin Exp Immunol. 1992;87:117–21.PubMedCrossRef Bricio T, Molina A, Egido J, Gonzalez E, Mampaso F. IL-1-like production in adriamycin-induced nephrotic syndrome in the rat. Clin Exp Immunol. 1992;87:117–21.PubMedCrossRef
32.
Zurück zum Zitat Ishikawa I, Hayama T, Yoshida S, Asaka M, Tomosugi N, Watanabe M, et al. Proteomic analysis of rat plasma by SELDI–TOF-MS under the condition of prevention of progressive adriamycin nephropathy using oral adsorbent AST-120. Nephron Physiol. 2006;103:125–30.CrossRef Ishikawa I, Hayama T, Yoshida S, Asaka M, Tomosugi N, Watanabe M, et al. Proteomic analysis of rat plasma by SELDI–TOF-MS under the condition of prevention of progressive adriamycin nephropathy using oral adsorbent AST-120. Nephron Physiol. 2006;103:125–30.CrossRef
33.
Zurück zum Zitat Hammer E, Bien S, Salazar MG, Steil L, Scharf C, Hildebrandt P, et al. Proteomic analysis of doxorubicin-induced changes in the proteome of HepG2cells combining 2-D DIGE and LC-MS/MS approaches. Proteomics. 2010;10:99–114.PubMedCrossRef Hammer E, Bien S, Salazar MG, Steil L, Scharf C, Hildebrandt P, et al. Proteomic analysis of doxorubicin-induced changes in the proteome of HepG2cells combining 2-D DIGE and LC-MS/MS approaches. Proteomics. 2010;10:99–114.PubMedCrossRef
34.
Zurück zum Zitat Chen Y, Daosukho C, Wycliffe O, Turner DM, Pierce WM, Klein JB, et al. Redox proteomic identification of oxidized cardiac proteins in Adriamycin-treated mice. Free Radic Biol Med. 2006;41:1470–7.PubMedCrossRef Chen Y, Daosukho C, Wycliffe O, Turner DM, Pierce WM, Klein JB, et al. Redox proteomic identification of oxidized cardiac proteins in Adriamycin-treated mice. Free Radic Biol Med. 2006;41:1470–7.PubMedCrossRef
35.
Zurück zum Zitat Coulter PM 2nd, Bautista EA, Margulies JE, Watson JB. Identification of cortexin: a novel, neuron-specific, 82-residue membrane protein enriched in rodent cerebral cortex. J Neurochem. 1993;61:756–9.PubMedCrossRef Coulter PM 2nd, Bautista EA, Margulies JE, Watson JB. Identification of cortexin: a novel, neuron-specific, 82-residue membrane protein enriched in rodent cerebral cortex. J Neurochem. 1993;61:756–9.PubMedCrossRef
36.
Zurück zum Zitat Wang HT, Chang JW, Guo Z, Li BG. In silico-initiated cloning and molecular characterization of cortexin 3, a novel human gene specifically expressed in the kidney and brain, and well conserved in vertebrates. Int J Mol Med. 2007;20:501–10.PubMed Wang HT, Chang JW, Guo Z, Li BG. In silico-initiated cloning and molecular characterization of cortexin 3, a novel human gene specifically expressed in the kidney and brain, and well conserved in vertebrates. Int J Mol Med. 2007;20:501–10.PubMed
37.
Zurück zum Zitat Chakraborty S, Khan GA, Karmohapatra SK, Bhattacharya R, Bhattacharya G, Sinha AK. Purification and mechanism of action of “cortexin”, a novel antihypertensive protein hormone from kidney and its role in essential hypertension in men. J Am Soc Hypertens. 2009;3:119–32.PubMedCrossRef Chakraborty S, Khan GA, Karmohapatra SK, Bhattacharya R, Bhattacharya G, Sinha AK. Purification and mechanism of action of “cortexin”, a novel antihypertensive protein hormone from kidney and its role in essential hypertension in men. J Am Soc Hypertens. 2009;3:119–32.PubMedCrossRef
38.
Zurück zum Zitat Kontchou LM, Liccioli G, Pela I. Blood pressure in children with minimal change nephrotic syndrome during oedema and after steroid therapy: the influence of familial essential hypertension. Kidney Blood Press Res. 2009;32:258–62.PubMedCrossRef Kontchou LM, Liccioli G, Pela I. Blood pressure in children with minimal change nephrotic syndrome during oedema and after steroid therapy: the influence of familial essential hypertension. Kidney Blood Press Res. 2009;32:258–62.PubMedCrossRef
39.
Zurück zum Zitat Gipson DS, Massengill SF, Yao L, Nagaraj S, Smoyer WE, Mahan JD, et al. Management of childhood onset nephrotic syndrome. Pediatrics. 2009;124:747–57.PubMedCrossRef Gipson DS, Massengill SF, Yao L, Nagaraj S, Smoyer WE, Mahan JD, et al. Management of childhood onset nephrotic syndrome. Pediatrics. 2009;124:747–57.PubMedCrossRef
41.
Zurück zum Zitat Knepper MA. Common sense approaches to urinary biomarker study design. J Am Soc Nephrol. 2009;20:1175–8.PubMedCrossRef Knepper MA. Common sense approaches to urinary biomarker study design. J Am Soc Nephrol. 2009;20:1175–8.PubMedCrossRef
Metadaten
Titel
Proteomic analysis indicates altered expression of plasma proteins in a rat nephropathy model
verfasst von
Si Ai
Jian Zheng
Qing Lin
Rongyan Chen
Publikationsdatum
01.02.2013
Verlag
Springer Japan
Erschienen in
Clinical and Experimental Nephrology / Ausgabe 1/2013
Print ISSN: 1342-1751
Elektronische ISSN: 1437-7799
DOI
https://doi.org/10.1007/s10157-012-0662-y

Weitere Artikel der Ausgabe 1/2013

Clinical and Experimental Nephrology 1/2013 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.