03.08.2020 | Original Article
PSA-based machine learning model improves prostate cancer risk stratification in a screening population
verfasst von:
Marlon Perera, Rohan Mirchandani, Nathan Papa, Geoff Breemer, Anna Effeindzourou, Lewis Smith, Peter Swindle, Elliot Smith
Erschienen in:
World Journal of Urology
|
Ausgabe 6/2021
Einloggen, um Zugang zu erhalten
Abstract
Context
The majority of prostate cancer diagnoses are facilitated by testing serum Prostate Specific Antigen (PSA) levels. Despite this, there are limitations to the diagnostic accuracy of PSA. Consideration of patient demographic factors and biochemical adjuncts to PSA may improve prostate cancer risk stratification. We aimed to develop a contemporary, accurate and cost-effective model based on objective measures to improve the accuracy of prostate cancer risk stratification.
Methods
Data were collated from a local institution and combined with patient data retrieved from the Prostate, Lung, Colorectal and Ovarian Cancer screening Trial (PLCO) database. Using a dataset of 4548 patients, a machine learning model was developed and trained using PSA, free-PSA, age and free-PSA to total PSA (FTR) ratio.
Results
The model was trained on a dataset involving 3638 patients and was then tested on a separate set of 910 patients. The model improved prediction for prostate cancer (AUC 0.72) compared to PSA alone (AUC 0.63), age (AUC 0.52), free-PSA (AUC 0.50) and FTR alone (AUC 0.65). When an operating point is chosen such that the sensitivity of the model is 80% the specificity of the model is 45.3%. The benefit in AUC secondary to the model was related to sample size, with AUC of 0.64 observed when a subset of the cohort was assessed.
Conclusions
Development of a dense neural network model improved the diagnostic accuracy in screening for prostate cancer. These results demonstrate an additional utility of machine learning methods in prostate cancer risk stratification when using biochemical parameters.